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Abstract 

Background: Disorders of lipid metabolism are critical factors in the progression 
of chronic lymphocytic leukemia (CLL). However, the characteristics of lipid metabolism 
and related regulatory mechanisms of CLL remain unclear.

Methods: Hence, we identified altered metabolites and aberrant lipid metabolism 
pathways in patients with CLL by ultra-high-performance liquid chromatography-
mass spectrometry-based non-targeted lipidomics. A combination of transcriptomics 
and lipidomics was used to mine relevant target molecule and downstream signal-
ing pathway. In vitro cellular assays, quantitative real-time polymerase chain reaction 
(qRT-PCR), western blot, fluorescent staining, RNA sequencing, and coimmunoprecipi-
tation were used to monitor the molecular levels as well as to explore the underlying 
mechanisms.

Results: Significant differences in the content of 52 lipid species were identified 
in CLL samples and healthy controls. Functional analysis revealed that alterations 
in glycerolipid metabolism, glycerophospholipid metabolism, sphingolipid metabo-
lism, and metabolic pathways had the greatest impact on CLL. On the basis of the area 
under the curve value, a combination of three metabolites (phosphatidylcholine 
O-24:2_18:2, phosphatidylcholine O-35:3, and lysophosphatidylcholine 34:3) potentially 
served as a biomarker for the diagnosis of CLL. Furthermore, utilizing integrated lipi-
domic, transcriptomic, and molecular studies, we reveal that ectonucleotide pyroph-
osphatase/phosphodiesterase 2 (ENPP2) plays a crucial role in regulating oncogenic 
lipogenesis. ENPP2 expression was significantly elevated in patients with CLL com-
pared with normal cells and was validated in an independent cohort. Moreover, ENPP2 
knockdown and targeted inhibitor PF-8380 treatment exerted an antitumor effect 
by regulating cell viability, proliferation, apoptosis, cell cycle, and enhanced the drug 
sensitivity to ibrutinib. Mechanistically, ENPP2 inhibited AMP-activated protein kinase 
(AMPK) phosphorylation and promoted lipogenesis through the sterol regulatory 
element-binding transcription factor 1 (SREBP-1)/fatty acid synthase (FAS) signaling 
pathway to promote lipogenesis.

Conclusions: Taken together, our findings unravel the lipid metabolism characteris-
tics of CLL. Moreover, we demonstrate a previously unidentified role and mechanism 
of ENPP2 in regulation of lipid metabolism, providing a novel therapeutic target for CLL 
treatment.
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Introduction
Chronic lymphocytic leukemia (CLL), a malignant B-cell tumor, is the most common 
form of adult leukemia in western countries [1, 2]. As part of plastic and context-
dependent metabolic reprogramming triggered by both oncogenic and environmental 
stimuli, cancer cells and other cell types use a variety of strategies to access lipids in 
the tumor microenvironment [3, 4]. It has been observed that CLL cells could rap-
idly take up fatty acids to promote their proliferation [5]. A close association between 
altered lipid metabolism and pathogenicity is supported. In this context, particular 
lipid profiles are evolving as distinct biomarkers with diagnostic capabilities. On the 
other hand, with the development of targeted therapeutic agents, there have been sig-
nificant improvements in CLL treatment [6–8], but CLL currently remains as a chal-
lenging hematologic neoplasm. Discovering innovative therapeutic targets for CLL 
remain significant imperatives that require attention.

Ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), an adipocyte-
derived lysophospholipase D, played an extensive role in many metabolisms [9–11]. 
ENPP2 expression is upregulated in corpulence patients and mice and is associated 
with insulin resistance and impaired glucose tolerance [11, 12]. ENPP2 has been 
described to be engaged in several solid neoplasms, such as chondrosarcoma [13], 
breast cancer [14], hepatocellular carcinoma [15], and pancreatic cancer [16], and has 
been mentioned in multiple myeloma [17]. Nevertheless, the effects of ENPP2 inhibi-
tion in CLL remain poorly understood.

Herein, we integrated lipidomics and transcriptomics to investigate the lipid meta-
bolic features of CLL. In addition, our study was the first investigation on the role of 
ENPP2 in the tumorigenesis of CLL. The biological processes involved were examined 
through loss-of-function and gain-of-function assays, and unraveling the regulatory 
mechanism in CLL. In conclusion, our results will inform a CLL treatment strategy.

Materials and methods
Metabolomics data processing

Data were analyzed as described previously [18, 19]. Details of the methods is pro-
vided in the Supplementary Material. Fold change (FC) > 2.0 or < 0.5, q value < 0.05 
and variable importance in projection (VIP) > 1 was taken as the screening condi-
tions to obtain significantly different metabolites. By using LipidSearch 4.2, all dif-
ferential feature ions were annotated. Using the R package (heatmap), a heatmap was 
created using the annotated differential lipids. On the basis of the Kyoto encyclopedia 
of genes and genomes (KEGG) database, a pathway enrichment study was done on 
LIPEA, and 25 enhanced pathways were displayed in a scatter plot. The area under 
the curve (AUC) was calculated and illustrated using GraphPad Prism 9.0.
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Transcriptome data analysis

RNA extraction was performed on cell samples using RNAiso Plus from TaKaRa (Dalian, 
China). Subsequently, Huada Gene Technology Co. Ltd (Shenzhen, China) analyzed 
cell samples using the Illumina HiSeq 4000 platform. KEGG pathway analysis was per-
formed on the screened differentially expressed genes (DEGs) to acquire the biological 
functions of these DEGs.

