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Pupil dilation is considered to track the arousal state linked to a wide range of cognitive processes. A 
recent article suggested the potential to unify findings in pupillometry studies based on an information 
theory framework and Bayesian methods. However, Bayesian methods become computationally 
intractable in many realistic situations. Thus, the present study examined whether pupil responses 
reflect the amount of information quantified in approximate inference, a practical method in a 
complex environment. We measured the pupil diameters of 27 healthy adults instructed to predict 
each subsequent number to be presented in a series, and to update their predictions at several 
discrete change points when an outcome generation criterion changed. Individual differences in task 
performance and pupil response were modeled by a variational Bayes method, which quantified 
prediction uncertainty and change point probability as Kullback-Leibler divergence (DKL) and Shannon’s 
surprise (SS). This model-based approach revealed that covariance between trial-wise pupil dilation 
and trial-wise DKL varies depending on prediction accuracy. Further, SS was sensitive to several discrete 
change points. These findings suggest that the pupil-linked arousal system reflects information 
divergence during approximate inference in a dynamic environment.
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Due to its low invasiveness, pupillometry has been used as an index of numerous cognitive functions including 
attention1–5, cognitive load6–8, decision bias9,10, exploitation/exploration trade-off11,12, uncertainty13–16, or 
surprise17–21. The measured pupillary data in those studies have been interpreted assuming the existence of 
several independent cognitive functions and various computational models tailored to each task. However, a 
recent review proposed unifying the findings in pupillometry studies based on an information theory framework 
and Bayesian methods22.

Statistical inference consists of data analysis and statistics to infer the properties of an underlying distribution 
of probability. Recent advances in computational neuroscience enable coding brain functions such perception, 
cognition, learning, motor control, and emotion as statistical inference23–25. For example, perception is considered 
to result from unconscious inferences about the 3D structure of the environment26 and has been modeled as 
computational algorithms in computer vision research24. Notably, Bayesian methods have successfully built 
computational paradigms such as the Bayesian brain, assuming the brain as a statistical organ of hierarchical 
inference that interprets sensory information on the basis of past experience27,28.

Information theory provides another important tool for solving inference problems, as it mathematically 
quantifies information. According to Shannon’s information theory29, the information value of an event (E) 
is expressed as the negative logarithm of the event’s probability (Shannon’s surprise: -log p(E); SS). SS can be 
understood as quantifying how unlikely an event is; this varies in accordance with pupil size during various 
cognitive tasks17–21. By contrast, pupil diameter is thought to reflect information gain in inference. The Kullback-
Leibler divergence (DKL) is a measure to quantify the difference between two probability distributions30. DKL can 
be any value between [0, ∞]. If two distributions are the same, then DKL = 0. A previous study retrospectively 
reanalyzed pupillary data measured during various cognitive tasks using a standard Bayes model-based approach 
and found that pupil dilation reflects DKL between prior and posterior distributions22. In that study, DKL was 
interpreted as the amount of information gained after acquiring new data.
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Although many previous studies using the Bayesian brain approach assumed that an organism can optimize 
prediction by rigorous Bayesian leaning and interpret the state of the environment27,31, in everyday life, our 
inferences cannot always be optimized. In a complex world constantly changing, sometimes recognition 
converges to the true value but sometimes it does not. Moreover, rigorous Bayesian learning can cause difficulties 
due to limited resources for brain computation25. For discrete variables, to obtain a marginal likelihood in Bayes’ 
theorem, the organism needs to use the sum of the probability of generating the observed sample for all possible 
values of parameters. Thus, approximate inference methods, efficient and computationally tractable by trading 
off computation time for accuracy, are assumed to be utilized in the brain. Approximate inference requires to 
assess the uncertainty of model predictions to optimize inference. As mentioned earlier, pupil size is thought 
to reflect prediction uncertainty in cognitive tasks13–16. However, how the pupil-linked arousal system can be 
implemented in an approximate inference model remains unclear.

