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Abstract 

Background: Epistasis, the phenomenon where the effect of one gene (or vari-
ant) is masked or modified by one or more other genes, significantly contributes 
to the phenotypic variance of complex traits. Traditionally, epistasis has been mod-
eled using the Cartesian epistatic model, a multiplicative approach based on standard 
statistical regression. However, a recent study investigating epistasis in obesity-related 
traits has identified potential limitations of the Cartesian epistatic model, revealing 
that it likely only detects a fraction of the genetic interactions occurring in natural sys-
tems. In contrast, the exclusive-or (XOR) epistatic model has shown promise in detect-
ing a broader range of epistatic interactions and revealing more biologically relevant 
functions associated with interacting variants. To investigate whether the XOR epistatic 
model also forms distinct network structures compared to the Cartesian model, we 
applied network science to examine genetic interactions underlying body mass index 
(BMI) in rats (Rattus norvegicus).

Results: Our comparative analysis of XOR and Cartesian epistatic models in rats 
reveals distinct topological characteristics. The XOR model exhibits enhanced sensitiv-
ity to epistatic interactions between the network communities found in the Carte-
sian epistatic network, facilitating the identification of novel trait-related biological 
functions via community-based enrichment analysis. Additionally, the XOR network 
features triangle network motifs, indicative of higher-order epistatic interactions. This 
research also evaluates the impact of linkage disequilibrium (LD)-based edge pruning 
on network-based epistasis analysis, finding that LD-based edge pruning may lead 
to increased network fragmentation, which may hinder the effectiveness of network 
analysis for the investigation of epistasis. We confirmed through network permutation 
analysis that most XOR and Cartesian epistatic networks derived from the data display 
distinct structural properties compared to randomly shuffled networks.

Conclusions: Collectively, these findings highlight the XOR model’s ability to uncover 
meaningful biological associations and higher-order epistasis derived from lower-
order network topologies. The introduction of community-based enrichment analysis 
and motif-based epistatic discovery emphasize network science as a critical approach 
for advancing epistasis research and understanding complex genetic architectures.
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Background
Epistasis, the interaction between two or more genes, is integral to the study of genet-
ics and is ubiquitous in natural systems [1]. However, epistasis is challenging to detect 
and seldom explored experimentally due to the computational resources required to 
investigate all possible pairwise and higher-order interactions that can exist between 
genetic variants  [2, 3]. Despite this, significant examples of statistical and biological 
epistasis have been detected in several systems [4–12]. Recently, and of primary inter-
est for this work, results from Batista et al. 2024 [12] demonstrate that in two model 
systems, significant statistical epistatic interactions are not only present, but different 
interaction models yield distinct results.

Traditionally, methodologies for detecting epistasis in biological systems use the 
Cartesian (multiplicative) product of two or more SNPs to model interaction terms. 
While this approach originates from statistical practices due to its mathematical con-
venience, it has been shown to be limited in capturing the complexity of some sys-
tems [13]. Biological systems and genetic pathways are inherently complex, evolving 
in diverse ways to fulfill a range of biological functions [1, 14–16]. Many phenotypes 
arise from large, intricately connected biological networks  [17], making it poten-
tially limiting to assume that all biological interactions can be captured by Cartesian 
product-based models, which impose specific assumptions and characteristics on the 
interactions they detect. As a result, relying solely on Cartesian models may over-
look more nuanced or non-linear interactions, potentially missing key aspects of how 
genes interact within these complex networks.

In the work of Batista et  al. 2024, in addition to constructing interactions terms 
using the standard Cartesian interaction model, interaction terms using the exclu-
sive-or (XOR) penetrance model were also constructed to investigate epistasis under-
lying body mass index (BMI) in rats and mice. In the pure and strict XOR model used 
in this study, the phenotype can only be explained by multi-locus genotypes (MLGs) 
(Supplementary File S1). Mathematically, this can be expressed as:

Where A and B represent the genotype scores (0, 1, or 2) of two loci. The “modulo” 
operation, denoted mod, returns the remainder after division. In this case, since A 
and B can only take values 0, 1, or 2, A mod 2 and B mod 2 will return 0 when the 
genotype score is even (i.e., 0 or 2) and 1 when the score is odd (i.e., 1). The modulo 
operation reduces the multi-locus genotype scores to binary values (0 or 1), enabling 
us to apply the XOR logic. From this equation, it can be seen that the effect of one 
SNP alone does not provide sufficient information to detect significant associations 
with the phenotype. Thus, assuming full penetrance and equal allele frequencies in 
both loci under Hardy-Weinberg equilibrium assumptions, XOR is not linearly sepa-
rable or detectable using any single-locus analyses like GWAS (Supplementary File 
S1; [18]). On the other hand, Cartesian multiplies the genotype score of each locus to 
construct the interaction term:

(1)XOR(A,B) = ((Amod 2)+ (B mod 2))mod 2
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In their work, the XOR interaction model was selected due to its extreme difference 
compared to the Cartesian model and its assumed lack of biological plausibility in liv-
ing systems. Despite this, Batista and colleagues did detect significant statistical epistasis 
using the XOR model with it yielding more significant interactions in both species when 
compared to the Cartesian model  [12]. Furthermore, XOR epistatic loci were signifi-
cantly enriched for biologically relevant terms and pathways associated with metabolism 
and BMI, especially in rats, which were not detected with the Cartesian model. Here, we 
attempt to better understand the complex associations detected in the rat (Rattus nor-
vegicus) system by Batista and colleagues under both interaction models using network 
analysis.

In light of these findings, it becomes evident that the complexity of biological sys-
tems is largely attributable to interconnected networks of genetic variants [19], extend-
ing beyond the scope of univariate effects typically seen in Mendelian traits and 
diseases [20–22]. This complexity highlights the need for network-based approaches to 
gain a comprehensive understanding of biological systems. By conceptualizing biological 
entities, such as genes, proteins, and metabolites, as nodes and representing the inter-
actions between them as edges, network-based approaches offer a distinct and perhaps 
more complete perspective on the intricate interplay among these entities. Network 
based approaches assume that the intricacies of biological systems can be deciphered 
by analyzing the structures within biological networks. To this end, various biologi-
cal networks, including protein-protein interaction networks  [23–25], metabolic net-
works [26–29], gene regulatory networks [30, 31], and epistatic networks [32], have been 
proposed to describe the complex processes that drive traits and diseases.

Biological networks possess distinct properties that separate them from random net-
works, leading to various hypotheses on the mechanisms of biological systems. Firstly, 
these networks are scale-free [33], characterized by a few highly connected nodes known 
as hubs. This underpins the hypothesis concerning the role of hub nodes, suggesting 
that perturbations in these highly connected nodes are more likely to impact the out-
come of the system than non-hub nodes  [34, 35]. Secondly, high degrees of modular-
ity [36] within these networks correspond to the division of the network into subgroups 
of closely interconnected nodes, where nodes within the same module are more likely to 
interact with each other than with nodes outside the module. This concept aligns with 
the hypothesis that biological entities, such as genes or proteins involved in the same 
biochemical process or disease, tend to interact more frequently with each other than 
other nodes, thus forming a localized cluster or module within the larger network [29, 
37–39]. Thirdly, the small-world property  [40] of biological networks ensures short 
paths between any pair of nodes, implying that perturbations in a node’s state can influ-
ence the activity of many nearby nodes and the network’s overall behavior [41]. Lastly, 
motifs  [42], or subgraphs, that occur more frequently than expected, underscore the 
importance of certain structural patterns in carrying out biological functions, such as 
several regulatory motifs, have been identified [43].

Gene Set Enrichment Analysis (GSEA) [44] plays a crucial role in translating the struc-
tural insights of biological networks into a better understanding of their underlying 

(2)Cartesian(A,B) = A× B
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biological functions. By identifying enriched gene sets, GSEA helps determine the spe-
cific biological processes, functions, or pathways that are over-represented in a given 
network or module. This allows us to link the structural properties of the network-such 
as hub nodes, network modules, small-world connections, and recurring motifs-to spe-
cific biological entities  [44, 45]. Furthermore, GSEA can unravel the complex relation-
ships between genetic variants and their synergistic roles in influencing traits, enhancing 
our ability to interpret epistatic interactions and gene-pathway interplay within these 
biological networks.