Cell lines and reagents

The MEC-1 cell line, a human p53 deleted/mutated CLL cell line, was obtained from the 
Moores Cancer Center at the University of California, San Diego. The human CLL cell 
line, EHEB, was derived from American Type Culture Collection (ATCC, Manassas, VA, 
USA). These cells were cultured in supplemented IMDM, RPMI-1640 medium with 10% 
heat-inactivated fetal bovine serum (FBS) obtained from Gibco, MD, USA, alongside 1% 
penicillin/streptomycin mixture, 2 mM L-glutamine, and incubated under ideal condi-
tions of 37 °C with 5%  CO2. Regular screening for mycoplasma infection was conducted 
on all cells. ENPP2 inhibitor PF-8380 (S8218, Selleck, Shanghai, China) and Ibrutinib 
(PCI-32765, MCE, Shanghai, China) were soluble in dimethyl sulfoxide (DMSO; Solar-
bio, Beijing, China).

Patient specimens

The medical ethics committee of Shandong Provincial Hospital approved this study and 
informed consent was acquired from each patient. The participants in this study were 82 
patients diagnosed and treated in the department of hematology at Shandong Provin-
cial Hospital, and their blood samples were collected. The criteria for diagnosing CLL 
were based on the revised International Workshop on Chronic Lymphocytic Leukemia 
(IWCLL) [20]. Patients’ peripheral blood mononuclear cells (PBMCs) were extracted 
using the FicollHypaque density gradient method according to previously reported 
methods [21, 22].

RNA isolation and quantitative real‑time PCR

The purification of total RNA was carried out using RNAiso Plus (TaKaRa, Dalian, 
China). Reverse transcription was carried out utilizing a reverse transcription kit from 
the same source. In adherence to the manufacturer’s instructions, quantitative real-
time polymerase chain reaction (qRT-PCR) was conducted, and the results were ana-
lyzed through Light cycler 480 software. Primer sequences were as follows: ENPP2-F: 
ACT TGT GAT GAT AAG GTA GAG CCA; ENPP2-R: CTG TAG ACC CTT TTG TAT GAA 
GCC; LPL-F: AGT AGC AGA GTC CGT GGC TA; LPL-R: ATT CCT GTT ACC GTC CAG 
CC; GAPDH-F: 5′-GCA CCG TCA AGG CTG AGA AC-3′; GAPDH-R: 5′-TGG TGA AGA 
CGC CAG TGG A-3′. Details of the methods is provided in the Supplementary Materials.

Plasmid mediated regulation of ENPP2

The sequences for ENPP2 shRNAS were as follows: shENPP2#1, 5′-GCA GCA AAG TCA 
TGC CTA ATA-3′; shENPP2#2, 5′-GCA GTG CTT TAT CGG ACT AGA-3′. The knock-
down plasmids were synthesized by GenePharma (Shanghai, China). GenePharma 
(Shanghai, China) synthesized and purified corresponding negative control plasmids. 
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The sequence of ENPP2 lvRNA was 5′-CGC AAA TGG GCG GTA GGC GTG-3′. The 
pENTER-ENPP2-Flag/His plasmid was purchased from ViGene Biosciences Inc (Shan-
dong, China). Lipofectamine 3000 reagent (Invitrogen) was used to transiently transfect 
plasmids into cells.

Cell proliferation assays

The procedure was performed as described previously [21, 23]. Cell Counting Kit-8 
(CCK-8) (Dojindo, Kumamoto, Japan) was used. Details of the methods is provided in 
the Supplementary Materials.

Analysis of cell apoptosis and cell cycle

The procedure was performed as described previously [21, 23]. The reagents used were 
as follows: Annexin V-PE/7AAD Kit (BD Biosciences, Bedford, MA, USA); PI/RNase 
Staining Buffer (BD Biosciences, Bedford, MA, USA). Details of the methods is provided 
in the Supplementary Materials.

Elisa assay

Collect the cell supernatant after treating the cells separately and the concentration 
of lysophosphatidic acid (LPA) was measured using human LPA ELISA Kit (LANSO, 
China).

Western blotting

The western blot procedure was performed as described previously [21, 23]. The pri-
mary antibodies used were as follows: ENPP2, LPL (Santa Cruz Biotechnology, USA), 
c-myc, Cyclin D1, CDK4, p21, p27, Bcl-2, Bax (Cell Signaling Technology, USA), AMPK, 
p-AMPK, SREBP1, FAS (abcam, USA), α-tubulin, and GAPDH (Zhongshan Gold-
enbridge, Beijing, China). Secondary antibodies were obtained from from Zhongshan 
Goldenbridge, Beijing, China. Details of the methods is provided in the Supplementary 
Materials.

Triglyceride (TG) assay

The quantification of TG content in CLL cells was performed in accordance with the 
instructions provided by the manufacturer. A triglyceride quantification kit (BC0625, 
Solarbio, China) was utilized for this purpose.

Lipid staining assay

Cells were incubated with BODIPY 493/503 (HY-W090090, MCE, USA) at 37  °C for 
30 min in the incubator, with 4′,6-diamidino-2-phenylindole (DAPI; Beyotime, Shang-
hai, China) for 5 min at room temperature and observed under a fluorescent microscope.

Co‑immunoprecipitation (Co‑IP) assay

Lysis of cells with Co-IP lysis solution. The resulting lysate was subjected to centrifu-
gation, and the supernatant was treated with 1–3 ug of primary antibody before being 
shaken and incubated at 4 °C overnight. Subsequently, Protein A/G agarose (Santa Cruz 
Biotechnology, USA) were added to the antibody-treated buffer and incubated for 1 h at 
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4 °C to facilitate antibody binding. Phosphate buffered saline (PBS) was used to wash the 
beads three times before heating at 100 °C to denature the proteins. Detection of target 
proteins was carried out using western blotting.