Here, we hypothesized that the human brain tries to find a likely probability density instead of rigorously 
finding a posterior and that the pupil-linked arousal system conveys information divergence between an 
approximation and a posterior in this approximate inference as an objective function. The current study 
subjected 27 adults to an inference task (the predictive inference task) and measured pupil diameter meanwhile. 
Participants were instructed to predict each subsequent number presented in a series, to minimize the average 
error on all predictions. Participants were required to rely directly on unobservable task representations to 
estimate the likely outcomes and update their predictions at several discrete change points when an outcome 
generation criterion changed. We proposed a variational Bayes model to quantify the degree of difference 
between one’s approximate distribution and a posterior distribution generated by computing statistical properties 
of gained information automatically as DKL. To clarify the difference between the variational Bayes model and a 
conventional Bayes model, we also performed a simulation using a Bayesian model, which has been used in the 
predictive inference task15. Moreover, SS was used to detect change points in the model. Based on this model-
based approach, we examined the relationship between DKL/SS and pupil responses to reveal the role of the 
arousal system in human inference.

Methods
Participants
Twenty-seven adults (14 women; mean age [SD] = 37.3 [10.0]) participated in this study. All participants had 
normal or corrected-to-normal vision and normal hearing. Participants were restricted from consuming caffeine 
and/or nicotine on the experimental day. They were also naïve to the task. The experiment was approved by the 
ethics committee at the National Center of Neurology and Psychiatry, Tokyo, (approval number: A2020-069) 
and conducted according to the principles in the Declaration of Helsinki. All participants provided written 
informed consent prior to the study.

Stimuli and procedure
The participants sat in a lit room facing a monitor screen, subtending 50.9 × 28.6° of visual angle at 60  cm. 
The task was preceded by a calibration procedure for which the participants were required to fixate a target on 
the monitor screen. Stimuli were generated using the Psychophysics Toolbox routines for MATLAB (Version 
R2020b, Math Works Ltd, http://www.mathworks.com/) and presented on a 27-inch LCD monitor (1920 × 1080 
pixels at 60 Hz, 53.4° × 31.6° of visual angle) driven by a PC (Windows 10).

The present study used the predictive inference task15, where for each trial (t) a single integer xt (outcome) 
sampled from a Gaussian distribution whose mean (μt) changed at non-signaled change points with a hazard 
rate of 0.1 and fixed SD (σt) of 0.25 in 200 test trials was presented (Fig. 1). Twenty practice trials were conducted 
before the test phase and repeated if necessary. At each change point, μt increased/decreased randomly by five. 
Participants were instructed to predict numbers close to a certain number and serially presented on a monitor 
screen and to fixate the center of the screen during the task. They were also told that the focal number suddenly 
changed and that their prediction needs to be updated depending on the change. The task required participants 
to predict each subsequent number relying on unobservable task representations to estimate likely outcomes, and 
flexibly change their beliefs at several change points when an outcome generation criterion changed. Participants 
pressed the up arrow or down arrow keys to provide the number which was likely presented in the next trial. 
After pressing the Enter key, a new outcome was presented for 2 s and replaced by the former prediction. Then, 
an auditory cue was played to inform that the prediction should begin. All participants were shown the same 
sequence of numbers.

During the inference task, the participants’ eye position and pupil diameter were monitored using a glass 
type eye tracker (model: Tobii Glass 3, Tobii Technology, Stockholm, Sweden; sampling rate: 100 Hz). MATLAB 
was used to process and analyze pupil data. As pupillary data contained missing values as well as noise induced 
by eye blinks, we removed blinks by linear interpolation. Blink-removed data was filtered using a low-pass filter 
with a cutoff frequency of 3.75 Hz. The mean pupil size was computed for each trial by taking the mean of all 
200 z-scored pupil data from the 2-s time window before outcome presentation. We chose this period as several 
previous studies have reported that pupil size transiently increases during effortful decisions reflecting decision 
uncertainty9,16. Two individuals were eliminated from further analyses due to excessive data loss.

