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This study introduces a physics-regularized neural network (PRNN) as a computational approach to 
predict silicon carbide’s (SiC) swelling under irradiation, particularly at high temperatures. The PRNN 
model combines physics-based regularization with neural network methodologies to generalize the 
behavior of SiC, even in conditions beyond the traditional empirical model’s valid range. This approach 
ensures continuity and accuracy in SiC behavior predictions in extreme environments. A key aspect 
of this research is using nested cross-validation to ensure robustness and generalizability. The PRNN 
model effectively bridges empirical and sparse experimental data by integrating prior knowledge and 
refined tuning procedures. It demonstrates its SiC’s predictive power in high-irradiation conditions 
essential for nuclear and aerospace applications.

Silicon carbide (SiC)  material can be used in the under extreme conditions, showcasing exceptional thermal, 
mechanical, and electrical properties1–3. Its superior thermal conductivity and structural strength have the 
potential to be effectively implemented in a wide variety of fields. At the same time, its resistance to radiation 
makes it invaluable within harsh environments such as nuclear reactors. However, irradiation-induced changes 
in material properties, particularly swelling, remain a key challenge that can critically undermine material 
integrity and performance.

In nuclear technology, the deployment of SiC as a cladding material in fuel rods can enhance the efficiency 
and safety of reactors4–7. SiC’s resistance to high temperatures and corrosive fission products leads to higher 
burnup rates and extended fuel life. However, the volume changes induced by neutron irradiation present 
a critical issue, potentially impacting material reliability and, by extension, the entire operation of a nuclear 
reactor. The ability to predict and control these irradiation-induced changes is not just of academic interest but 
essential for the safe and effective deployment of SiC in nuclear reactors.

In addition to nuclear technology, SiC’s robustness is harnessed in aerospace engineering for structural 
components within spacecraft and jet engines, where stability under thermal and mechanical stress is 
paramount8,9. However,  irradiation can induce swelling, compromising the structural integrity required in high-
performance aerospace applications. This presents a significant challenge for advancing aerospace technologies. 
Similarly, in the burgeoning field of semiconductor devices, SiC’s superior properties allow for devices that 
operate at higher temperatures and voltages compared to traditional silicon. Yet, irradiation-induced swelling 
can compromise the semiconductor’s crystalline structure, affecting its electrical properties and overall device 
performance10,11. There is a need across these fields to develop models capable of quantitatively evaluating SiC 
volume swelling under irradiation. Previous empirical swelling studies12–14 formulated models as functions of 
irradiation temperature and neutron fluence. However, they face significant limitations in high-temperature 
regimes exceeding 713 K, where irradiation-induced swelling becomes more complex and the empirical 
models fail to predict behavior accurately. While 713 K represents the normal operating temperature range for 
conventional light water reactors15–17, it is not sufficient for simulating the more severe operating environments 
of accident conditions or next-generation reactors such as Fast Modular Reactors (FMR)18–21. These reactors 
operate at much higher temperatures, ranging from 1300 to 1500 K in normal conditions, and can experience 
temperatures up to 2300 K under accident conditions18. Therefore, there is a critical research gap in extending 
models to cover these high-temperature regimes, which are vital for the practical design and development of 
future nuclear systems. To address these challenges, this study introduces a physics-regularized neural network 
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(PRNN) approach focusing on the unique complexities of irradiation-induced material property changes, 
particularly swelling under high-temperature irradiation. By combining the available empirical model13 with 
sparse high-temperature experimental data, the PRNN framework bridges the gap between empirical knowledge 
and the need for accurate predictions in extreme conditions. This method integrates known physical relationships 
where reliable while allowing for data-driven learning in regions of uncertainty, such as temperatures exceeding 
713 K. The use of PRNN offers flexibility by incorporating physical constraints derived from empirical models 
only in temperature ranges where sufficient data is available, ensuring consistency with known behavior. In 
higher-temperature regimes, where experimental data is sparse, the regularization is deactivated, allowing the 
model to generalize based on the available data while mitigating overfitting risks. The strategy of combining 
known knowledge with machine learning has unfolded through the emergence of Physics-Informed Neural 
Networks (PINNs)22. PINNs inherently encode known physical relationships within the neural network design. 
By embedding the governing equations and boundary conditions into the loss function and using automatic 
differentiation, PINNs ensure agreement with the laws of physics across the entire input domain during training22. 
However, adapting such methods22,23 to material modeling-where irradiation effects drive complex material 
behavior may present challenges, particularly when governing physics is incomplete, unclear,  or experimentally 
confirmed only in specific conditions. The PRNN approach aims to apply a selective regularization, allowing it to 
generalize a material behavior where physics (or an empirical model available) and ensure continuity with new 
data obtained in new conditions that exceed their valid range. 