In the study by Batista and colleagues [12], the researchers explored epistasis utilizing 
two distinct models of interaction: Cartesian and XOR (Fig. 1). Building on their find-
ings, our current work applies network science to analyze whether the networks con-
structed from these models exhibit distinct structural and topological features. By using 
the topology of lower-order epistasis interactions, we identify higher-order epistasis. 
Additionally, we aim to determine if the specific configurations within each network 
correlate with meaningful biological insights related to BMI, obesity, and metabolism 
in the R. norvegicus system. Overall, this approach seeks to clarify the genetic architec-
ture of complex traits by interpreting SNP-SNP interactions through network-based 
representations.

Materials
Data source

Genetic and phenotypic data used in this analysis come from an openly available data-
set of an outbred, related rat (Rattus norvegicus) population, consisting of both males 
and females, that is derived from eight inbred founders (Heterogenous Stock [46]). Spe-
cifically, the genotype and phenotype values used in our analysis, and by Batista et al., 
come from SNPs and phenotype scores utilized in a previously published GWAS [47, 48] 
investigating obesity-related traits in this population of (R. norvegicus).

Epistatic pairs

The methodology of Batista et al. 2024  [12] exhaustively tests the interaction terms of 
every possible pairwise interaction (n choose k). A total of 10,000 linkage disequilibrium 
(LD) pruned ( R2 cutoff = 0.95) SNPs with the largest main effects (lowest genome-wide 
corrected p-value) from the (R. norvegicus) GWAS [47, 48] were used in their analysis, 
resulting in 49,995,000 possible 2-way interactions for each epistatic model (Cartesian 
and XOR). Model specific p-values for each pairwise interaction were derived by per-
forming a t-test on the interaction term ( β3 ) assuming a null hypothesis where ( β3 ) = 0. 
Given the large number of tests conducted, they applied the Benjamini-Hochberg proce-
dure to control the false discovery rate (FDR). This method adjusts the p-values based on 
their rank and the total number of tests, ensuring that the proportion of false positives 
among the significant results remains low. To further validate the results, permutation 
testing was also performed (1,000 permutations). The phenotype of interest used in the 
epistasis analysis was body mass index (BMI) measured from the whole body, including 
the animal’s tail (BMI_TAIL). Pairs pruned for minor allele frequency (< 0.1 in either 
loci) and with FDR-corrected p-values < 0.05 (Cartesian: 3,438 pairs, XOR: 12,749 pairs) 
were used in all following analyses.



Page 5 of 31Sha et al. BioData Mining           (2024) 17:61  

Fi
g.

 1
 E

pi
st

at
ic

 n
et

w
or

k 
co

m
pa

ra
tiv

e 
an

al
ys

is
 c

on
ce

pt
ua

l fl
ow

ch
ar

t: 
Th

is
 s

tu
dy

 e
va

lu
at

es
 g

en
et

ic
 d

at
a 

us
in

g 
tw

o 
di

st
in

ct
 e

pi
st

as
is

 m
od

el
s 

to
 c

on
st

ru
ct

 a
nd

 c
om

pa
re

 e
pi

st
at

ic
 n

et
w

or
ks

. B
y 

em
pl

oy
in

g 
ed

ge
 th

re
sh

ol
di

ng
 to

 e
nh

an
ce

 n
et

w
or

k 
m

od
ul

ar
ity

, w
e 

co
ns

tr
uc

t a
nd

 c
om

pa
re

 e
pi

st
at

ic
 n

et
w

or
ks

 fo
r t

he
 a

na
ly

si
s 

of
 th

e 
co

m
pl

ex
 tr

ai
t o

f b
od

y 
m

as
s 

in
de

x 
(B

M
I) 

in
 ra

ts
. O

ur
 c

om
pa

ra
tiv

e 
an

al
ys

is
 e

m
ph

as
iz

es
 th

e 
un

iq
ue

 in
si

gh
ts

 g
ai

ne
d 

fro
m

 e
nr

ic
hm

en
t a

na
ly

si
s 

at
 b

ot
h 

ne
tw

or
k 

an
d 

co
m

m
un

ity
 le

ve
ls

, a
lo

ng
si

de
 th

e 
id

en
tifi

ca
tio

n 
of

 n
et

w
or

k 
m

ot
ifs

 in
di

ca
tiv

e 
of

 h
ig

he
r-

or
de

r e
pi

st
as

is



Page 6 of 31Sha et al. BioData Mining           (2024) 17:61 

Construction of epistatic networks

Nodes and edges

In each epistatic network, a SNP is represented by a node. The interactions between 
these SNPs are represented by edges connecting these nodes. The strength of the inter-
action is represented by the edge weight, which is given by the statistical significance of 
the interaction (i.e., FDR-adjusted p-value).

Not all identified interactions are included in the final epistatic network. A cut-off 
value τ is determined and only interactions (edges) with their weights (FDR-adjusted 
p-value) less than or equal to this threshold are included. Once the significant epistatic 
interactions have been decided, these interactions are used to construct the network. 
The resulting epistatic network provides a representation of the most significant epi-
static interactions between SNPs.

Quantifying the extent of community separation

SNPs do not work in isolation but in an interdependent manner to contribute towards 
phenotypic variation [20, 21, 32]. Hence, for our epistatic network, we expect the emer-
gence of highly connected groups of nodes (communities) that represent biological path-
ways and/or functions [21].

Modularity is a measure used in network science to quantify the degree to which the 
network can be subdivided into clearly separated groups or communities. The modular-
ity (Q) is calculated as follows:

In this equation, m represents the number of edges in the network. The summation 
term 

∑

ij runs over all pairs of nodes within the network. The adjacency matrix, rep-
resented by Aij , contains elements that are equal to 1 if an edge connects nodes i and 
j, and 0 in the absence of a connection. The degree of a node, symbolized by ki and kj 
for nodes i and j respectively, corresponds to the count of edges connected to the node. 
The communities of nodes i and j are indicated by ci and cj , respectively. The delta func-
tion, δ(ci, cj) , gives a value of 1 if nodes i and j are within the same community (i.e., ci = 
cj ), and 0 if they are not. The resolution parameter, denoted by γ , establishes a trade-off 
between intra-group and inter-group edges. In the context of our experiment, the reso-
lution parameter is set to 1.

The value of Q can be either positive or negative with values of high magnitude indi-
cating a strong community structure [36]. A high modularity value (approaching 1) sug-
gests a well-defined community structure within the network, while a modularity value 
close to 0 or negative indicates that the edges are distributed with no clear community 
organization.

Finding the optimal division of a network into communities that maximizes the modu-
larity score is a challenging task, as there is an exponential number of potential divisions. 
Various heuristics and optimization algorithms have been developed to approximate 
optimal community division [49–51]. Based on the size and complexity of the networks 
in this study, we employ the Greedy community detection algorithm [49] for identifying 

(3)Q =
1

2m
ij

Aij − γ
kikj

2m
δ(ci, cj).
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communities within networks. This algorithm utilizes a greedy strategy to identify the 
community partition that yields the highest modularity. The process of greedy modu-
larity maximization initially starts with every node existing in separate communities. It 
then merges pairs of communities to achieve the maximum increase in modularity. This 
process is iteratively repeated until the modularity cannot be improved further.

Determination of the epistatic network by tuning edge weight threshold

We introduce an edge weight cutoff, denoted as τ , to select the most significant edges for 
inclusion in the network. This threshold defines which edges are retained, with the aim 
of maximizing the modularity of the resulting network.

We denote the network as N = {V ,E, τ } , where V represents the set of nodes (SNPs), 
E represents the set of edges (significant epistatic interactions), and τ represents the 
edge weight threshold. Each edge e ∈ E that links two nodes v1, v2 ∈ V  has an associated 
weight, denoted as ω(e) . An edge e is included in the network if ω(e) ≤ τ.

To optimize network modularity, we gradually increase the edge weight threshold τ 
and track changes in modularity. We begin with τ set to 0. We then increase τ in incre-
ments of 0.0001. After each increase, we calculate the modularity, Q, of the resulting 
connected nodes along with other network metrics, such as the number of connected 
nodes, the number of edges, and the number of network-connected components. In 
order to gain a comprehensive understanding of the network’s evolution, we also moni-
tor the number of undirected triangle network motifs. Network motifs are the basic 
building blocks of the network [42].

We select the τ value that yields the highest network modularity as the optimal edge 
weight threshold. This process ensures that the constructed network N not only captures 
the strongest genetic interactions but also exhibits a community structure that facilitates 
the identification of functionally relevant modules of SNPs.

Network comparison

We compare networks generated from XOR and Cartesian interaction models to iden-
tify common SNPs, epistatic interactions, and network communities. For the network 
with the highest network modularity, we perform comparisons at two different scales.