Modeling
Variational Bayes model
Figure 2 shows the conceptual diagram of the variational Bayes model. Standard Bayesian update estimates the 
parameters of the outcome-generating distribution in the form of a Gauss-gamma distribution. By contrast, the 
variational Bayes model is based on the idea that humans try to infer an optimal approximate distribution of 
the true posterior probability distribution of unobserved variables (μt,σt) by decreasing the dissimilarity of these 
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two probability distributions expressed. In this model, differences in approximation precision induce individual 
difference in task performance. As mentioned earlier, variational Bayes methods are used when there is difficulty 
in computing a true posterior distribution by utilizing DKL as an objective function. The model derives a solution 
using an alternative called a joint probability density, which can be calculated easily in Bayes theorem. The 
variational Bayes model also detects a change point based on SS and predicts the next outcome by randomly 
picking a value from the approximate distribution (q).

A detailed look at the process: the model assumes that incoming data X = {x1,x2,…xt} are independent 
random samples arising from a normal distribution N(µ,λ−1), where the parameters µt,λ(= 1/σ2) are unknown, 
and estimates the posterior distribution of µ, λ. First, we need to break the posterior p(µ,λ|X), joint distribution 
of µ and λ into likelihood and prior using Bayes theorem.

	
p (µ , λ |X) = p (x1, x2, · · · xt|µ , λ ) p (µ , λ )

p (x1, x2, · · · xt)
.� (1)

Here, p (x1, x2, · · · xt|µ , λ ) p (µ , λ ) and p (x1, x2, · · · xt) are the joint distribution and the marginal 
likelihood, respectively. Notice that, as the marginal likelihood p(X) is not a function of µ,λ, Bayes theorem can 
be written as:

	 p (µ , λ |X) ∝ p (X|µ , λ ) p (µ , λ )� (2)

i.e., posterior ∝ prior × likelihood.
We can obtain a Gauss-gamma distribution as posterior by assuming the prior in the same format with fixed 

parameter m, β, a, b:

	

p (µ , λ ) = N G (µ , λ |m, β , a, b)
= N

(
µ |m,

(
β λ −1))

Gam (λ |a, b) .
� (3)

The likelihood p(X|μ,λ) is given by:

	

p (X|µ , λ ) = p (x1, x2, · · · xt|µ , λ )
= p (x1|µ , λ ) p (x2|µ , λ ) · · · p (xt|µ , λ )
=

∏
t
t=1p (xt|µ , λ ) .

� (4)

Fig. 1.  Experimental design. (a) For each trial (t) a single integer xt (outcome) sampled from a Gaussian 
distribution whose mean (μt) changed at non-signaled change points with a hazard rate of 0.1 and fixed SD 
(σt) of 0.25 in 200 test trials was presented. (b) Time course of grand-averaged pupil dilations (solid line) from 
25 participants (200 trials each). A shaded error band represents standard deviation of the mean. Mean pupil 
diameter was computed for each trial, z-scored by participant, across the 2-s time window before outcome 
presentation (indicated by an arrow).
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Moreover, a normalized prior can form a Gauss-gamma distribution where the constants are 
µ0 = c/β, a = (1 + β) + 2, as follows:

	 p (µ , λ ) = N
(
µ |m, (β λ )−1)

Gam (λ |a, b) .� (5)

If we have data X, the updated posterior is written as follows:

	

p(µ, λ|X) ∝ p(X|µ, λ)p(µ, λ)
∝

{∏T

t=1 p(xt|µ, λ)
}

p(µ, λ)
∝

{∏T

t=1 N (Xt|µ, λ−1)
}

N (µ|m, (βλ)−1)Gam(λ|a, b).
� (6)

The updated posterior p(µ,λ|X) can be decomposed into the µ’s posterior p(µ|λ,X) and the λ’s posterior p(λ|X) 
using the multiplication theorem on probability:

Fig. 2.  Conceptual diagram of the variational Bayes model. Standard Bayesian update estimates the unknown 
characteristics of the data-generating distribution in the form of a Gauss-gamma distribution (dotted 
blue line). By contrast, the variational Bayes model (dotted green line), which is a type of approximate 
inference, sets and modifies an arbitrary approximate (q) based on DKL, indicating the difference between the 
approximate (q) and true posterior (p).
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	 p (µ , λ |X) = p (µ |λ , X) p (λ |X) .� (7)