Statistical analysis

The data in this paper underwent statistical analysis using SPSS 26.0 software and 
GraphPad Prism 9.0 statistical software. The study presents the mean ± standard devi-
ation (SD) of results obtained from three distinct experiments. Student’s t-test and 
Mann–Whitney U test were used for direct comparisons, while multigroup comparisons 
were carried out using one-way analysis of variance (ANOVA) or two-way ANOVA. The 
significance threshold was established at * p < 0.05 to declare statistical significance.

Results
Untargeted metabolomics demonstrate significant differences in lipid metabolites 

between patients with CLL and healthy controls

To investigate the differences of lipid metabolites in patients with CLL and normal 
subjects, we retained patients with CLL blood supernatants for untargeted lipidom-
ics profiling. Patient information and commonly associated indicators of clinical lipid 
metabolism are shown in Supplementary Table  1. In our study, we employed univari-
ate analysis techniques, specifically assessing fold-change and utilizing t-test statistical 
testing with BH correction to derive q-values. Further, we integrated the VIP metric 
generated from multivariate statistical analysis, PLS-DA (Fig. S1A-C). The volcano plot 
(Fig.  1A) revealed a total of 913 differential feature ions, displaying apparent patterns 
of both upregulation and downregulation. Remarkable variations were observed in the 
levels of sphingolipids (SP), glycerolipids (GL), glycerophospholipids (GP), and fatty 
acids (FA) in patients afflicted with CLL, in comparison with their healthy counterparts. 
To illustrate the expression of the 52 annotated differential metabolites between CLL 
and healthy control groups, a clustering heatmap was utilized, as depicted in Fig. 1B. To 
pinpoint the pathways with strong differential metabolite enrichment, we conducted a 
thorough analysis of the annotated results using enrichment analysis techniques. A com-
prehensive analysis has revealed the annotation of 52 differential metabolites, with 40 
indicating an upregulation and 12 indicating a downregulation, as evidenced by Fig. 1C. 
Metabolic analysis software MetaboAnalyst v5.0 was used to analyze 52 different metab-
olite pathways between patients with CLL and control samples, indicating significant 
enrichment of 24 pathways. The KEGG enrichment scatter plot (Fig. 1D) shows that the 
metabolites differing between CLL patients and healthy controls were mainly labeled 
as enriched in glycerolipid metabolism, inositol phosphate metabolism, glycerophos-
pholipid metabolism, ether lipid metabolism, sphingolipid metabolism, and metabolic 
pathways.

Then, we conducted the comprehensive evaluation of the lipids to explore potential 
lipid biomarkers for diagnosing CLL. Through this investigation, five metabolites were 
discovered to have notable diagnostic significance, as evidenced by the top AUC val-
ues (Fig. 1E). Notably, all of the top five lipids exhibited AUC values above 0.93. Espe-
cially, PC O-24:2_18:2, which had the highest AUC value of 0.965 [95% confidence 
interval (CI) 0.9006–1.000]. Three of these metabolites were chosen as combinational 
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potential biomarkers for CLL. The model equation established after removing the 
confounding factor was Y = −2.575 + 2.126*PC O-24:2_18:2 + 3.544*LPC 34:3 + 3.174* 
PC O-35:3. The area under the curve (AUC) value of these biomarkers was 0.92 (95% 
CI 0.764–0.997), which was diagnostically significant.

Fig. 1 GC/LC–MS based multivariate data analysis of serum data between CLL groups and healthy controls. 
A Differential metabolite volcano map. B Heat map clustering of serum metabolites from the case and 
healthy control groups according to liquid chromatography-mass spectrometry (LC–MS). Significantly 
upregulated metabolites are shown in red (FC ≥ 1, p < 0.05), significantly downregulated metabolites 
are shown in blue (FC ≤ −1, p < 0.05), and non-significantly different metabolites are shown in gray. C 
Identification and annotation of metabolites. D Enrichment analysis of metabolites was performed. The 
scatter plot shows the most variable metabolic pathways. E receiver operating characteristic (ROC) curves of 
metabolic products
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Integrative analysis of metabolomics and transcriptomics

The genomic microarray profile GSE50006 was performed for transcriptome analy-
sis. The DEGs screening threshold was set to |log2(fold change) |> 0.25, adjusted 
to p < 0.01. In this study, 539 DEGs were identified and 257 of the pathways were 
enriched, as depicted in Fig. 2A, B. In our current study, the pathway analysis based 
on metabolomics and transcriptomics data produced 20 KEGG pathways (Fig. S1D). 

Fig. 2 Combined transcriptome and metabolome data analysis revealed abnormal expression of ENPP2 
in CLL. A Sequencing data GSE50006 was downloaded from the GEO database with the screening 
condition |log2(fold change) |> 2, p < 0.001. Significantly up-regulated genes are shown in red, significantly 
down-regulated genes are shown in blue, and non-significantly different genes are shown in gray. B 
Enrichment analysis of differential genes was performed. C KEGG enrichment was performed on 20 genes. 
D, E ENPP2 expression was significantly upregulated in the CLL public database. The analysis was based on 
GSE5006 and GSE31048, respectively. F Overall survival (OS) curves of patients with CLL based on ENPP2 
stratified expression of GSE22762. G ENPP2 mRNA was elevated in CLL progenitor cells compared with 
normal  CD19+ B cells. Data are shown as mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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As depicted in Fig. 2C, these pathways cover a variety of metabolic processes, includ-
ing phosphatidylinositol signaling system, phospholipase D signaling pathway, sphin-
golipid signaling pathway, choline metabolism in cancer, pathways in cancer, inositol 
phosphate metabolism, glycerophospholipid metabolism, glycerolipid metabolism, 
ether lipid metabolism, sphingolipid metabolism, fat digestion and absorption, and 
regulation of lipolysis in adipocytes. The details are shown in Table 1.