At the scale of nodes and edges of the epistatic network, we consider adjacent SNPs 
as identical due to linkage disequilibrium (LD). A SNP, n, is represented using a tuple 
n = (c, p) , where c stands for chromosome number and p stands for chromosome posi-
tion. If the difference between a pair of SNPs is within a certain range δ and they are on 
the same chromosome, they are deemed identical. The way we determine identical SNPs 
can be formally expressed as follows. Given n1 = (c1, p1) and n2 = (c2, p2) , we say n1 and 
n2 are the same (within the range δ ) if:

As for edge comparison, two interactions are considered identical if their SNPs 
are within the same base pair window. We represent an edge as a set of two SNPs 
e = (n1, n2) . Given two edges, ea = (na1, n

a
2) and eb = (nb1, n

b
2) . Edges ea and eb are consid-

ered identical if:

(4)n1 ≈ n2 ⇔ (c1 = c2) ∧ (|p1 − p2| < δ)
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As the range increases from 0 bases to 10 million base pairs (Mb) in 1 Mb increments, 
the number of common SNPs and epistatic interactions increase.

At the scale of network community, we identify the quantity of common nodes 
�(Ca→Cb)(δ) from community Ca to community Cb with respect to the range parameter δ . 
Let Ca and Cb be two network communities from two different epistatic networks. Each 
community is a set of nodes, i.e., Ca = {na1, n

a
2, . . . } and Cb = {nb1, n

b
2, . . . } . A node in the 

community nai ∈ Ca will be considered to have a common node in the other community 
Cb if there exists at least one node that can be determined as similar. The number of such 
nodes in Ca is used to quantify the similarity from Ca to Cb . This similarity is directional, 
and its formal definition is as follows.

To determine if two nodes n1 and n2 is similar, we first define a function fδ as:

Using the function fδ , we can define �(Ca→Cb)(δ) as:

We utilize �(Ca→Cb)(δ) to compare each pair of network communities from the two 
epistatic networks with different interaction models. The comparison of nodes will also 
consider the range of their position. The number of common SNPs in Ca will evolve as 
the change of the range parameter δ.

We utilize the area under the curve (AUC) to quantify the similarity of community 
pair as a function of range �(Ca→Cb)(δ) . To compute the AUC, consider δ to have dis-
crete values ranging from a minimum value δmin to a maximum value δmax with a step 
size s. The AUC can be approximated using the function shown as below:

where M = ⌊
δmax−δmin

s ⌋ − 1 represents the total number of steps between δmin and δmax . 
To reflect the relative size between the number of common nodes and the overall num-
ber of nodes in community Ca , symbolized as |Ca| , the normalized AUC is denoted as:

In our study, δ ranges from δmin = 0 Mb to δmax = 10 Mb with a step size of s = 1 Mb.

LD edge pruning for epistatic network

We implement a LD edge pruning process to investigate if refining significant SNP-SNP 
interactions identified through Cartesian and XOR models results in superior network 
topologies. This aims to highlight the most significant and independent interactions by 

(5)ea ≈ eb ⇔

(

na1 ≈ nb1 ∧ na2 ≈ nb2

)

∨

(

na1 ≈ nb2 ∧ na2 ≈ nb1

)

(6)fδ(n1, n2) =

{

1 if n1 ≈ n2
0 otherwise

(7)�(Ca→Cb)(δ) =
∑

nai ∈Ca

max
nbj ∈Cb

fδ

(

nai , n
b
j

)

(8)AUC =

M
∑

k=0,s

�(Ca→Cb)(δmin + ks)+�(Ca→Cb)(δmin + (k + 1)s)

2× (M + 1)
,

(9)AUCnorm =

M
∑

k=0,s

�(Ca→Cb)(δmin + ks)+�(Ca→Cb)(δmin + (k + 1)s)

2× (M + 1)× |Ca|
.
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reducing redundancy due to LD between nearby SNPs. Pruning is performed separately 
for each model using two genomic distance thresholds: 1 million base pairs (1 Mb) and 
10 million base pairs (10 Mb).

All pruning procedures were conducted in R. For both the Cartesian and XOR models, 
we prune redundant interchromosomal pairs based on the following criteria when com-
paring two epistatic pairs: (1) The first SNPs (locus one) of both pairs are on the same 
chromosome. (2) The second SNPs (locus two) of both pairs are on the same chromo-
some. (3) The absolute difference in base pair positions between the first SNPs of both 
pairs is less than the threshold (1MB or 10Mb). (4) The absolute difference in base pair 
positions between the second SNPs of both pairs is less than the threshold. If all four 
conditions are met, we retain the pair with the lower FDR-corrected p-value from the 
original study [12] and omit the other. We also address mirror redundancies where two 
pairs meet the criteria but have reversed chromosomal combinations; in such cases, we 
retained the first identified pair and omit the duplicate.

For intrachromosomal pairs, we apply the same base pair criteria as above, focusing 
on pairs where both SNPs are on the same chromosome. Additionally, we implement an 
extra pruning step for intrachromosomal pairs where the absolute base pair difference 
between the two SNPs within a pair is less than the threshold. Pairs meeting this condi-
tion are omitted. We recognize that this severely limits the detection of close cis-acting 
epistatic events. However, this pruning strategy allows us to focus on epistatic interac-
tions that are more likely to represent independent genetic effects, highlighting epistatic 
hubs in the genome. By considering only the most significant interactions, we aim to 
provide a clearer understanding of the genetic architecture underlying BMI.

Network permutation

Network permutation involves shuffling the edges of a given network while preserving 
its node degree distribution. This process allows for null hypothesis testing. In which, 
the network properties of the observed network are compared against random shuffled 
networks. The edge permutation process performs a number of swaps equal to 10 times 
the number of edges in the network. During each iteration, two edges are randomly cho-
sen, and as long as the swap does not result in a self-loop or duplicate edges between the 
same nodes, the edges are swapped. This ensures that while the node degree distribu-
tion remains intact, the global connectivity pattern may change. After network permuta-
tion, network investigation is performed on the permuted networks (N = 1,000), and the 
resulting network statistics are compared to those from the original network.

Functional enrichment analysis

g:Profiler

Enrichment analysis discerns biological insights from a list of gene names by detect-
ing statistically significant representation of biological functions, such as gene ontology 
(GO) terms and pathways. In our study, we utilize the R. norvegicus genome (Rnor ver-
sion 6.0) as the reference. Our enrichment analysis starts with a list of SNPs, each identi-
fied by a unique ID consisting of chromosome number and chromosomal position in 
base pairs (for example 1:12345678). The list of SNPs are from the connected nodes 
of the epistatic network with the highest network modularity. For every SNP in the list, 
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we include gene models 1 million base pairs upstream and downstream from the origi-
nal position.

The prepared ranges (for example 1:11345678:13345678) are then directly 
used as inputs for g:Profiler  [45]. Since g:Profiler works with the mRatBn7.2 assem-
bly, the coordinates for SNPs for Rnor6.0 were converted to those of the mRatBn7.2 
genome assembly. This was done using the liftover software developed by UCSC [52]. 
Our enrichment analysis is performed using g:Profiler’s R package to query gene mod-
els within these ranges. We use the default configuration for each query (Supplemen-
tary File S1-IV). All available data sources, including GO:Biological Process (GO:BP), 
GO:Cellular Component (GO:CC), GO:Molecular Function (GO:MF), REAC, KEGG 
pathways, miRNA and Transcription Factors (TFs), are considered for the analysis to 
provide a comprehensive understanding of potential biological implications. The biolog-
ical terms returned by g:Profiler are filtered based on their g:SCS threshold. Only terms 
with an adjusted p-value less than 0.05 are retained.

The epistatic networks in this work are optimized for modularity to highlight distinct 
communities of interacting SNPs. To discern potential biological signals, we conduct 
enrichment analysis at two levels: the entire network scale and the community scale. For 
the network scale, all SNPs in the network are taken into account for enrichment analy-
sis based on g:Profiler. Conversely, the community scale analysis focuses on each dis-
crete community within the epistatic network. Given that the number of SNPs in each 
community is significantly lower than in the entire network, the enrichment analysis at 
this scale yields more targeted functional terms. This specificity provides a contrast to 
the broader perspective obtained at the network scale.

Comparative analysis of g:Profiler biological terms

To acquire a deeper understanding of the enriched biological terms for each interac-
tion model, a comparative analysis is conducted. The table obtained from g:Profiler is 
organized according to the term sources (See Supplementary File S2). Venn diagrams are 
generated using the terms from both interaction models for each term source (using a 
custom R script).