The µ’s posterior p(µ|λ,X) is given by:

	
p (µ |λ , X) = N

(
µ |m̂,

(
β̂ λ

)−1
)

,� (8)

where the updated parameters β̂  and m̂ are provided by:

	

β̂ = T + β
m̂ = 1

β̂

(∑
T
t=1xt + β m

)
. � (9)

Then, the λ’s posterior p(λ|X) can be written as follows:

	 p (λ |X) = Gam
(
λ |â, b̂

)
,

	
â = T

2 + a,

	
b̂ = 1

2

(
T∑

t=1

x2
t + β m2 − β̂ m̂2

)
.� (10)

The obtained posterior takes the same form as that of the prior, including the four parameters (m, β, a, b) based 
on incoming data:

	

p (µ , λ |X) = p (µ |λ , X) p (λ |X)
= N

(
µ |m̂,

(
β̂ λ −1

))
Gam

(
λ |â, b̂

)
.

� (11)

To facilitate handling, the posterior is assumed as a Gaussian distribution as follows:

	
N

(
m̂, (mode(Gam

(
λ |â, b̂

)
))−1

)
.� (12)

Next, we can compute the DKL between the obtained posterior (p) and an approximate (q) to consider in the 
prediction for the next (t + 1) trial. Here, the approximate q is a normal distribution. DKL quantifies the distance 
between two probability distributions and becomes zero when those distributions are equivalent:

	
DKL (q (µ , σ ) ∥ p (µ , σ |X)) =

∫
q (µ , σ ) ln

q (µ , σ )
p (µ , σ |X)dµ ,σ .� (13)

In addition, DKL can be calculated assuming q and p as a normal distribution as follows:

	
DKL (q ∥ p) = ln

(
σ q

σ p

)
+

σ 2
q +

(
µ q − µ p

)2

2σ 2
p

− 1
2 ,� (14)

where the parameters of q and p are μq, σq, μp, σp. Furthermore, we set σq as a hyperparameter to duplicated 
individual differences in task performance and changed it within the range of σp (0.37–1.42) which was obtained 
by a Bayesian update. The lowest value was obtained by utilizing all outcomes between change points whereas the 
highest value was obtained by utilizing one outcome in the calculation. This parameter range was chosen based 
on the assumption that σq　takes a range similar to σp because the VB model has an approximate calculation 
processes of a Bayesian update. The model assumes individuals whose σq is close to the true value of the outcome-
generating process (σt) show high prediction accuracy. In contrast, the model predicts individuals whose σq is 
far from the true value show inaccurate prediction. More precisely, prediction accuracy could change within 
individuals during the task. However, we set σq as a constant during the task for simplicity.

To calculate a change point probability, SS is explained by the negative log probability of the likelihood 
(-log(p(X|μq,σq))). SS may be useful to detect a change point because the quantity shows a transient elevation 
when observing a rare event in the model, showing barely any changes in trials other than change points. The 
above-mentioned process was repeated updating μq to μp in every trial.

Reduced Bayesian model
Figure 3 shows differences in model variables and simulation processes between the variational Bayes model 
used in this study and the reduced Bayesian model used by Nassar et al. 2012 as a schematic diagram. The 
reduced Bayesian model is based on the idea that optimal performance on the predictive inference task requires 
inferring a probability distribution of possible outcomes on the next trial, given all previous data (x1, x2,.xt−1) 
and the process whereby those data were generated. This model is a simplified version of a full Bayesian model 
and was designed to decrease the variance (σt

2) on the predictive distribution in the model by accumulating data. 
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In each trial, the change point probability (Ωt) was estimated utilizing Bayes theorem; then, the uncertainty on 
the mean of the outcome-generating distribution in the next trial (τt+1) was calculated based on change point 
probability, uncertainty in a previous trial, and other variables. If a change point occurs when change point 
probability exceeds a threshold, uncertainty is reset to a peak value (0.5); if a change point does not occur, 
uncertainty gradually decreases. Then, the model estimated the learning rate which determines how much the 
person change their prediction in the next trial. Nassar et al. (2012) represented individual differences in task 
performance by incorporating the hazard rate into the model as a hyperparameter. They showed that average 
pupil diameter reflected belief uncertainty (τt) during the outcome-viewing period, and that both tended to peak 
on the trial after a change point later decreasing in magnitude with accumulating information.