In this paper, the sequence of modeling methods proposed here, combining PRNN, cross-validation, and 
ensemble methods, provides a pathway to reliably bridge empirical and sparse experimental data through 
integrating prior knowledge and tuning procedures. This integrated approach, focused on irradiation-induced 
changes in material properties, offers improved generalization and robustness in predicting material behavior 
under extreme conditions, contributing to advancements in nuclear and aerospace technologies.

Methods
Data augmentation
The primary dataset used in this study was derived from the previous research by Snead et al.14, which 
documents 58 unique entries of the volumetric swelling behavior of SiC under specific irradiation conditions. 
These conditions span temperatures from 1200 to 1873 K, with displacement damage per atom  (dpa)  levels 
set at 1.75, 5, and 8.5. However, the limited size of this dataset posed challenges for the model’s generalization, 
particularly in predicting behavior at high temperatures. To address this limitation, a data augmentation strategy 
was implemented using the k-nearest neighbors (KNN) algorithm from the scikit-learn library24,25, generating 
synthetic data points to enhance the variability and coverage of the dataset. As a first step, the features of the 
original dataset were normalized using min–max scaling, which transformed all data points to a range between 
0 and 1. This normalization ensured that the KNN algorithm operated on a uniform scale, thereby improving 
the quality of the generated synthetic data. KNN, a non-parametric machine learning algorithm, is used for 
classification or regression problems; however, it can also be employed for data augmentation by generating 
synthetic data points based on relationships between existing data points in the feature space26. The algorithm 
identifies the k-nearest neighbors of a given point based on a distance metric (in this case, Euclidean distance), 
with the proximity of these neighbors providing a foundation for generating new, realistic data points.

For this study, the KNN-based augmentation process was initiated by randomly selecting a seed point from 
the normalized dataset. The algorithm then identified its five nearest neighbors (k = 5), representing data points 
most similar to the seed point in the feature space. These neighboring data points were used to estimate the 
general trend or structure around the seed point. After identifying the five nearest neighbors, their attributes 
were averaged to create a base synthetic point. Gaussian noise with a standard deviation of 0.10 was added to the 
averaged attributes to introduce realistic variability and avoid overfitting. This addition of noise ensured that the 
generated synthetic points were not mere duplications of existing data but instead represented plausible variations 
that reflected the natural fluctuations and uncertainties in experimental data. The KNN-based augmentation 
process was iteratively repeated by selecting different seed points and generating new synthetic data points 
from their respective neighbors. This iterative process was carried out until 10,000 synthetic data points were 
generated. By utilizing KNN, the augmented dataset was constructed to maintain the overall structure of the 
original data while expanding the dataset to capture a wider range of variability. In addition to augmenting the 
dataset with synthetic data, predictions from an empirical swelling model (Eq. 1) were incorporated to further 
enrich the data, particularly in temperature ranges where experimental data were sparse. For each dpa level, ten 
temperatures uniformly sampled between 493 and 1273.15 K were used, and the empirical model was employed 
to predict the corresponding swelling values. These predictions were then integrated into the augmented dataset, 
resulting in a combined set of 22,000 data points.

The dataset was expanded by combining KNN-based synthetic data generation with empirical swelling 
predictions. The resulting augmented dataset spans a broader range of temperatures and dpa levels, providing 
a more variation for training the PRNN model. This approach improves the model’s ability to generalize across 
various irradiation scenarios, including high-temperature regions where empirical data are sparse.

Implementation of PRNN and nested-cross validation
The development of the PRNN was conducted using PyTorch version 1.13.127. PyTorch, with its dynamic 
computational graph, provided the necessary flexibility for implementing the complex neural network 
architecture. In parallel, the nested-cross validation (NCV) process was set up using the scikit-learn library24, a 
tool chosen for ensuring a model robustness. NCV, critical for preventing overfitting, incorporates an outer loop 
for model performance evaluation and an inner loop for hyperparameter tuning. Hyperparameter optimization 
was carried out using Optuna28. 
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This approach encompassing the use of PyTorch for PRNN development, scikit-learn for nested cross-
validation, and Optuna for hyperparameter optimization, ensured a robust and physically consistent predictive 
model. 