By performing further analysis of the metabolism-related pathways on the basis of 
the corrected p-value, the choline metabolism pathway and the ether ester metab-
olism pathway were screened out. According to the transcriptome study refer to 
the two paths corresponding to the gene differences, namely cholinephosphotrans-
ferase-1 (CHPT1), platelet-derived growth factor-D (PDGFD), diacylglycerol kinase 
gamma (DGKG), hypoxia-inducible factor-1A (HIF-1A), FOS proto-oncogene (FOS), 
phospholipase D (PLD4), and ectonucleotide pyrophosphatase/phosphodiesterase2 
(ENPP2). We preliminarily analyzed the differential expression of the above genes 
between patients with CLL and normal controls through public databases, and found 
that there were no significant differential features except for ENPP2 (Fig. S1E), and 
after reviewing literature, we chose to carry out the next step of research on the 
mechanism of action of the differential gene ENPP2 in CLL.

Table 1 Integrating metabolomics and transcriptomics for KEGG pathway enrichment and relevant 
genes

The blod values means statistically significant. *p < 0.05, **p < 0.01

Pathway p‑Value Corrected p‑value Gene symbol

Gap junction 0.038993 0.074212 TUBB6|PDGFD|PRKACB

Autophagy—animal 0.00489 0.019897* IGF1R|DDIT4|EIF2AK3|HIF1A|PRKACB

Phosphatidylinositol signaling system 0.200611 0.255915 PIK3C2B|DGKG

Phospholipase D signaling pathway 0.008727 0.028197* CYTH3|RAPGEF3|PDGFD|DGKG|IGH

Sphingolipid signaling pathway 0.260831 0.315672 S1PR5|TNFRSF1A

Choline metabolism in cancer 0.001694 0.010158* CHPT1|PDGFD|DGKG|HIF1A|FOS
Pathways in cancer 1.37E-05 0.000323** CDKN2B|IGF1R|FOS|GNB4|PRKACB|RXRA

|HIF1A|SMAD3|IL6|DLL1|JUP|ARAF|CDK6
|IL15|LEF1|MYC

Insulin resistance 0.063329 0.104514 IL6|SOCS3|TNFRSF1A

Pathogenic Escherichia coli infection 0.369197 0.410993 TUBB6

Inositol phosphate metabolism 0.460569 0.485242 PIK3C2B

Metabolic pathways 0.210821 0.263247 PLD4|CD38|GCNT1|GPT2|AASS|NT5E|HA
CD1|PIK3C2B|MGAT3|RRM2|CHDH|CHPT
1|LARGE1|DGKG|CSGALNACT1

Glycerophospholipid metabolism 0.04923 0.086061 PLD4|CHPT1|DGKG

Glycerolipid metabolism 0.094317 0.147409 MGAT3|DGKG

Ether lipid metabolism 0.008024 0.027446* PLD4|CHPT1|ENPP2
Sphingolipid metabolism 0.363591 0.415781 SGPP2

Fat digestion and absorption 0.048439 0.085311 SCARB1|MGAT3

Vitamin digestion and absorption 0.185855 0.240998 SCARB1

Regulation of lipolysis in adipocytes 0.369197 0.410993 PRKACB

Retrograde endocannabinoid signal-
ing

0.036793 0.071173 GNAO1|GABRB2|GNB4|PRKACB

Long-term depression 0.015044 0.03859 GNAO1|IGF1R|ARAF



Page 9 of 22Lu et al. Cellular & Molecular Biology Letters          (2024) 29:159  

Increased expression of ENPP2 in CLL cells

In the gene databases GSE50006 and GSE31048, which include 376 patients with 
CLL, the data were normalized by extreme deviation, and the expression of ENPP2 
was significantly higher than in normal group (Fig. 2D, E). On the basis of statistical 
data from GSE22762, the Kaplan–Meier method observed that exhibiting high levels 
of ENPP2 expression experienced a considerably diminished overall survival (Fig. 2F). 
Additionally, specimens from patients with CLL were selected for qRT-PCR analysis, 
which demonstrated that the expression level of ENPP2 in CLL specimens was signif-
icantly higher when compared with the normal group (Fig. 2G). Moreover, compared 
with B cells from healthy volunteers, ENPP2 messenger RNA (mRNA) expression in 
MEC-1 was significantly higher than that in B cells (Fig. S1F).

RNA sequencing analysis for ENPP2 functional enrichment in CLL cells

To investigate the attributes of ENPP2, RNA-sequencing was performed on MEC-1 
cells transfected with both ShControl and ShENPP2#2. The results of our study, 
depicted in Fig.  3A, indicate that ENPP2 was concentrated in pathways linked to 
metabolisms, such as the TCA cycle, ether lipid metabolism, and glycerophospho-
lipid metabolism, through KEGG analysis. Gene ontology (GO) analysis revealed that 
ENPP2 is intimately involved in metabolic processes, cellular processes, and biologi-
cal regulation (Fig.  3B). Gene set enrichment analysis (GSEA) revealed that ENPP2 
was primary enriched in glycerolipid metabolism, triacylglycerol, and GTP diphos-
phate lyase (Fig. 3C–E). Taken together, ENPP2 may promote the occurrence of CLL 
by regulating lipid metabolic pathways.