In addition to analyzing enrichment at the lowest level of the ontological hierarchy, 
we wished to gain a broader perspective and facilitate the identification of biological 
differences between Cartesian and XOR networks in this exploratory network analysis. 
Thus, another layer of information is considered. To achieve this, we focus on the first 
child of the parent classification for each term. For instance, in the case of GO:BP, the 
parent is Biological Process, and the first child of interest is the term when going down 
one level in the GO hierarchy. This selection ensures an adequate level of variability can 
be captured, as the parent term alone offers no differentiation. This analysis is not con-
ducted in the case of miRNA and TFs, where a hierarchical structure is absent. There are 
extremely few child terms for GO:CC and GO:MF, therefore not much variability exists 
at this level. Going down one level lower for both of these sources helps capture more 
variation. Thus, the second-order child is taken into consideration. The parent hierar-
chy information for each term is extracted using the R package “GOfuncR” (Supplemen-
tary File S4) [53]. Venn diagrams are generated for the five sources. At the community 
level, we conducted the same analysis and removed all terms related to immunity. After 



Page 11 of 31Sha et al. BioData Mining           (2024) 17:61  

cross-referencing across both encodings and all communities, we retained only the 
terms unique to each community. This is because direct comparisons cannot be made 
because of the differing number of communities in each.

EnrichmentMap

Performing an enrichment analysis on a set of SNPs often yields a large volume of terms, 
which poses a significant challenge in interpreting the results. Thus, a proper summary 
of these terms is needed to simplify the process of interpreting and understanding the 
biological implications of our findings.

EnrichmentMap [54] visualizes functional terms as a network following the principle 
that terms sharing many genes suggest a higher degree of functional relatedness. In the 
generated network, each node represents a functional term, and the edges connecting 
them represent the overlap of genes associated with those terms. Nodes are sized rela-
tive to the total number of associated genes, and edges are weighted by the number of 
shared genes between the two connected terms. EnrichmentMap provides options to 
control the sparsity of edges in the network, and we configure this option to be sparse. 
The resulting clusters of related terms provide insight into the themes emerging from 
the enrichment analysis. EnrichmentMap can merge the results from different queries. 
In our analysis, node colors represent terms from different epistatic networks of varying 
interaction models and network communities.

AutoAnnotate  [55], a Cytoscape plugin, is employed to further refine the output of 
EnrichmentMap. This plugin uses WordCloud [56] to generate a label for each cluster of 
nodes, serving as a theme for that community of terms. The use of AutoAnnotate ena-
bles a more intuitive interpretation of the clusters, facilitating our understanding of the 
functional enrichment results.

Results
This section presents a comprehensive analysis from three perspectives: First, it explores 
the unique network structures formed by the XOR and Cartesian interaction models, 
using edge weight thresholds to optimize network modularity and examine various net-
work metrics. Second, it compares these networks, focusing on their similarities and 
differences in terms of nodes, edges, community structures, and their implications on 
identifying higher-order epistasis based on lower-order interactions. Third, we highlight 
the results of our enrichment analyses, which elucidate the functional terms and bio-
logical implications of the networks derived from each interaction model. Finally, we 
perform network permutation analysis to compare the observed network with null (ran-
dom) networks.

XOR and Cartesian interaction models yield distinct network structures

Edge weight thresholding is employed to optimize network modularity. We also moni-
tor several key metrics during this process: (1) the number of connected nodes, (2) the 
number of edges, (3) the number of network components, (4) the size of the largest net-
work component, and (5) the number of triangles in the network. Network investigation 
is performed on the original epistatic networks as well as the networks filtered by the 
edge pruning process, which removes redundant edges within identical LD blocks.
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The evolution of network metrics with respect to edge weight cutoff τ for the three 
XOR-based epistatic networks are shown in Fig. 2. These networks are largely dominated 
by their largest connected component, where the ratio of nodes in the largest compo-
nent to the total number of connected nodes consistently exceeds 80%. This ratio drops 
to 60% in LD-pruned networks. As τ increases beyond 0.0035, triangle motifs emerge in 
the non LD pruned network. At this point, the network consists of 440 connected nodes 
with 1,295 edges. A maximum modularity of ∼ 0.667 is observed when τ reaches 0.0434. 
In contrast, the LD pruning process reduces the quantity of triangle network motifs and 
the highest network modularity occurs at a lower edge weight cutoff ( τ = 0.0029 ) than 
the non LD pruned network.

The evolution of network metrics in the Cartesian-based epistatic network is dis-
tinct compared to that of the XOR-based epistatic network. In the Cartesian network, 
the largest connected component does not dominate the network. This is evident as the 
ratio of the number of nodes in the largest component to the total number of connected 
nodes is always below 50%. Network fragmentation increases with the LD-based edge 
pruning process, as demonstrated by the greatly reduced size of the largest connected 
network component in LD pruned Cartesian networks (Fig.  2-B). Another distinction 
of the Cartesian network is its sparse occurrence of triangles (Fig. 2-E). Triangles begin 
to emerge when the edge weight cutoff surpasses 0.048, with 1,496 connected nodes and 
2,852 edges. Even though the non LD pruned Cartesian network does develop trian-
gles, the quantity is much lower than the XOR-based networks, highlighting the distinct 

Fig. 2 Evolution of network metrics for Cartesian and XOR interaction models. A-F, These figures illustrate 
the evolution of network metrics in relation to the edge weight cut-off ( τ ) within epistatic networks 
employing either Cartesian (blue) or XOR (red) interaction models. Solid bold lines represent networks 
without LD pruning (0Mb), while light blue and light red solid lines indicate networks with 1Mb LD pruning 
windows, respectively. Dashed lines correspond to the 10Mb LD pruning window
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network structures of the two interaction models. The Cartesian network reaches a max-
imum modularity of ∼ 0.951 at a cutoff value of 0.0488. LD pruned Cartesian networks 
exhibit a similar pattern, with modularity approaching 1. However, this modularity is 
likely a consequence of the increased network fragmentation.

For non LD pruned networks, we employ the cut-off corresponding to the highest 
modularity edge threshold. We also explored the possibility of using the elbow point as 
the edge threshold (refer to Supplementary File S8-I). However, we ultimately opted not 
to utilize the elbow point in order to maximize the inclusion of as many SNPs as pos-
sible within the network. For LD pruned Cartesian networks, we employ a cutoff using 
the highest edge weight due to this retaining as many edges as possible. For LD pruned 
XOR networks, we instead use the highest network modularity. Given that the modular-
ity evolution is distinct compared to Cartesian, we also adopt an edge cutoff of τ = 0.05 
to capture all epistatic interactions with a significant adjusted p-value. The resulting epi-
static networks are visualized in Fig. 3.

XOR and Cartesian interaction models share similar SNPs but have distinct epistatic 

interactions

In addition to the metrics at the network scale, this section compares the node set, edge 
set, and network community allocation of the two epistatic networks with the highest 
network modularity. Since the node-level comparison takes into account the chromo-
some positions of the SNPs, we focus on comparing the two interaction models using 
networks without LD pruning.

Comparative analysis of node and edge overlap in XOR and Cartesian interaction models

This section explores the impact of the range parameter on the similarity assessment of 
nodes and edges in two distinct network models, focusing on how varying the positional 
range influences the identification of identical SNPs and their interactions.

As elucidated in Table 1, when comparing SNPs with their exact chromosome posi-
tion (range = 0 base pairs), the two interaction models exhibit an overlap of 416 SNPs. 
The comparison of edges, illustrated in Table  2, shows that the two networks share 
99 common edges (range = 0 base pairs), encompassing 51 SNPs. The majority of the 
SNPs connected by these common edges are situated within the chromosomal range 
of chr1.280924773 to chr1.282730801 which includes the putative quantitative trait 
locus (QTL) with the largest main effect signal for BMI_TAIL from the original GWAS 
(chr1.281788173) [47, 48].

Further comparative investigation for the two epistatic networks considers the range 
parameter δ of chromosomal position. The results in Tables 1 and 2 illustrate that enlarg-
ing the base pair range δ is associated with an increase in identical SNPs and edges 
between XOR and Cartesian. Specifically, as the range extends from 0 to 10 Mb, 7.82% 
(or 840 epistatic interactions) of the interactions in the XOR model can be found in the 
Cartesian model. On the other direction, the fraction of identical edges in the Cartesian 
model is 73.35% (or 2,312 epistatic interactions), indicating that the majority of interac-
tions in Cartesian are contained in the neighboring positions of the interactions in XOR 
(Table 2). Node comparison implies that the SNPs from both models are located close to 
each other. Table 1 demonstrates that for both models, an increase in range from 0 to 10 
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Mb allows for the detection of most SNPs in the other model (XOR in Cartesian: 94.76%, 
Cartesian in XOR: 97.91%). Overall, XOR identifies more epistatic interactions than Car-
tesian, but these additional interactions are located near the SNPs in Cartesian. This may 
result from interaction model affinity to certain loci within an LD block.

