Skip to main content
. 2024 Dec 28;14:31024. doi: 10.1038/s41598-024-82222-z

Table 3.

Performance metrics of the CLARE-XR classification methodology.

Class Accuracy Precision Recall F1-score
R1 R2 R1 R2 R1 R2 R1 R2
Ca 0.700 0.475 0.025 0.026 0.328 0.622 0.047 0.051
Pa 0.634 0.631 0.477 0.481 0.418 0.644 0.446 0.551
Pn 0.943 0.891 0.355 0.224 0.347 0.596 0.351 0.326
Pl 0.872 0.794 0.510 0.369 0.680 0.808 0.538 0.507
Ot 0.974 0.961 0.424 0.314 0.473 0.609 0.447 0.414
MEAN 0.825 0.750 0.358 0.283 0.449 0.656 0.375 0.370
Class Accuracy Precision Recall F1-score
R3 R4 R3 R4 R3 R4 R3 R4
Ca 0.558 0.499 0.028 0.027 0.541 0.608 0.052 0.052
Pa 0.630 0.629 0.470 0.469 0.426 0.434 0.447 0.451
Pn 0.956 0.943 0.500 0.382 0.320 0.454 0.390 0.415
Pl 0.878 0.870 0.529 0.504 0.663 0.688 0.588 0.582
Ot 0.975 0.971 0.446 0.395 0.499 0.529 0.471 0.452
MEAN 0.799 0.782 0.394 0.355 0.490 0.543 0.390 0.390

Results obtained for all instances predicted as positive for a given class, regardless of whether they are single-pathology or multi-label. The precision, recall, and F1-score values were calculated based on the predictions obtained by each set of rules (R).