ENPP2 regulates the proliferation, apoptosis, and cell cycle of CLL cells

To confirm the results of our bioinformatics analysis, we conducted functional exper-
iments in CLL cells to investigate the role of ENPP2. ENPP2 was successfully silenced 
by ShENPP2#1 and ShENPP2#2 in MEC-1 and EHEB cells (Fig. 4A), and verified the 
decreased expression of ENPP2 protein (Fig. S3A). We determined that downregu-
lation of ENPP2 indirectly inhibited CLL cell proliferation through CCK-8 assays 
(Fig.  4B). Furthermore, through Annexin V-PE/7AAD assay, we observed a notable 
increase in apoptosis of shENPP2 transfected cells (Fig. 4C–E). Additionally, we mon-
itored the cell cycle of downregulated ENPP2 cells and found that they exhibited a 
significant G0/G1 phase block compared with control cells (Fig.  4F–I). The results 
highlight that the ENPP2 contributes significantly to the survival of CLL cells through 
its ability to inhibit apoptosis and facilitate the progression of cells from the G0/G1 
phase. To further verify the biological function of ENPP2, we constructed overex-
pressed plasmids (Fig. S2A). In contrast, ENPP2 overexpression promoted cell prolif-
eration, reduced the proportion of apoptotic cells and accelerated the cell cycle (Fig. 
S2B–D).

Targeted inhibition of ENPP2 by PF‑8380 exerted anti‑tumor activity in CLL cells

ENPP2 inhibitor PF-8380 decreased proliferation of MEC-1 cells in dose-dependent 
and time-dependent manner (Fig.  5A). PF-8380 also impeded cell viability of CLL 
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primary cells at micromolar concentration (Fig. 5B). In addition, ibrutinib supplemen-
tation with 16 μM or 4 μM PF-8380 increased cytotoxicity to CLL cells (Fig. 5C, D). 
We used the combined index to determine the synergism of the two drugs. According 
to the judgment method of Soriano et al., 0.9 ≤ combined index ≤ 1.1 is superimposed, 
0.8 ≤ combined index< 0.9 is low synergism, 0.6 ≤ combined index  < 0.8 is moder-
ate synergism, 0.4 ≤ combined index < 0.6 is high synergism, and 0.2 ≤ combined 
index < 0.4 is strong synergism. We calculated a combined index of 0.74 in the MEC1 
cell line and 0.45 in CLL#93 for the combination of ibrutinib and PF8380, which is 
sufficient to show that the two drugs are synergistic not only in the CLL cell line but 
also in primary cells.

Moreover, the amount of apoptotic cells increased with the increase of PF-8380 con-
centration after 24 h flow cytometry analysis of MEC-1 and primary CLL cells treated 

Fig. 3 RNA-seq analysis of ENPP2 between ShControl and ShENPP2 cells. A KEGG enrichment analysis. B GO 
terms analysis of differently expressing genes. C–E GSEA analysis of differential gene expression correlated 
with ENPP2 was performed. NES, normalized enrichment score
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with PF-8380 (Fig. 5E–G). Compared with DMSO treatment, PF-8380 also induced the 
increase of G0/G1 phase cells (Fig. 5H–K). Western blotting analysis showed that with 
the increase of PF-8380 concentration, the levels of cyclin-related proteins, including 
C-myc, Cyclin D1, CDK4, P21, and P27 (Fig. 5L) and apoptosis-related proteins, such as 
Bcl-2, Bax, and cle-PARP changed (Fig. 5M, N). Taken together, PF-8380 exerts thera-
peutic potential by inhibiting CLL cell survival and cell cycle, enhancing apoptosis and 
chemosensitivity.

ENPP2 regulates lipid metabolism in CLL

Previous combined metabolomics and transcriptional analyses, as well as RNAseq, 
provide evidence that ENPP2 may act as a regulatory factor for lipid metabolism in 
CLL, and holds significance in the lipid metabolic process. To test this hypothesis, 

Fig. 4 ENPP2 knockdown restrained the survival of CLL cell lines. A qRT-PCR assay for knockdown efficiency. 
B Proliferation curves of ENPP2 knockdown cells and control cells. C–E Flow cytometry detection of apoptosis 
after ENPP2 knockdown. F–I Flow cytometry detection of cycle distribution after ENPP2 knockdown and the 
relative proportions of cells in different cell cycle phases. Data are shown as mean ± SD. *p < 0.05, **p < 0.01, 
***p < 0.001, ****p < 0.0001
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Fig. 5 Effect of ENPP2 target inhibitor PF-8380 in CLL cells. A CCK8 assay to detect the survival rate of CLL 
cell line MEC-1 treated with different concentrations of PF-8380. B CCK8 assay to detect the survival rate of 
CLL primary cells treated with different concentrations of PF-8380. C CCK8 assay to detect the survival rate of 
MEC-1 cells in combination with ibrutinib. D CCK8 assay to detect the cell survival rate of CLL primary cells 
treated with ibrutinib. E–G Representative dot plots generated by flow cytometry analysis of PF-8380 groups 
versus negative control. H–K Representative results for the cell cycle distributions with PF-8380. L Detection 
of cycle-associated protein expression levels in MEC-1 cells. M, N Detection of apoptosis-associated protein 
expression levels in MEC-1 cells. Data are shown as mean ± SD of at least three independent experiments. 
*p < 0.05, **p < 0.01, ***p < 0.001
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bodipy staining (Fig. S3C, D) showed increased lipid accumulation in ENPP2 overex-
pressed CLL cell lines and significantly reduced lipid accumulation in ENPP2 knock-
out cells. In addition, quantitative analysis of bodipy staining was performed by flow 