Statistical analysis
To examine individual difference in task performance, we calculated the learning rate ( α t) on each trial, which 
indicates how participants updated beliefs (bt) based on the prediction error (δt) in the next trial (t + 1) by 
deforming Eq. (15) in each trial for each individual:

	
bt+1 = bt + α t × δ t,
δ t = xt − bt.

� (15)

The learning rate has been used to describe the characteristics of belief updating15,32,33. When αt = 0, the updated 
belief maintains the previous belief but not the latest outcome. When αt = 1, the updated belief prioritizes the 
latest outcome but not the previous belief. Moreover, a moderate update integrates new and old information. 
We examined the participants’ updating strategy by using the leaning rate. We assumed that individuals with 
lower learning rate performed the task better than individuals with higher learning rate, given a hazard rate of 
the predictive inference task of 0.1. We divided participants into two groups (top 50% and bottom 50%) based on 
learning rate and compared the mean deviation between prediction and μt point-wise by a Bonferroni-corrected 
two-sided t-test. The significance level was defined as 0.05.

Next, we examined the association between trial-wise DKL and pupil responses during the decision-making 
period (2 s before bottom press). To diminish the influence of internal fluctuations in pupil size, averaging was 
performed on the model estimating DKL and z-scored pupil size for each participant as a function of trials relative 
to task change points. Then, we fitted the variational Bayes model to participant pupil data by minimizing the 
total squared difference between DKL and pupil size using σq as a hyper parameter after adjusting the gap between 
each average value. The estimated σq and average learning rate for each participant in behavioral data were 
included in a correlation analysis to determine whether the variational Bayesian model can explain participant 
behavior and pupil responses in the predictive inference task. Additionally, a simple regression analysis was 
conducted to find the association between trial-wise DKL and pupil size in the decision-making period for each 
participant.

Results
Individual differences in behavioral performance
Figure 4(a) shows individual differences in learning rate. As shown in Fig. 4(b), the low performance group 
tended to predict values significantly further from the mean on the outcome-generating distribution with 
increasing trials after a change point compared to the high performance group.

Fig. 3.  Schematic diagram of the simulation process.
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For further understanding of individual differences in task performance, we evaluated group differences 
in learning rate histograms in trials right after change points, and subsequent trials (2–10 trials after change 
points; Fig. 5). In trials after change points, both groups had a peak in the vicinity of 1.0 in learning rate. By 
contrast, in subsequent trials, the high performance group had a peak nearly at a learning rate of 0, while the low 
performance group had peaks at both the lowest (≃0) and highest (> 1.2) learning rates.

Fig. 5.  Learning rate histograms depicting the relative frequency with which the low and high performance 
groups used trial learning rates in the trials after change points (one trial after change point trials) and 
subsequent trials (2–10 trials after change point trials).

 

Fig. 4.  Individual difference in task performance. (a) Learning rate distributions across trials from the 25 
participants, sorted by median learning rate. For each individual, we drew a box extending from the 25th to 
the 75th percentiles with the median in the distribution of learning rates. Whiskers indicate most extreme data 
not considered as an outlier. (b) Group differences in prediction accuracy. The low performance group showed 
significantly larger mean deviation between the prediction and μt with increasing trials after the change point. 
*p < 05, **p < 01, Bonferroni-corrected t-tests, two tailed (N = 25, group mean ± SE).
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Simulation and model fitting
Model comparison
To compare the performance of the variational Bayes model versus the reduced Bayesian model, we calculated 
DKL and prediction uncertainty based on these models under various hyperparameters. When the SD of a 
posterior approximation (σq) was close to that of an outcome-generating distribution (σt) of the task, the DKL 
estimated by the variational Bayes model tended to be maximized right after change points, decreasing gradually 
in subsequent trials (Fig. 6(a)). When σq became larger (more inaccurate), DKL tended to decrease right after 
a change point and increased in subsequent trials. The VB model can cause diverse patterns in DKL since it 
contains a comparison process between the approximate distribution (q) and the posterior distribution (p) 
(Fig. 7). In contrast, the uncertainty estimated by the reduced Bayesian model acted similarly to DKL, estimated 
by the variational Bayes model with an optimal parameter when the model’s hazard rate was comparable to 
the true change point probability of the task, while the estimated uncertainty remained higher across trials 