XOR exhibits more triangle network motifs than Cartesian

We also observe a remarkable distinction between the two epistatic networks in the 
number of triangular network motifs. In our comparison, the XOR model ( τ = 0.0434 ) 
generates 1,033 triangles, significantly more than the nine triangles in the Cartesian 
model ( τ = 0.0488 ). This considerable discrepancy suggests that the XOR model poten-
tially captures more complex interactions among nodes within the network.

Another characteristic of the triangles in XOR lies in their chromosomal posi-
tions. This may suggest the XOR model has a greater potential for 3-way interactions. 

Table 1 Comparison of SNPs (nodes) in epistatic networks with different interaction models

Range XOR in Cartesian Cartesian in XOR

Quantity Percentage Quantity Percentage

0 Mb 416 14.84% 416 26.35%

1 Mb 1,979 70.60% 1,317 83.41%

2 Mb 2,209 78.81% 1,380 87.40%

3 Mb 2,354 83.98% 1,420 89.93%

4 Mb 2,416 86.19% 1,485 94.05%

5 Mb 2,467 88.01% 1,527 96.71%

6 Mb 2,530 90.26% 1,540 97.53%

7 Mb 2,559 91.30% 1,540 97.53%

8 Mb 2,571 91.72% 1,543 97.72%

9 Mb 2,614 93.26% 1,546 97.91%

10 Mb 2,656 94.76% 1,546 97.91%

All 2,803 100.00% 1,579 100.00%

Table 2 Comparison of edges in epistatic networks with different interaction models

Range XOR in Cartesian Cartesian in XOR

Quantity Percentage Quantity Percentage

0 Mb 99 0.92% 99 3.14%

1 Mb 315 2.93% 682 21.64%

2 Mb 371 3.46% 834 26.46%

3 Mb 452 4.21% 1,070 33.95%

4 Mb 477 4.44% 1,217 38.61%

5 Mb 495 4.61% 1,261 40.01%

6 Mb 605 5.64% 1,302 41.31%

7 Mb 774 7.21% 1,337 42.42%

8 Mb 811 7.55% 1,691 53.65%

9 Mb 840 7.82% 2,014 63.90%

10 Mb 840 7.82% 2,312 73.35%

All 10,736 100.00% 3,152 100.00%
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We observe that the SNPs of most triangles in XOR are located on different chro-
mosomes. Whereas, the triangles in the Cartesian network are found to be on the 
same chromosome in close proximity, specifically within the chromosomal range of 
chr1.280924773 to chr1.282527574. This range overlaps with the position of the SNPs 
linked by the common edges (range = 0 base pairs) between the two epistatic networks 
(chr1.280924773 to chr1.282730801). These closely located triangles could be attributed 
to cis-regulatory epistatic interactions in association with the putative univariate QTL at 
chr1.281788173 [47, 48], or redundant false positives.

We further investigate the association between triangular motifs in epistatic networks 
and the presence of higher-order epistasis. To this end, we investigated the third-order 
epistatic p-values of all triangles in the network using the 3-way extension of the meth-
odology presenting in Batista et al. 2024  [12], including 1,033 triangles coded in XOR 
and 9 triangles coded in Cartesian coordinates. Remarkably, none of the nine triangular 
motifs in the Cartesian model show significant 3-way epistasis (adjusted p-values less 
than 0.05). Conversely, approximately 13% of XOR triangles (132 out of 1,033) did result 
in significant 3-way epistasis (visualized in Fig.  4). The identical SNP names (N=88) 
involved in the 132 significant triangles in XOR result in 14 immunity-related terms 
(g:Profiler with a 1 Mb upstream and downstream range; File S7).

XOR captures additional epistatic interactions that link to communities in Cartesian

The comparative assessment of community assignments across both networks renders 
further insights about the common SNPs. The diagram, depicted in Fig. 5, describes the 
similarities of community assignments based on the normalized AUC defined in Eq. 9.

The results elucidate the efficacy of the XOR model in identifying additional epistatic 
interactions, enriching our understanding of the genetic architecture by linking com-
munities that are otherwise considered distinct in Cartesian. This is evidenced by the 
existence of five expansive network communities within the XOR epistatic network, 
which exhibit shared common SNPs with a majority of communities identified using 
the Cartesian model. Moreover, this pattern of SNP sharing is not restricted to the larg-
est network communities. Smaller communities also demonstrate a consistent pattern 
of shared SNPs across both models. Hierarchically clustered heatmaps shown in Fig. 5 
reinforce this observation, revealing a small fraction of communities that manifest con-
gruent similarity patterns.

Enrichment analysis

Network‑scale enrichment analysis

The comparison of interaction models at the network level in R. norvegicus using 
g:Profiler reveals numerous functional categories for the lowest level in the hierarchy. 
For specific details for each category, refer to Supplementary File S2 and Fig.  6. This 
figure shows that most of the XOR and Cartesian terms are immunity-related. CCR6 
chemokine receptor, response to organic substance, and signaling receptor binding are 
shared between the two epistatic networks. The XOR includes cell-mediated regulation, 
lectin response, DAP12 interactions, protein-coupled receptors, kinase regulator activ-
ity, hypocalcemia, skin structural constituent, and keratin filament. The Cartesian has 
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terms for meningocele, nucleoplasm, pheromone binding, interferon receptor binding, 
impaired cell function and subcutaneous hemorrhage.

Referring to the detailed tables in Supplementary File S3, for GO:BP, most of the XOR 
terms highlight lectin response, sensory reception of bitter taste, and leukocyte medi-
ated cytotoxicity while Cartesian terms primarily include immune responses, chemical 
stimuli, and developmental processes (seen in Fig. 6). Networks share terms associated 
with immunity and sensory perception of taste (visualized in Fig.  6. For GO:CC, the 
XOR network includes terms for cytoplasm and keratin filament (shown in Fig. 6), while 
the Cartesian network includes nucleoplasm terms. The shared terms include MHC pro-
tein complex. For GO:MF, the XOR network includes terms relating to skin epidermis 
structural constituent, ketosteroid monooxygenase activity, G-protein-coupled receptor 
binding, NADP+ oxidoreductase activity and kinase regulator activity, while the Carte-
sian network includes terms for pheromone binding, type I interferon receptor binding, 
and CCR chemokine receptor binding. Shared GO:MF terms include binding, signaling 
receptor binding, and CCR6 chemokine receptor binding.

For KEGG pathways, the Cartesian network includes terms related to diseases 
(immune system related), infections, phagosome, taste transduction, vitamin metabo-
lism, and MAPK signaling pathway. In contrast, XOR includes gap junction and glu-
tamatergic synapse. Shared terms between the two include one signaling pathway and 
terms associated with various diseases and immunity. For REAC, Cartesian pathways 
include the ER-phagosome pathway and the Endosomal/Vacuolor pathway while XOR 
includes DAP12 interactions. There are no shared REAC terms between the interaction 

Fig. 6 The EnrichmentMap depicts a network of terms extracted from SNPs within different epistatic 
networks (interaction models). Nodes correspond to biological terms generated from g:Profiler, while edges 
denote shared genes between terms. AutoAnnotate is employed to aggregate strongly interconnected 
nodes using cycles, with the theme of the enclosed terms delineated beside each cycle. The node size 
and edge thickness are proportionate to the gene count they represent. The origin of nodes and edges is 
indicated by a color coding scheme, where blue denotes origination from Cartesian and red from XOR
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models. For the other sources, such as “Transcription Factor” and “miRNA”, please refer 
to Supplementary File S2 in sheets TF-CartvsXOR and miRNA-CartvsXOR, respectively.

For the broad categorization (first child of the parent) analysis, almost all categories 
have shared terms relating to immunity. For the GO:BP category, Cartesian includes 
terms for cellular development, cellular differentiation, and cellular response to dif-
ferentiation. The XOR has terms related to response to stimulus and regulation, while 
shared terms included sensory perception and immune response. Under GO:CC, Car-
tesian included intracellular membrane-bounded organelle and organelle lumen while 
XOR has terms such as cytoplasm, non membrane-bounded organelle, and supramo-
lecular complex. The shared terms are plasma membrane, membrane protein complex 
and intracellular organelle. Under the GO:MF, Cartesian has terms for odorant binding, 
cytokine receptor binding, and protein-containing complex binding while XOR included 
terms for structural constituent of skin, oxidoreductase activity and kinase regulator 
activity. Shared terms are protein binding, receptor binding and binding. For KEGG, the 
Cartesian has terms for signaling molecules, transport and catabolism, sensory system, 
vitamin metabolism, and cancer. XOR includes cellular community and nervous system, 
while shared terms include immunity, cardiovascular system, and endocrine and meta-
bolic disease. For REAC, there are no unique terms for XOR and Cartesian and only 
signal transduction is in the shared category. For specific details for each category, please 
refer to Supplementary File S4.