Fig. 6 Effect of ENPP2 knockdown and overexpression on intracellular lipids. Alterations of lipids in cells 
treated with PF-8380. A–D Detection of primary patient cell lipid content by bodipy staining and flow 
cytometry. E Detection of intracellular lipid content of MEC-1 by Bodipy staining (lipids stained green and 
cell nuclei stained blue; scale bars, 100 µm). F Quantification of intracellular lipid content of MEC-1 by flow 
cytometry. G Detection of intracellular lipid content of EHEB by Bodipy staining (lipids stained green and 
cell nuclei stained blue; scale bars, 100 µm). H Quantification of intracellular lipid content of EHEB by flow 
cytometry. Data are shown as mean ± SD of at least three independent experiments. *p < 0.05, **p < 0.01, 
***p < 0.001
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cytometry, and the results were consistent with the above (Fig. S4A–D). We addition-
ally validated this finding in CLL primary patients (Fig. 6A–D).

Effect of targeted inhibition PF‑8380 on lipid metabolism in CLL cells

To explore the effect of ENPP2-targeted drug PF-8380 on the lipid metabolism of CLL, 
we treated CLL cell lines with 16 μM and 32 μM, respectively. We stained them with 
bodipy (Fig. 6E, G). The study findings suggest that as drug concentration increased, the 
intracellular lipid deposition decreased gradually. The quantitative treatment of bodipy 
staining by flow cytometry showed the same results as before (Fig. 6F, H). Additionally, 
we measured the content of TG in the cells treated with the drug. The observed decline 
in TG content within the cells was found to be directly proportional to the increase in 
drug concentration (Fig. S3B). This trend is congruent with the results obtained via 
Bodipy staining. Taken together, the ENPP2 targeted inhibitor PF-8380 could alter the 
disease course by regulating lipid metabolism.

ENPP2 functions through the AMPK/SREBP1/FAS pathway

We then considered how ENPP2 regulates the process of lipogenesis in CLL. On the 
basis of RNA sequencing results, we became attracted to AMP-activated protein kinase 
(AMPK), which is a central player in metabolism[24] and negatively correlates with 
tumor progression and genesis[25, 26]. AMPK/SREBP1/FAS pathway is one of the key 
pathways for intracellular lipogenesis. AMPK regulates the expression of adipogenic 
genes through the sterol regulatory elements binding transcription factor 1(SREBP1) 
transcription factor. We examined the protein levels of p-AMPK, AMPK, SREBP1, and 
fatty acid synthase (FAS) to elucidate the molecular mechanism of ENPP2 involvement 
in cellular lipid metabolism. The results showed that the AMPK phosphorylated form 
was significantly increased in ENPP2 knockdown cells compared with control. Moreo-
ver, ENPP2 knockdown significantly decreased SREBP1 and FAS proteins. ENPP2 over-
expression showed results corresponding to knockdown cells (Fig. S4E). We additionally 
validated this finding in patients with primary CLL (Fig.  7A). In addition, we treated 
MEC-1 with 16 μM and 32 μM PF-8380, which showed enhanced AMPK phosphoryla-
tion and attenuated SREBP1 and FAS (Fig. 7B). ENPP2 is a secreted lysophospholipase D 
that promotes the hydrolysis of extracellular lysophosphatidylcholine (LPC) to lysophos-
phatidic acid (LPA) [27]. Therefore, we assayed the LPA content in cell supernatants 
after drug treatment utilizing ELISA. The results upon calibration for cell counts showed 
that both in the CLL cell line and primary cells from different patients with CLL, LPA in 
the cell supernatant was significantly decreased after treatment with the targeted inhibi-
tor PF-8380 compared with the DMSO control (Fig. 7C).

ENPP2 interacted with LPL in CLL cells

Lipoprotein lipase (LPL) has been identified as a crucial driver in the metabolic pro-
cesses of CLL cells by facilitating the absorption of lipoprotein [28–30]. The GSE31048, 
GSE69034, and GSE22762 normalized microarray RNA-seq data was download from the 
GEO database. We verified that LPL expression is increased in patients with CLL, and 
LPL expression was also significantly associated with unmutated IGHV genes (Fig. 7D, 
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Fig. 7 ENPP2 regulated AMPK signaling pathway and interacted with LPL. A Protein expression of p-AMPK, 
AMPK, SREBP1, and FAS in patient with primary CLL. B Protein expression of p-AMPK, AMPK, SREBP1, and 
FAS with PF-8380 treatment. C MEC-1, patients with CLL cells were treated with 32 μM PF8380 for 24 h and 
the cell supernatant LPA levels were measured by ELISA. D LPL was markedly upregulated in CLL public 
database. Analyses were on the basis of GSE31048. E Patients with CLL with unmutated IGHV presented 
high LPL expression (GSE69034). F Kaplan–Meier survival curves of patients with CLL from GSE22762 with 
stratified LPL expression. G, H Correlation between ENPP2 and LPL mRNA expression in patients with CLL 
from GSE50006 and GSE31048. I qRT-PCR was performed to detect LPL mRNA content in ENPP2 knockdown 
and overexpression cells. J Western Blot assays for the amount of LPL protein in ENPP2 knockdown and 
overexpression cells. K Co-immunoprecipitation demonstrated that ENPP2 and LPL could be co-precipitated. 
Data are shown as mean ± SD of at least three independent experiments, n = 3. *p < 0.05, **p < 0.01, 
***p < 0.001