Fig. 6.  Comparison of the two models’ estimates. (a) DKL and (b) SS estimated by the variational Bayes model 
with various hyperparameter values (𝜎q). (c) Uncertainty and (d) change point probability (CPP) estimated 
by the reduced Bayesian model with various hazard rate (HR) values. Both VB and RB models with optimal 
hyperparameter values predicted similar changes in DKL /uncertainty. This pattern gradually reversed as σq 
increased (more inaccurate) in the VB model. By contrast, the estimated uncertainty remained higher across 
trials with an increasing HR. VB model: variational Bayes model; RB model: reduced Bayesian model.
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with increasing hazard rate. Moreover, the two models estimated SS/change point probability differently. The 
variational Bayes model induced a spike at change points, and SS attenuated with increasing σq (Fig. 6(b)) while 
the change point probability estimated by the reduced Bayesian model tended to be higher across trials with 
increasing hazard rate (Fig. 6(d)). Figure 8 also shows the predictive inference task and its relationship to the 
variational Bayes model across change points.

Although the variational Bayes model cannot output a single predictive value because it follows a normal 
distribution, we estimated model predictions with different prediction accuracy by averaging random numbers 
generated from q(𝜎q, 𝜇q) after 20 iterations. A model with a lower σq (0.37) predicted values closer to μt after 
change points, while a model with larger σq (1.42) showed large fluctuations in predictions (Fig. 9).

Model fitting
Figure  10 shows the results of model fitting. As mentioned previously, to decrease the influence of internal 
fluctuations in pupil response, we averaged both z-scored pupil size and the model estimated DKL based on the 
number of trials after change points for each participant, fitting the variational Bayes model to pupil data by 
minimizing the total squared difference (Fig. 10 (a)). We found a significant positive correlation between the 
participants’ σq estimated by the model and the average learning rate calculated from each participant’s behavioral 
data over 200 trials (r = 0.73, p < 0.00005; Fig. 10(b)). Moreover, we also observed a positive correlation between 
individual learning rate and the intercepts/slopes calculated by a simple regression analysis between trial-wise 
DKL, as estimated by an optimal variational Bayes model (σq = 0.37) and the pupil size for each participant. 
Figure 11 shows that individuals with lower learning rates tended to increase pupil size, in agreement with the 
DKL estimated by an optimal model, but this tendency reversed with increasing individual learning rate.

Discussion
In a complex environment where Bayesian inference often becomes computationally intractable, approximate 
inference has been believed to a realistic method. However, conventional research has not clearly shown how 
human brain uses the amount of information and uncertainty in prediction in approximate inference13–16,22. Our 
model-based approach sheds a light on a possibility that the pupil-linked arousal system conveys information for 
optimizing learning in approximate inference.

Fig. 7.  Association between approximate distribution (q) and posterior distribution (p) in different 
hyperparameters. When a lower σq (0.37) is used as a hyperparameter the difference (DKL) between q and p 
decreases whereas the difference between them increases for a higher σq (1.42).
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Information theory mathematically quantifies information and uncertainty in prediction using DKL 
and SS. In our study, the variational Bayes model predicted that an observer can optimize predictions when 
modifying the approximate distribution such that DKL decreases. In fact, both estimated DKL and trial-wise pupil 
responses tended to be maximized at trials after change points, decreasing gradually in subsequent trials in the 

Fig. 8.  Predictive inference task and its relationship to VB model across change points. (a) A part of the 
session. Numbers (black dots) are generated from a normal distribution whose mean (μt) changes at change 
points. (a) SS and (b) DKL estimated by the variational Bayes model with various hyperparameter values (𝜎q) as 
a function of trials.
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high performance group. Moreover, their predictions tended to converge to μt, the mean outcome-generating 
distribution, in successive trials after change points and tended to be similar to model predictions simulated 
by the variational Bayes model with a lower σq. In contrast, the low performance group showed an increase in 
DKL and trial-wise pupil response as a function of trials after change points, showing large fluctuations in their 
prediction (Fig. 4(b)) as suggested in a simulation with larger σq.

