Skip to main content
. 2024 Dec 28;14:31024. doi: 10.1038/s41598-024-82222-z

Table 2.

Performance metrics of the multi-label baseline classifier.

Class Accuracy Precision Recall F1-score
B_ROC B_PR B_ROC B_PR B_ROC B_PR B_ROC B_PR
Ca 0.803 0.971 0.084 0.348 0.785 0.347 0.152 0.348
Pa 0.652 0.677 0.505 0.540 0.647 0.540 0.567 0.540
Pn 0.807 0.938 0.147 0.297 0.694 0.297 0.242 0.297
Pl 0.777 0.862 0.340 0.472 0.743 0.471 0.466 0.471
Ot 0.736 0.963 0.057 0.166 0.696 0.166 0.105 0.166
MEAN 0.755 0.882 0.226 0.365 0.713 0.364 0.307 0.364

Results obtained for all instances predicted as positive for a given class, regardless of whether they are single-pathology or multi-label. The precision, recall, and F1-score values were calculated using class-specific optimal thresholds, optimized based on the ROC curve (B_ROC) or the PR curve (B_PR).