Community‑specific enrichment analysis for different interaction models

The community-scale biological enrichment analysis unveils the distinct and shared 
functional roles of each SNP community.

The largest term cluster within EnrichmentMap in Fig. 7 is named “exogenous pep-
tide antigen”. Most of the large networks observed are related to immunity and defense 
responses. Most of the Cartesian communities contain terms related to transporters, 
signal transduction, chemical detection, organismal development, and fatty acid oxida-
tion. The terms from XOR communities mostly include lipid transport and membrane 
dynamics, taste perception, amino acid synthesis, signaling, differentiation and devel-
opment, DNA synthesis, and post-translational modifications. The comparison between 
interaction models reveals that the XOR model identifies a broader spectrum of biolog-
ical terms that could be linked to BMI. A similar result was observed in the epistatic 
analysis our SNPs were derived from  [12]. In particular, we observe clusters such as 
“detection perception taste”, “fatty acid oxidation”, “amino acid synthesis” which reflect 
terms related to rat visual and digestive systems.

We generated one table for the communities looking at unique terms across encod-
ings and communities. We used the first child of parent to conduct this analysis. For 
Cartesian, community C0 has a solitary term, “digestive system” under KEGG, related 
to metabolism. No terms were unique to C0, C4, and C6 for Cartesian. For XOR, C0 
contains “Metabolism of vitamins and cofactors” under REAC, C5 includes “Glycan bio-
synthesis and metabolism” under KEGG, C6 has terms related to organic compound bio-
synthetic and metabolic processes under GO:BP, and C7 includes “Metabolism of amino 
acids and derivatives” under REAC. For specific details with all communities and encod-
ings, please refer to the Supplementary File S6. We also conducted the same analysis 
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using the terms themselves. Under Cartesian, C0 has “Triglyceride lipase activity” under 
GO:MF and “Fat digestion and absorption” under KEGG. C2 includes terms such as 
“Fatty acid beta-oxidation multienzyme complex” under GO:CC, metabolic pathways 
involving fatty acid metabolism under REAC, and “Cortisol synthesis and secretion” 
under KEGG. Community C3 has terms exclusively for transporter activity. Community 
C7 includes “Long-term depression”, “Ether lipid metabolism” under KEGG, “Glycer-
ophospholipid catabolic activity” under GO:BP, and terms relating to lipid metabolism 
under REAC. For XOR, community C0 comprises terms related to the metabolism of 
vitamins, minerals, and bile acids and salts under REAC. Community C2 has “Carbonate 
dehydratase activity” under GO:MF. C5 contains “Mannose type O-glycan biosynthesis” 
under KEGG, and “Serotonin and Anxiety” under WikiPathways (WP). C6 has terms 
related to amino acid metabolism under KEGG, and terms related to organic compound 
biosynthetic and metabolic processes under GO:BP. For C7, the terms include mem-
brane lipid regulation under GO:BP, and amino acid metabolism under KEGG. Under 
C9, “Lipid and atherosclerosis” is under the KEGG source. Please refer to Supplemen-
tary File S5 for the complete table.

Network investigation for permuted networks

We conducted 1,000 network permutation to shuffle the observed epistatic net-
work while preserving its node degree distribution (Supplementary File S8 VIII). In 
this section, we examine network properties, including the number of disconnected 

Fig. 7 The EnrichmentMap portrays a community-scale comparison of terms derived from SNP communities 
within distinct epistatic network models. Nodes symbolize biological terms generated from g:Profiler 
and edges signify the shared genes among these terms. AutoAnnotate clusters closely linked nodes into 
communities, with each cluster’s overarching theme inscribed beside the cycle. Node size and edge breadth 
are scaled to the quantity of genes they signify. The origin of nodes and edges is depicted with colors shown 
in the legend
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components, the size of the largest connected component, the number of triangle 
motifs, and modularity. The investigation compares epistatic network with and without 
the LD pruning process against permuted networks. Overall, the observed networks 
without LD pruning exhibit distinct properties compared to permuted networks, sug-
gesting that the network patterns of the observed structure may arise from trait-relevant 
epistatic interactions.

For the epistatic networks without LD pruning, consistent network patterns were 
observed across both the XOR and Cartesian epistatic models. Quantifying the disparity 
using Z-score, the observed network displays a significantly higher number of connected 
components (XOR  0Mb: 48.77, Cartesian  0Mb: 13.49), a smaller largest connected 
component size (XOR  0Mb: −171.80, Cartesian  0Mb: −121.03), fewer triangle motifs 
(XOR 0Mb: −47.05, Cartesian 0Mb: −5.11), and greater modularity (XOR 0Mb: 141.90, 
Cartesian 0Mb: 146.12). These findings indicate that epistatic networks without LD edge 
pruning are more fragmented and contain fewer triangle motifs than expected under the 
null hypothesis, which could facilitate increased modularity.

On the other hand, most network properties of epistatic network with LD pruning also 
exhibit differences from the original network. Notably, in the XOR 1Mb network, the 
network has a greater modularity (Z-score: −5.43) than the null hypothesis at an edge 
weight cutoff of 0.05 (Supplementary File S8 VIII-C). This characteristic suggests less 
prominent community structure can be attributed to its more prominent triangle motifs 
(Z-score: 3.18). The Cartesian 1Mb network (Supplementary File S8 VIII-E), meanwhile, 
is more fragmented compared with null hypothesis model, as suggested by the number 
of connected network components (Z-score: 21.84) and the size of the largest connected 
component (Z-score: −1.19).

Discussion
Our comparative network analysis on epistatic networks reveals that distinct network 
structures emerge from different network models. This disparity arises from XOR’s 
improved sensitivity to epistatic interactions compared to the Cartesian model. We 
found that the XOR model can capture additional epistatic interactions between the 
same set of SNPs captured by Cartesian and the second-order XOR model presents a 
unique network motif that can be used to discover higher-order epistasis. Through func-
tional enrichment analysis at the network community scale, we uncovered that the XOR 
model effectively identifies additional biologically relevant terms and functions, which 
the Cartesian model fails to detect. Our results underscore XOR’s capability to implicate 
important biological relationships between SNPs, but also highlight the critical role of 
network structure analysis in investigating epistasis. Our findings offer new evidence on 
the biological plausibility of the XOR model and the use of network-based investigation 
genetic interactions underlying complex traits.

Distinct epistatic networks evolve under each interaction model

We compare epistatic networks constructed from different interaction models. Each 
network is defined by the threshold τ that maximizes its modularity, ensuring that the 
resulting networks are optimally organized into distinct modules.
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Figure  2 summarizes the network structure discrepancy between the two epistatic 
models. The XOR networks are characterized by a larger number of nodes and edges 
compared to the Cartesian networks. We further observe that most SNPs in both non 
LD pruned epistatic networks are closely located with each other in regards to genomic 
position (Table 1), and most edges in the Cartesian network are also present in the XOR 
network, but not the other way around (Table 2). This implies that the XOR model cap-
tures more epistatic interactions involving an adjacent set of SNPs.

A significant difference is also observed in the network community structure. The 
XOR network is dominated by its largest connected component, as additional edges in 
the XOR network link different components found in the Cartesian model. This leads to 
a more unified network community in the XOR network, while the Cartesian network is 
more fragmented.

We also observe that the XOR network contains a greater number of triangles (n = 
1,033) than Cartesian (Fig.  2-E). We consider the triangle motifs in Cartesian (n = 9) 
are likely false-positives for higher-order epistasis as the positions of the corresponding 
SNPs are in close genomic proximity. Although close cis-acting epistasis is another pos-
sible explanation, the Cartesian triangles likely arise from high levels of LD with a locus 
with high main effect. When testing these triangle motifs for 3-way epistasis, we find 
that approximately 13% of the triangles in the XOR network have significant adjusted 
p-values. This result suggests that the XOR model, when combining network investiga-
tion, can discover higher-order epistatic interactions through the topology of second-
order interactions. This finding is encouraging because if higher-order interactions can 
be discovered using the network structure of lower-order epistasis, the time and com-
plexity of discovering higher-order interactions will be greatly reduced.