In contrast, although SS was useful to detect a change point in the present study, it exhibited a short-lived 
intense response at a change point and did not fit the pattern observed in pupil responses (Fig. 6(b)). Those 
findings suggest that the variational Bayes model computes DKL, changing in agreement with participants’ pupil 
fluctuations in a performance dependent fashion and that the pupil-linked arousal system works differently 
between precise and imprecise inference. Although our model analytically computes the posterior based on 
incoming data in the predictive inference task, computing a posterior may be impossible in more complex 
tasks. Approximate inference methods may demonstrate its strength to optimize predictions by utilizing a joint 
probability instead of a posterior in such circumstances.

Fig. 10.  Model fitting results. (a) Estimated DKL with the variational Bayes model with different σq fitted per 
individual. (b) Association between mean learning rate per participant and estimated σq. Each point indicates 
separately computed data for each participant.

 

Fig. 9.  VB Model predictions calculated with different hyperparameters (σq). (a) Model prediction with 
different σq values (0.37, 1.42) over the course of the first 60 trials. (b) Mean deviation between model 
prediction and μt with different σq values.
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Comparing the variational Bayes model with a previous model clarified both common and different behaviors 
of these models. As mentioned earlier, a previous study described the association between trial-wise pupil 
dilation and prediction uncertainty estimated by the reduced Bayesian model15. This model explains individual 
performance differences taking hazard rate (HR) as a hyperparameter. The HR ranges between [0, 1.0]. For a 
HR of 1.0, all trials become a change point. Importantly, the previous study did not allow a leaning rate > 1, by 
constraining predictions between the previous prediction and the most recent outcome. Thus, the leaning rate 
ranges from 0 to 1.0, being 1.0 in trials right after a changepoint in this model. Comparatively, the learning rate 
predicted by the variational Bayes model can be > 1.0 because predictions are randomly picked from a Gaussian 
distribution (q). Furthermore, a detailed analysis of learning rate showed that both performance groups showed 
a peak close to 1.0 in learning rate in trials right after change points (Fig. 5(a)(c)). In subsequent trials, these 
groups showed different patterns in learning rate histograms (Fig.  5(b)(d)). Especially, the low performance 
group had peaks appearing at both the lowest (≃0) and highest (> 1.2) learning rates, indicating a different 
distribution pattern in successive trials from those in trials right after the change point. This does not fit the high 
HR status where participants more frequently detect a change point even in successive trials. Worse performance 
in the predictive inference task can be explained by an imprecise approximate account as shown in our study, but 
it warrants further research.

Since DKL and SS quantify information and assess prediction uncertainty in inference as explained by 
information theory, DKL and SS play a role in inference optimization. Those measures are embedded in the 
free energy principle, a theoretical framework suggesting that the brain reduces surprise or uncertainty by 
minimizing an information quantity referred to as “free energy” 34.

	
F ree energy =

∫
q (ϑ ) ln q (ϑ )

p (ỹ, ϑ )dϑ = DKL (q (ϑ ; λ ) ∥ p (ϑ |ỹ)) − ln p (ỹ)� (16)

Here, the q (ϑ ; λ ) term on the right side of Eq.  (16) indicates the probability density of environmental 
parameters, as 𝜆 could be the mean and variance of a Gaussian distribution on the environment’s state (e.g., 
temperature); 𝜃, 