Results and discussions
Empirical model
The Katoh model was empirically formulated to describe swelling in CVD SiC and SiC/SiC as a function of 
irradiation temperature and neutron fluence12,13. It was developed by13 using an extensive experimental database 
on swelling in CVD SiC and SiC/SiC. The dataset included historic swelling results from multiple studies on 
high-purity CVD SiC irradiated at temperatures ranging from 473 to 1073 K. This collected dataset allowed 
correlation of swelling with both irradiation temperature and fluence over a wide range encompassing the point 
defect and void swelling regions. Reference13 derived the mathematical form of the model (Eq. 1) based on 
theoretical considerations of point defect accumulation and swelling saturation mechanisms.

 
S = Ss

[
1 − exp

(
γ

γc

)]2/3

, (1)

where the critical dose γc and saturable swelling Ss are:

 γc = − 0.57533 + 3.3342 × 10−3T − 5.3970 × 10−6T 2 + 2.9754 × 10−9T 3,  (2)

 Ss =5.8366 × 10−2 − 1.0089 × 10−4T + 6.9368 × 10−8T 2 − 1.8152 × 10−11T 3,  (3)

where S, γ, and T denote swelling (%), displacement damage per atom (dpa), and temperature (K), respectively. 
The model is validated on irradiation temperatures from 473 to 713 K. Figure 1a shows the model calculation 
with several dpa values. As the author13 pointed out, the model shows agreement with previously published 
swelling data for CVD SiC and CVI SiC/SiC at temperatures up to 1073 K. In higher-temperature regions, the 
decrease in swell is slower, but the influence of dpa on the change is evident. As the dpa increases, the decrease 
in the swelling is mitigated. However, as Fig. 1b shows, the model can not describe void swelling phenomena as 
shown in experimental data reported in Ref.14. Although the applicable temperature of this model is sufficient 
for conventional light water reactor operation, the current model is insufficient for future power increases of 
nuclear reactors, core design such as fast reactors, or estimation of accident scenarios such as loss of coolant 
accident (LOCA). Against this background, there is a need in the field of nuclear engineering to expand the 
limitations of existing models.

Figure 1. (a) Katoh model prediction of SiC volumetric swelling versus temperature and neutron fluence 
quantified in displacement per atom (dpa). Up to approximately 800 K irradiation temperature, dpa has no 
effect on volume swelling, but above that temperature, the effect becomes more pronounced (i.e., point defect). 
(b) CVD SiC volumetric swelling experimental data combined by Ref.14. Only a part of the synthetic data 
generated in this work is depicted for visibility here.
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In order to extend an existing empirical model, gathering experimental data under new conditions such as 
irradiation temperature and neutron fluence is necessary. However, obtaining new data poses experimental 
challenges. Irradiation experiments require specialized facilities like research reactors or particle accelerators with 
limited availability and high utilization costs. Test setup and instrumentation to provide desired environmental 
conditions and measure property changes further add complexity. Executing experiments to accumulate sufficient 
data across a wide range of temperatures, dpa, and compositions relevant to nuclear applications is tremendously 
time-consuming. These experiments often take months to years, from design to analysis. Moreover, effects like 
swelling accumulate over a long duration, necessitating lengthy irradiation. The expense and effort to generate 
comprehensive experimental data represent a key bottleneck in developing predictive irradiation effects models.

Physics-regularized neural network
The extended volume swelling model was built with the proposed PRNN. The schematic of the proposed PRNN 
architecture is shown in Fig. 2a. This study employs a fully connected neural network (FCNN) with a dropout 
with one input layer, hidden layers, and one output layer. Conventional NNs only use an output from an output 
layer to compute a loss function during training. However, the proposed method is utilized to compute the loss 
value and to obtain an additional quantification. The loss value of the proposed PRNN comprises three terms: 
data loss, physics regularization, and L2 regularization.

For an input vector x ∈ Rn, let yi be the true target value and ŷi be the model output for the i-th training 
data point, where i indexes over the N total training points. The data loss term measures the mean-squared error 
(MSE) between the predicted ŷi and true yi values over all training data points:

 
Data loss = 1

N

N∑
i=1

(yi − ŷi)2. (4)

By minimizing this MSE loss, the model is trained to make predictions ŷi that are as close as possible to the true 
targets yi, averaged over the N training data points.