Last but not least, the XOR network has a lower modularity compared to the Carte-
sian network. This lower modularity in XOR can be attributed mainly to the additional 
epistatic interactions it captures, which tend to bridge distinct network communities 
found by the Cartesian model. These bridging edges often span across different network 
communities, thereby reducing modularity. Additionally, the presence of triangles in 
the XOR network, especially those that cross community boundaries, further contrib-
utes to the reduced modularity. In contrast, the near absence of triangles and the higher 
number of disconnected components in the Cartesian network contribute to its higher 
modularity, indicating a more segmented community structure than the XOR network.

Network level enrichment analysis reveals shared and unique biological signals 

between interaction models

Our enrichment results at the network level indicate both shared and unique biologi-
cal signals in each model’s network. GO terms, KEGG and REAC pathways reveal that 
immunity-based enrichments are shared between Cartesian and XOR models at both 
high and low levels of biological organization that we assessed in our enrichment analy-
sis (see Supplementary Files S2, S3 and S4). This is somewhat expected due to ubiquity 
of immunity-based enrichments regularly observed across systems and phenotypes [58–
62] including in the results of the original epistasis analysis that this work is inspired 
by [12]. Immune functions are underlain by diverse gene networks that are integral to 
general stress responses observed in many systems [44, 59, 63]. High BMI likely induces 
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stress response mechanisms that activate immunity-related genes and gene networks. 
Our results suggest that immunity-related signals are detectable and prevalent in our 
networks regardless of the epistatic model used.

Under GO:BP in both XOR and Cartesian networks, we observe terms for sensory 
perception of taste and taste transduction. Specific to the Cartesian network, we observe 
REAC pathways relating to taste transduction and reception. (see Supplementary File 
S3). These terms are clearly connected to ingestion and metabolism  [64, 65] and are 
likely directly related to BMI. We also see terms for cell differentiation and develop-
ment that could be related to adipogenesis, which has an important role in BMI [66]. 
In XOR network, we particularly observe terms relating to sensory perception of bit-
ter taste. It has been studied that humans with obesity often have a decreased sensitiv-
ity to bitter taste [67]. Earlier studies have also linked bitter taste to G-protein coupled 
receptors [68–70], which was observed under the GO:MF terms for the XOR network. 
Under the XOR network, we also see GO:BP, GO:MF, and KEGG terms associated with 
cell-cell signaling and receptor binding. These are accompanied by enrichments associ-
ated with lectin receptor activity. But since these phrases are related to immunity, they 
probably also belong to the shared immunity-related terms in the Cartesian network. 
Furthermore, under XOR, we observe glutamatergic synapse, which has been shown to 
be associated with food intake and body weight [71]. One more interesting observation 
under XOR is the structural constituent of the skin epidermis which has also been linked 
to obesity [72].

Taken together, our network-level enrichment results indicate that broad biological 
systems can be implicated using either interaction model in regard to BMI in rats. Simi-
lar results were observed in the original epistatic analysis where terms shared by both 
interaction models were involved in immunity [12]. However, each model has the poten-
tial to highlight unique pathways that would have been missed if only one interaction 
model was utilized in this system. Moreover, our enrichment results align with findings 
from our network analysis in that each epistatic network’s unique topology likely high-
lights distinct genetic architectures associated with the phenotype. Our analysis here 
serves as evidence illustrating that the Cartesian interaction model (or any one model) 
alone is not adequate to explore all of the possible epistatic interactions that occur in liv-
ing systems and should be supplemented by other models/penetrance functions, includ-
ing non-linearly separable models, like XOR.

Community level enrichment analysis highlights the advantages of the XOR model 

and network investigation

The exploration of epistatic networks using community-based enrichment analysis 
reveals that the XOR model uncovers network structures containing a greater abun-
dance of metabolic terms compared to the Cartesian model, particularly within this 
specific system and phenotype. For Cartesian, we observe GO and KEGG pathways in 
communities C0 and C2 that relate to lipase activity, mitochondrial fatty acid oxidation, 
and fat digestion and absorption. It has been shown that fatty acid oxidation is directly 
linked to metabolism and could have potential in therapies for obesity [73, 74]. In com-
munities C5 and C6, we observe terms relating to ion and water channel activity. The 
roles of ion channels in the development of obesity in rats have been well documented 
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and are involved in adipose cell proliferation, food intake, and gastric emptying (over-
eating)  [75]. Specific to the XOR network, we observe that community C0 has terms 
for the metabolism of fat-soluble vitamins, bile acid, and bile salt synthesis. A recent 
study investigated the interaction between vitamin D and obesity and BMI and numer-
ous studies have found an inverse association [76]. Communities C5, C6, and C7 have 
terms involving amino acid metabolism, and also serotonin and anxiety. A recent study 
demonstrated that obesity induced by a high-fat diet elevates neuroinflammation and 
heightens anxiety-related defensive behaviors. The serotonergic system, which plays a 
key role in emotional regulation, was found to be particularly significant in modulating 
these anxiety-like responses [77]. Metabolism of branched-chain amino acids was found 
to be involved in the pathogenesis of obesity and type-II diabetes [78]. At the first child 
of parent level, community C0 within the Cartesian has a digestive system term likely 
has broad implications regarding metabolism and BMI. Within the XOR network, com-
munities C5, C6, and C7 have terms relating to amino acid metabolism, which was also 
seen at the term level as well.

In conclusion, our community-level enrichment analysis highlights the efficacy of XOR 
as a model of epistasis in this system and phenotype. The unique interactions and biolog-
ical insights identified by XOR at the network level and via GSEA are pivotal in revealing 
a more profound understanding of the genetic architecture of BMI in rats. These results 
also highlight the need for network structure analysis and the unique advantages of XOR 
coding, and perhaps other interaction models, in epistasis studies by extracting more of 
the “hidden heritability” underlying important phenotypes and diseases.

LD network pruning reduces redundancy but may lead to network fragmentation

LD pruning eliminates redundant SNPs. When this approach is extended to network-
based epistasis analysis, a significant number of edges are removed (Fig. 2-E). However, 
we found that removing redundant epistatic interactions may also result in network 
fragmentation. Due to this reason, the major analysis of this research is performed on 
non LD pruned networks to allow for a more comprehensive investigation of epistatic 
interactions.

The effects of network fragmentation vary between different epistasis models. As 
shown in Fig.  2-B, LD-pruned XOR networks maintain large connected components 
that span most of their nodes (Supplementary File S8 III-V). In contrast, LD-pruned 
Cartesian networks fail to form obvious connected components (Supplementary File S8 
VII), with the largest component containing no more than 11 nodes. This difference is 
likely due to the XOR model detecting more epistatic interactions between existing net-
work communities compared to the Cartesian model, which makes the XOR network 
more resistant to fragmentation from LD pruning.

LD-induced fragmentation can also reduce the size of hub nodes in epistatic net-
works, distributing their connections to multiple smaller hubs in LD pruned net-
works. In the 1 Mb LD pruned XOR network ( τ = 0.0029 ), two of the three hub nodes 
(chr1.281176430_C and chr1.282025017_A) appear to be highly duplicated (Supplemen-
tary File S8 III and S9). These nodes are located close to each other on chromosome 1 
and share 393 common neighbors in the unpruned network (chr1.281176430_C has 626 
neighbors, and chr1.282025017_A has 639 neighbors). It is important to note that these 
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hubs are in close genomic proximity of the SNP with the largest univariate signal in the 
original GWAS study our SNPs are derived from [47, 48]. Thus, this duplication is likely 
due to strong LD in this genomic region. However, duplicated hubs do not pose an issue 
in the network without edge pruning, as each forms its own hub. The LD pruning pro-
cess forces edges of duplicated hubs to compete with each other, distributing the con-
nections of hub nodes across multiple smaller hubs in the pruned network.

LD epistasis pruning also has a negative impact on the number of triangle motifs in 
the XOR network. As shown in Fig.  2, LD pruning drastically reduces the number of 
triangles, from 1,146 (in the 0Mb network at τ = 0.05 ) to 126 (in the 1Mb network at 
τ = 0.05 ). This suggests a reduced likelihood of detecting higher-order epistatic inter-
actions. The loss of triangles may stem from a similar mechanism as hub shrinkage 
process, where the likelihood of retaining all three edges necessary to form a triangle 
diminishes due to LD pruning, causing these motifs to vanish in the pruned network.