∼
y  can be regarded as sensory input. The center of Eq. (16) calculates DKL between the joint 

distribution p
(∼

y, ϑ
)

 in Bayes theorem and the approximate distribution q (ϑ ) and is approximate reasoning 

as our model. Although our model calculated the true posterior due to the task simplicity, use of the joint 
distribution will be more practical in complex tasks as suggested by the free energy principle. In contrast, 

−lnp
(∼

y
)

 does not depend on 𝜃 because this is a function of sensory input only. Minimizing the free energy 

corresponds to minimizing the DKL term by adjusting its 𝜆 in perceptual inferences like inferring environmental 
states or structure. Meanwhile, an organism can directly influence the environment by action and minimize SS. 
In other words, an organism can pursue model optimization by realizing predictions in its mind by acting or 
paying attention. Taken together, DKL and SS appear to play a role in adjusting learning in inference optimization.

In such a case, how can inference be optimized by the pupil-linked arousal system in the brain? Adaptive 
behavior in a dynamic environment requires a rapid reorganization of all neural networks in the entire brain. 
The locus coeruleus norepinephrinergic (LC-NE) system is the neural basis –or at least part – for the functional 

Fig. 11.  Association between mean learning rate per participant and intercept (a)/beta (b) obtained by simple 
regression analysis between trial-wise DKL (estimated by an optimal variational Bayes model [σq = 0.37]) and 
pupil size for each participant. Points correspond to regression intercepts or coefficients (beta) calculated 
separately for each participant.

 

Scientific Reports |        (2024) 14:30808 12| https://doi.org/10.1038/s41598-024-81111-9

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


alterations, as its broad projections change activity across a substantial portion of the brain35. The LC-NE system 
causes changes in neuronal activity and network connectivity and underlies a broad range of brain functions, 
including arousal, attention, and learning36,37. As some lines of evidence, including monkey electrophysiology38,39 
and pharmacology in healthy adults and patients40,41, support a link between pupil dilation and the LC-NE 
system, the pupil-linked arousal system appears to act as a trigger to update the brain’s internal model involving 
a wide range of brain areas.

Despite the present insights, the present study has some limitations that will need to be addressed in future 
research. First, it is still an unsolved problem what circumstances pupil size reflects DKL and SS. As aforementioned, 
previous pupillometry studies found pupil responses corresponding to the scarcity of an event17–21. For example, 
Alamia et al. (2019) measured participants’ pupil responses during an implicit learning task requiring them to 
report the appearance of a fifth letter in a stream of letters. Pupil size dilated when stimuli violated transition 
statistics not relevant to the task. Interestingly, pupil size increased following surprising events, in the absence 
of awareness of transition statistics, and only when attention was allocated to the stimulus. In contrast, in the 
framework of the free energy principle, DKL is used for perceptual inference of sensory data while SS is utilized 
for changing sensory data by action to meet predictions. SS is no longer beneficial in a consistent environmental 
state because marginal likelihood becomes constant. Taken together, the roles of DKL and SS need to be 
examined from the aspects of perception and action in future research. Another limitation of the present study 
is the simplification of the approximate inference. To replicate individual differences in task performance, we 
maintained the precision of the approximate distribution constant within an individual. However, participants 
might change the precision of the approximate distribution while listening to an instruction, practicing, or 
since the test started. In the field of machine learning, a gradient descent method has been used to optimize 
approximate inference. Accordingly, how observers produce approximate distributions with various precision 
needs to be investigated.

In conclusion, a variational Bayes model explained complex individual differences in pupil responses as well 
as in prediction convergence depending on the precision of the approximate distribution. The results suggest 
that the pupil-linked arousal system reflects information divergence between the participants’ approximate 
distribution and a posterior distribution of incoming data in a dynamic environment. Our findings expand 
the current knowledge of approximate inference and the arousal system, helping advance our understanding of 
human inference and its neural basis.

Data availability
The ethics protocol does not allow sharing raw and preprocessed pupil data via a public repository. Data may be 
shared however within the context of a collaboration. The MATLAB code for our computational model in Fig. 5 
will be made available on reasonable request. In order to obtain the data or the source code, an e-mail to the 
author responsible for the data sets is required (Aya Shirama, shiramaaya@gmail.com).
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