Page 16 of 22Lu et al. Cellular & Molecular Biology Letters          (2024) 29:159 

E). The results of Kaplan–Meier survival curve analysis revealed a significant correla-
tion between high LPL expression and poor prognosis in patients with CLL (Fig.  7F). 
Meanwhile, in GEO database (GSE50006 and GSE31048), ENPP2 expression exhibited 
a significant positive correlation with LPL (Spearman: r = 0.3057, p < 0.0001; Spearman: 
r = 0.3653, p < 0.0001; Fig. 7G–H). It is hypothesized that ENPP2 may regulate CLL lipid 
metabolism through LPL. We transfected ShENPP2 and LvENPP2 into CLL cell lines 
to detect LPL levels. The results showed a significant positive correlation between LPL 
and ENPP2 expression, evident through analysis of mRNA and protein levels (Fig. 7I–
J). Subsequently, further Co-IP experiments revealed potential interactions between 
ENPP2 and LPL in CLL cells (Fig. 7K). Our results provide evidence that ENPP2 modu-
lates LPL expression in CLL. Taken together, the catalytic function of ENPP2 in CLL 
tumorigenesis was preliminarily elucidated (Fig. 8).

Discussion
In this study, lipidomic analysis suggested differences in lipid metabolites between 
patients with CLL and age-matched healthy controls. The correlation between lipid 
metabolism and CLL has been substantiated. Considering that the age of onset of 
patients with chronic lymphocytic leukemia is commonly high, and lipid metabolism 
may change with increasing chronological age. Therefore, we performed a correlation 

Fig. 8 Schematic model of ENPP2 mediated lipid metabolism
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analysis between patients’ age and common lipid metabolism indexes before analysis 
to exclude the interference of age. We used an untargeted quantitative metabolomics 
approach to examine and contrast the distinct serum metabolic profiles of patients with 
CLL and healthy individuals. We then validated the selected metabolites and corre-
sponding pathways by transcriptomic data, thus identifying altered biological processes 
or metabolic features in patients with CLL. A total of 52 differential metabolites and 539 
differential genes were defined, and three metabolites (PC O-24:2_18:2, PC O-35:3, LPC 
34:3) were selected as biomarkers for CLL diagnosis on the basis of the ROC curve area.

Additionally, further transcriptomic associations suggested that the CLL DEGs were 
significantly enriched in lipid metabolism pathways. On the basis of our analysis of CLL 
metabolomics combined with bioinformatics, we propose that ENPP2 might be closely 
related to the production of lipid metabolites and have important functions in lipid 
metabolism in CLL [31–36]. ENPP2 has been documented to promote coronary ath-
erosclerosis by mediating LDL production through the generation of LPA 20:4, 16:0, and 
18:1 and by inducing CXCL1 expression [31]. Our present study represents the role of 
ENPP2 in the pathogenesis of CLL, which is significantly expressed in patients with CLL, 
and predicted poorer survival and prognosis. Further, it was demonstrated that ENPP2 
is involved in lipid metabolic pathways in CLL and promote cell survival by AMPK path-
way to promote lipid deposition.

Cancer cells require metabolic reorganization to improve their value-added and sur-
vival rates compared with normally differentiated cells. Previous studies have found that 
lipid metabolism is important in tumorigenesis, progression and metastasis. Distur-
bances in lipid metabolism may induce abnormal gene expression and lead to abnormal 
signaling pathways [37]. Altered lipid metabolism is closely related to pathogenic pro-
cesses and could give rise to distinct disease biomarkers with diagnostic, prognostic, and 
predictive capabilities. Untargeted metabolomics has emerged as an essential avenue for 
exploring lipid metabolism profiles [38–42]. The investigation of the metabolic changes 
in CLL cells has revealed their ability to store lipids and derive chemical energy from 
free fatty acids, similar to adipocytes [43]. Lipid droplet vesicles are present within the 
cytoplasm of CLL B cells, and upon incubation with free fatty acids, an upsurge in their 
metabolic rate could be witnessed [29]. Pallasch’s colleagues have identified significantly 
elevated levels of lipase-related genes and triglyceride-specific lipase activity in CLL B 
cells compared with normal  CD5+ B cells. Notably, the inhibition of lipase activity has 
been shown to increase CLL cell apoptosis [44].

ENPP2 as an adipose-derived secretory enzyme, controls adipose expansion, a fat 
brown supply and energy expenditure [11]. In recent years, it has been shown that 
ENPP2 is closely correlated with obesity and disorders of glucolipid metabolism in obese 
individuals [45]. It is considered a possible target for the treatment of obesity-related 
diseases. Adipocyte ENPP2 expression was accompanied by a substantial increase in 
adipogenesis in individuals exhibiting type II diabetes associated with obesity [46]. Prior 
research has demonstrated the potential of ENPP2 as a prognostic biomarker in various 
cancers [47], including breast and liver cancer [48, 49]. Cholia and his colleagues found 
that ENPP2 enhances the aggressive potential of glioblastoma [50]. Through a compre-
hensive analysis inclusive of RNA sequencing, this study sheds light on the regulatory 
role of ENPP2 in CLL. Furthermore, this investigation identified ENPP2 as an important 
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biomarker of prognosis in CLL. Our analysis has revealed a dysregulated expression of 
ENPP2 in CLL, and a strong correlation between elevated ENPP2 expression and patient 
survival, as demonstrated in GSE22762, suggesting a potential role for ENPP2 in CLL 
progression. Further validation studies are required to confirm its predictive signifi-
cance. Our findings indicate that the silencing of ENPP2 results in decreased cell prolif-
eration, enhanced apoptosis, and G0/G1 cell cycle arrest.