The proposed model uses a physics regularization term in the loss function to integrate scientific domain 
knowledge into the training process for improved generalization and extrapolation. This term serves multiple 
objectives. It encodes consistency with established physical principles and new experiment data. Penalizing 

Figure 2. (a) Schematic of the physics-regularized neural network (PRNN) architecture comprising fully 
connected layers. (b) Overview of the nested cross-validation (NCV) procedure with inner loops for 
hyperparameter tuning and outer loops for ensemble model training and evaluation.
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deviations from known behavior prevents unphysical predictions while guiding the model in line with validated 
relationships. It also supplements data-driven learning with scientific priors to compensate for limited training 
data. Moreover, the physics-based loss allows encoding specific constraints as needed, such as enforcing 
agreement with empirical swelling models under certain conditions. This term enables flexible integration of 
domain knowledge, only applying principles where reliably known. This characteristic maintains a blend of data-
driven flexibility and scientific consistency even when new data is sparse.

Let N  represent the total number of training data points. The physics regularization term is applied to each 
data point i based on a temperature threshold. Specifically, within the training set D, the physics regularization 
term is defined as:

 
Physics Regularization = λphys

N

N∑
i=1

R2
i , (5)

where λphys is the physics regularization hyperparameter, and Ri represents the residual between the model 
output ŷi and the physics model output yphys,i, as given by:

Hyper parameter Type Search space

λphys Float [0.001, 1.0)

λreg LogUniform [0.00005, 0.1)

Droprate Float [0.0, 0.5)

Learning rate LogUniform [0.00005, 0.1)

Batch size Categorical [16, 32, 64, 128]

Number of layers Int [1, 4]

Units in 1st layer Int [32, 1024]

(Units in 2nd layer) Int [32, 1024]

(Units in 3rd layer) Int [32, 1024]

(Units in 4th layer) Int [32, 1024]

Activation function Categorical ‘Tanh’ or ‘ReLU’

Table 1. List of hyperparameter search space used in NCV.

 

Figure 3. Model architectures of physics-regularized neural networks (PRNNs) for swelling prediction, 
determined through fivefold NCV. Numerical annotations indicate the number of units in fully connected 
layers, each employing ReLU activations. Each layer features a dropout mechanism with a specified rate, 
denoted as ‘Droprate ’.
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Ri =

{
ŷi − yphys,i if Ti < 713 K,
0 otherwise.  (6)

In addition to the data loss and physics regularization terms, the model loss function includes an L2 regularization 
term:

 
L2 Regularization = λreg

L∑
k=1

w2
k, (7)

where wk  are the weight parameters of the neural network model, λreg  is the L2 regularization hyperparameter, 
and the summation is over all L weight parameters wk . L2 regularization reduces model complexity and 
sensitivity to training data variations by preventing the weights from reaching excessive values. The roles of 
these terms in the proposed method are to avoid overfitting, enhance numerical stability during training, and 
allow the integration of physics terms without dominating training.

By combining Eqs. (4), (5), and (7), the total loss to be used during training is expressed as follows:

 

Loss = 1
N

N∑
i=1

(yi − ŷi)2

︸ ︷︷ ︸
Data Loss

+ λphys

N

N∑
i=1

R2
i

︸ ︷︷ ︸
Physics Regularization

+ λreg

L∑
k

w2
k

︸ ︷︷ ︸
L2 Regularization

.
 (8)

Training and cross-validation
The PRNN model training aims to minimize the composite loss function defined in Eq. (8). Optimization is 
performed using stochastic gradient descent via the Adam algorithm29. At each training iteration, it computes 
the gradient of the loss with respect to model parameters based on a randomly sampled batch of training data. 
Model weights are then updated in the direction that reduces the loss, iteratively converging to a minimized 
loss value. During the training process, the number of epochs is fixed to 100. Other hyperparameters, including 
learning rate and batch size, are optimized for cross-validation to ensure stable and efficient training dynamics 
given the data constraints.

In this study, the development of ML models is confronted by the limitations of a small dataset, which 
causes the inability to establish a comprehensive training and testing framework and increases the risk of 
model overfitting. The sparsity of data also demands a methodological approach that can provide an unbiased 
assessment of the ML models’ performance. NCV30,31 is employed to meet these challenges, optimizing the use 
of limited data via a stratified two-level cross-validation process. Specifically, the NCV structure is composed of 
a fivefold outer loop for the final model performance assessment, coupled with a twofold inner loop dedicated 
to hyperparameter optimization, resulting in a total of 5 outer folds × two inner folds as illustrated in Fig. 2b.

Within the inner loop, the training data for each outer fold is split into two distinct subsets via a twofold 
cross-validation (CV). One subset functions as a validation set, while the complementary subset is utilized for 
model training across varying hyperparameters. This inner validation cycle is iteratively conducted for each 
of the five outer folds (see Fig. 3) to refine hyperparameters tailored to the dataset of the respective outer fold. 
Conversely, the outer loop employs a fivefold CV to partition the dataset into five separate subsets. Subsequently, 
for each iteration of the outer fold, an ensemble model is trained on the aggregate of the remaining four subsets, 
applying the hyperparameters refined in the inner loop. This process yields five independently tuned ensemble 
models corresponding to the five outer folds. The reserved outer test sets serve as instruments for an unbiased 
final evaluation.

The deployment of NCV enables the full exploitation of the constrained dataset for model calibration and 
validation, thereby assuring that the model’s performance reflects its predictive capabilities on unseen data. 
Hence, the application of NCV transcends methodological preference, becoming a compelled strategy due to 
the data limitations inherent in this study.

Fold Layers/units λphys λreg Droprate Learning rate Batch size

1 [1021, 848, 516] 3.61 × 10−1 2.72 × 10−5 3.80 × 10−4 1.02 × 10−5 16

2 [986] 8.20 × 10−1 1.39 × 10−4 1.17 × 10−2 1.82 × 10−4 16

3 [221, 480, 297, 35] 3.66 × 10−1 1.60 × 10−5 3.18 × 10−4 3.51 × 10−5 16

4 [967] 4.89 × 10−2 4.16 × 10−5 4.34 × 10−1 4.15 × 10−4 32

5 [904] 3.09 × 10−1 9.27 × 10−5 9.46 × 10−2 3.18 × 10−4 32

Table 2. Hyperparameters determined through nested cross-validation.
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Figure 4. (a–e) Individual volume swelling predictive models generated across each cross-validation fold via 
the physics-regularized neural network (PRNN). Markers represent experimental data, lines show predictions. 
Models display consistency in capturing distinct point defect and void swelling regimes. (f) Aggregated 
swelling model obtained by ensembling the predictions of the models in (a–e). The final model accurately 
describes the full temperature range, aligning well with measured data for all irradiation doses. The ensembling 
demonstrates improved generalization ability versus individual models.
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Hyperparameter tuning in NCV
A key advantage of NCV is the ability to extensively search for an optimal combination of hyperparameters that 
maximize model performance. Table 1 summarizes the hyperparameters and search space explored through the 
inner folds of the NCV routine.

The physics weighting parameter λphys determines the balance between data-driven and physics-based loss 
terms. The L2 regularization strength λreg  controls model complexity. Neural network architecture is tuned by 
varying the number of layers from 1 to 4 and the number of units in each layer. Additional hyperparameters like 
dropout rate, learning rate, batch size, and activation functions—with a choice between hyperbolic tangent and 
rectified linear unit (ReLU) functions—are also optimized. For efficient Bayesian optimization over the defined 
search space, the tree-structured Parzen estimator (TPE) algorithm is employed32–35. The objective function for 
tuning is the NCV inner loop validation loss. One hundred hyperparameter configurations are sampled to find 
the setting minimizing validation error for each inner loop.

Table 2 provides the best hyperparameters selected for each of the five outer fold models through this 
NCV-based search. The ReLU activation function is the preferred choice across all outer loops. The optimized 
configurations vary across folds, demonstrating the importance of fold-specific tuning. Full hyperparameter 
optimization details are available in the Methods section.

Fold

Validation Test

Custom loss Custom loss MSE

1 1.27 × 10−2 1.38 × 10−2 1.38 × 10−2

2 1.33 × 10−2 1.20 × 10−2 1.20 × 10−2

3 1.31 × 10−2 1.32 × 10−2 1.32 × 10−2

4 1.36 × 10−2 1.17 × 10−2 1.17 × 10−2

5 1.28 × 10−2 1.43 × 10−2 1.42 × 10−2

Table 3. Best average validation and test scores from nested cross-validation for each fold, where hyper 
parameter tuning in an inner loop and the total loss function defined by Eq. (8).