To elucidate the molecular mechanisms involved in lipid metabolism by ENPP2, we 
examined the degree of AMPK protein phosphorylation and downstream target gene 
regulation. AMPK is engaged in energy sensing and homeostasis regulation in  vivo, 
and performs a crucial function in lipid regulation [51]. AMPK is believed to be fun-
damental for lipid metabolism through the regulation of fatty acid synthesis and regu-
lation [52, 53]. Prior research has demonstrated that AMPK could modulate SREBP1 
and FAS, thereby impacting adipogenesis and lipid metabolism [24]. ENPP2 is more 
commonly reported for the formation and cellular function of its product LPA, which 
activates multiple signaling pathways, such as MEK/ERK, NF-kB, and CREB pathways, 
via G protein-coupled receptors [36]. Coincidentally, LPA has been reported to stimu-
late glucose uptake and regulate AMPK phosphorylation. This connection may pro-
vide a novel insight into the regulation of lipid metabolism by ENPP2. Our research has 
demonstrated that the reduction of ENPP2 inhibits lipid accumulation by augmenting 
AMPK phosphorylation and reducing the level of SREBP1 and FAS. ENPP2 regulation 
of the AMPK/SREBP1/FAS signaling pathway may be an effective mechanism for anti-
lipogenic effects in CLL cells.

LPL is an enzyme normally expressed in adipocytes and muscle cells and is essen-
tial for the metabolism of free fatty acids [54]. It has been demonstrated that it is not 
expressed in normal lymphocytes, but its expression is increased in CLL cells. It has 
also been meaningfully associated with the prognosis of CLL, and high expression levels 
of LPL are usually associated with poorer clinical outcomes [55, 56]. LPL induces lipo-
protein storage in CLL cells and reprograms CLL cells to preferentially use lipids as an 
energy source. It seems to result in a higher cell survival rate [44, 54]. Metabolic repro-
gramming is initiated as CLL cells increase their demand for energy and metabolites 
to meet their rapid proliferation and survival [2]. ENPP2 expression was increased in 
CLL cells. Consistent with our hypothesis, it has been observed that the downregulation 
of ENPP2 demonstrates notable anti-leukemic properties and reduced the role of key 
kinases in the lipid metabolism pathway. In CLL cells, LPL expression was reduced after 
ENPP2 silencing, whereas LPL expression was enhanced after ENPP2 overexpression, 
suggesting a positive effect of ENPP2 on LPL expression. We hypothesized that ENPP2 
might participate in cellular lipid metabolism by binding to LPL, thus regulating CLL 
cell growth. Therefore, we elucidated the interaction between ENPP2 and LPL through 
Co-IP experiments. Our results demonstrate that the aberrant lipid metabolism pathway 
involved in ENPP2 is involved in the regulation of CLL onset and development.

PF-8380 serves as a targeted inhibitor of ENPP2 and has been implicated in the patho-
genesis and management of numerous diseases. Specifically, PF-8380 has been shown to 
elicit a reduction in tumor vascularity, delay tumor growth, and heighten radiosensitivity 
in glioblastoma [57]. In a mouse model of hepatic encephalopathy, PF-8380 has dem-
onstrated the ability to mitigate neuroinflammation and enhance neurological function 
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[58]. Studies undertaken by D’Souza and colleagues have demonstrated that 24-h incu-
bation of adipocytes with PF-8380 resulted in increased production of peroxisome pro-
liferator-activated receptor γ and downstream targets consequent to ENPP2 inhibition 
[59]. Nevertheless, the role of PF-8380 in the treatment of CLL warrants further explo-
ration. We have demonstrated the antitumor effect of PF-8380 in CLL through in vitro 
experimentation, which confers a novel avenue for the treatment of this malignancy.

Over the past few years, targeted drug therapies have demonstrated remarkable thera-
peutic effects in CLL [60]. Although ibrutinib, a Bruton’s tyrosine kinase inhibitor, has 
displayed impressive efficacy in CLL treatment [61], its clinical resistance is still a sig-
nificant challenge. Drug resistance and toxicity lead to poor clinical outcomes [62–64], 
which could be mitigated through the implementation of combination therapy aimed at 
reducing the incidence of drug resistance [65]. In our study, we observed that the ENPP2 
targeted inhibitor PF-8380 exhibited positive antidrug resistance in CLL-targeted drug 
sensitivities, such as Ibrutinib, thus providing new prospects for clinical chemotherapy 
resistance. However, it is imperative to further investigate the mechanism of resistance 
and the clinical implementation of PF-8380 in the treatment of CLL.

Conclusions
In summary, our investigation has screened differential metabolites of CLL and estab-
lished a diagnostic model utilizing lipidomic. Furthermore, our results have highlighted 
the potential of inhibiting ENPP2 to impede the progression of CLL. Specifically, we 
have observed antitumor effects of PF-8380 in CLL, such as hindering cell survival, 
enhancing cell apoptosis, and blocking the cell cycle. Taken together, our findings sug-
gest that ENPP2 serves as a promising target for targeted therapeutic interventions, 
potentially paving the way for an innovative approach to treating CLL.
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