 

Figure 5. Dose-dependent swelling predictions by PRNN models across different temperature regimes. Panel 
(a) illustrates the relationship between displacements per atom (dpa) and volume swelling for irradiation 
temperatures less than 1200 K, highlighting the model’s predictions under lower temperature conditions. Panel 
(b) depicts a similar relationship for temperatures greater than 1300 K, showcasing the model’s performance 
under higher temperature conditions. The graphs in both panels demonstrate the PRNN model’s capability to 
accurately capture the swelling behavior of SiC across a range of irradiation doses and temperatures, effectively 
distinguishing between different swelling regimes.
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Swelling model via PRNN
The PRNN approach to predict the volumetric swelling of SiC due to irradiation is divided into five distinct 
volume swelling models, as seen in Fig. 4a–e. Each model’s unique architectural and hyperparameter makeup 
was refined through NCV, ensuring accuracy and robustness.

Figure 4 demonstrates the models’ capability to capture the varying swelling behaviors across different 
temperature regimes. Notably, at temperatures below approximately 1000 K, swelling exhibits little to no 
dependence on irradiation dose, indicative of the point defect swelling regime. In contrast, above 1200 K, the 
models show a dose-dependent swelling trend, characteristic of the void swelling regime, where higher doses 
lead to greater volume expansion.

A swelling model was derived by averaging the predictions from these individual PRNN models and is 
illustrated in Fig. 4f. This model characterizes the swelling behavior over the entire temperature spectrum, 
encompassing all irradiation doses. It confirms the PRNN’s adaptability to diverse irradiation conditions.

Figure 5 enhances our understanding by presenting the relationship between dpa and volume swelling across 
two distinct temperature regimes. Panel (a) of Fig. 5 focuses on swelling at irradiation temperatures below 1200 
K, while panel (b) examines temperatures above 1300 K. These visualizations provide an assessment of the 
PRNN model’s performance across various temperature ranges, offering insights into the responce of SiC to 
irradiation. The distinction between lower and higher temperature regimes is crucial, as it highlights the model’s 
accuracy and reliability in predicting swelling behavior under varying operational conditions.

Quantitative assessments, detailed in Table 3, further validate the PRNN models’ predictive accuracy. 
Test mean squared error values, ranging from 1.17 × 10−2 to 1.43 × 10−2, confirm to the model’s robust 
generalization capabilities, far beyond mere fitting to the training data.

In summary, the PRNN models’  extension of the empirical swelling relationship to higher temperatures, 
utilizing sparse experimental data, marks a advancement. Integrating physics-based constraints and data-driven 
learning within these models is important for expanding predictive capabilities. 

Conclusions
This study presents an approach in the form of a PRNN for predicting the swelling in SiC due to irradiation. 
The PRNN model demonstrates an advancement over traditional empirical models, especially in the high-
temperature domain, which is critical for applications in harsh irradiation environments like nuclear reactors 
and aerospace applications.

A key feature of the PRNN model is its ability to integrate empirical data with sparse experimental 
measurements, thus overcoming the limitations of existing models that struggle with high irradiation 
temperatures. The model’s architecture, empowered by physics-based regularization, allows for more robust 
predictions and helps in guiding extrapolation efforts. It is particularly important in SiC, where the accurate 
prediction of swelling behavior is crucial for ensuring material integrity and performance under extreme 
conditions.

The use of NCV in the model development process addresses the challenge of limited data availability, 
a common issue in high-stakes environments like nuclear engineering. The NCV minimizes the risk of the 
model overfitting to the limited data and simultaneously ensures the models’ accuracy in unseen scenarios. 
Furthermore, implementing hyperparameter optimization through Optuna adds another layer of precision, 
enabling the fine-tuning of the model to achieve optimal performance.

This study’s findings have an implications for advancing materials science, particularly nuclear engineering. 
The PRNN model’s ability to predict SiC swelling under various irradiation conditions with high accuracy 
enhances our understanding of material behavior under extreme conditions and opens up new avenues for 
developing more robust materials capable of withstanding harsh environments.

In conclusion, the integrated approach combining empirical knowledge, advanced machine learning 
techniques, and careful model tuning provides a pathway for enhancing predictive modeling in materials 
science. While the study focuses on SiC, the methodology, and insights gained can be applied to other materials 
and scenarios, broadening the scope of this research.

Data availability
The data that support the findings of this study are available within the article. Additional simulation outputs 
and neural network predictions supporting the findings are available from the corresponding author upon rea-
sonable request.
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