Overall, LD pruning leads to greater network fragmentation, with the Cartesian 
network being notably more susceptible, resulting in a sparse and limited network. 
Although 1 Mb pruning is likely the most biologically relevant in this system, we focus 
on the non LD pruned networks to highlight the differences between the interaction 
encodings and showcase the potential of our network-based approach to investigate epi-
static interactions.

Limitations and future work

The construction of the epistatic networks uses the precise chromosomal positions of 
SNP to discriminate individual nodes. Consequently, nodes and edges in close proxim-
ity are identified as separate entities. However, such over detailed representation could 
result in network fragmentation after LD pruning among edges. There is a clear need 
for advanced analytical methods that can account for the similarities among nodes and 
edges. To overcome this challenge, the adoption of network representation learning 
methods, especially graph neural networks [79], emerges as a promising solution. These 
techniques excel at generating embedding representations for the information associ-
ated with the nodes [80, 81]. In the context of our epistatic networks, these embeddings 
are capable of identifying nodes and edges with similar chromosomal positions, thereby 
substantially improving the efficiency of network analysis while avoiding the effects of 
network fragmentation from LD edge pruning. In addition to network fragmentation, 
asymmetric associations between loci pose another challenge in constructing reliable 
interaction networks. Asymmetric associations occur when one locus has a strong inter-
action with another, but the reverse interaction is weaker or absent. This can lead to 
false-positive detection of epistasis, as these interactions may appear dependent when 
they are not truly reciprocal. Although the original manuscript  [12] applied stringent 
quality control measures, such as FDR correction and permutation testing, the cur-
rent analysis may still be susceptible to these effects. Future work should explore more 
advanced models to better distinguish true interactions from asymmetric associations, 
potentially incorporating statistical tests that assess the bidirectionality of interactions 
or machine learning models designed to capture complex dependencies. Addressing this 
limitation is essential to ensure the robustness and interpretability of the constructed 
networks. Additionally, while our study identifies statistical epistasis using interaction 
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models and significance testing, it is important to recognize that statistical epistasis does 
not necessarily imply biological epistasis. Therefore, future work should focus on vali-
dating statistically significant epistatic pairs through experimentation. Validation in sys-
tems like R. norvegicus through techniques such as gene editing or other approaches will 
help distinguish between genuine biological interactions and statistical associations.

Conclusions
This comparative network analysis illustrates that multiple interaction models help elu-
cidate complex epistatic interactions in a model system. Although both models identify 
distinct network structures, the XOR model integrates network communities found 
in Cartesian, revealing novel biological functions through community-scale enrich-
ment analysis. Specifically, the fifth community within the XOR network has revealed 
WP terms associated with serotonin and anxiety pathways that had not been previ-
ously implicated to be involved with BMI, obesity, or metabolism in our earlier study 
[12] Additionally, the XOR model identifies unique triangular motifs, with approxi-
mately 13% being significant for three-way epistasis after FDR correction, demonstrating 
a novel approach for identifying complex interactions through lower-order interaction 
topologies. These motifs may simplify the identification of high-order interactions in 
epistatic data, which is often computationally expensive. In summary, this comparative 
analysis highlights the importance of network analysis in epistasis studies. We illustrate 
that networks connect different entities, providing a more complete view of the complex 
associations underlying epistatic interactions. Using this approach, we identify novel 
biological insights and evidence of higher-order epistasis not found in the original study.

Abbreviations
AKT  AK strain Transforming
AUC   Area Under the Curve
BMI  Body Mass Index
BP  Biological Process
CC  Cellular Component
EGFR  Estimated Glomerular Filtration Rate
ERBB2  ERythroBlastic oncogene B receptor tyrosine kinase 2
FDR  False Discovery Rate
GO  Gene Ontology
GSEA  Gene Set Enrichment Analysis
GWAS  Genome-Wide Association Study
KEGG  Kyoto Encyclopedia of Genes and Genomes
LD  Linkage Disequilibrium
Mb  MegaBase(s) (1e6 base pairs)
MHC  Major Histocompatibility Complex
MLG  Multi-Locus Genotype
MF  Molecular Function
OSA  Over-Representation Analysis
QTL  Quantitative Trait Locus
REAC  REACtome pathway database
SNP  Single Nucleotide Polymorphism
TFs  Transcription Factors
WP  WikiPathways
XOR  eXclusive OR

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13040- 024- 00413-w.

Additional file 1. Penetrance functions and reaction norms describing Cartesian and XOR epistatic models and 
parameter summaries for biological enrichment analysis.

https://doi.org/10.1186/s13040-024-00413-w


Page 28 of 31Sha et al. BioData Mining           (2024) 17:61 

Additional file 2. Lowest hierarchical functional termsderived from GSEA for network-level SNPs under both interac-
tion models.

Additional file 3. First child of parent functional terms derived from GSEA for network-level SNPs under both interac-
tion models.

Additional file 4. Parent functional terms of interest derived from GSEA for network-level SNPs under both interaction 
models.

Additional file 5. Functional terms derived from GSEA for community-level SNPs from XOR model.

Additional file 6. Functional terms derived from GSEA for community-level SNPs from Cartesian model.

Additional file 7. Functional terms derived from GSEA for the 88 SNPs with significant 3-way epistasis interactions.

Additional file 8. Edge threshold determination for XOR and Cartesian networks and their visualizations.

Additional file 9. The original network visualization file based on Cytoscape [57].

Additional file 10. Network-level parent term hierarchy for functional terms derived from GSEA.

Additional file 11. Community-level parent term hierarchy for functional terms derived from GSEA.

Acknowledgements
We would like to thank Apurva S. Chitre and Abraham Palmer, PhD for their assistance with providing data and feedback 
associated with the original rat GWAS data. We would also like to thank Drs. Sandra Batista and Vered Senderovich Madar 
for the construction of the epistasis detection algorithms referenced and extended in this study. We are grateful to Digi-
tal Research Alliance of Canada and Wireless Networking and Mobile Computing Laboratory for providing computing 
infrastructures.

Authors’ contributions
ZS, PJF, and PB contributed equally to this work. ZS, PJF, and PB wrote the original manuscript. ZS performed all network 
science analyses and network/community-based functional enrichment analysis using g:Profiler and EnrichmentMap. 
PF and PB performed hierarchical GSEA analyses and term comparisons. PF and PB implemented 3-way epistasis analysis 
for SNPs associated with Cartesian and XOR triangle motifs. AG and NM assisted in implementing this additional 3-way 
analysis and also with code troubleshooting. JHM and TH served as mentors, providing guidance and assistance, as well 
as editing the final manuscript. All authors read and approved the final manuscript.

Funding
The authors gratefully acknowledge support from the NIH under Grant R01 LM010098 awarded to Jason H. Moore.

Data availability
Rat phenotype data and GWAS summary statistics are available at https:// libra ry. ucsd. edu/ dc/ object/ bb837 25195. Rat 
genotype data are available at https:// libra ry. ucsd. edu/ dc/ object/ bb151 23938. The implementations of the algorithms 
for 2-way and 3-way epistasis detection given in Python are offered via GitHub at https:// github. com/ Epist asisL ab/ epist 
asis_ detec tion. The implementations of the network investigation given in Python are offered via GitHub at https:// 
github. com/ shazh endong/ Netwo rk_ Epist asis. The scripts to perform GSEA and obtain the parents of interest and genes 
given a set of SNPs are available on the Open Science Framework (OSF): https:// osf. io/ qfnec/.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 9 May 2024   Accepted: 9 December 2024

References
 1. Moore JH. The Ubiquitous Nature of Epistasis in Determining Susceptibility to Common Human Diseases. Hum 

Hered. 2003;56(1–3):73–82. https:// doi. org/ 10. 1159/ 00007 3735.
 2. Moore JH, Williams SM. Traversing the conceptual divide between biological and statistical epistasis: systems biol-

ogy and a more modern synthesis. Bioessays. 2005;27(6):637–46. https:// doi. org/ 10. 1002/ bies. 20236.
 3. Moore JH, Williams SM. Epistasis and Its Implications for Personal Genetics. Am J Hum Genet. 2009;85(3):309–20. 

https:// doi. org/ 10. 1016/j. ajhg. 2009. 08. 006.

https://library.ucsd.edu/dc/object/bb83725195
https://library.ucsd.edu/dc/object/bb15123938
https://github.com/EpistasisLab/epistasis_detection
https://github.com/EpistasisLab/epistasis_detection
https://github.com/shazhendong/Network_Epistasis
https://github.com/shazhendong/Network_Epistasis
https://osf.io/qfnec/
https://doi.org/10.1159/000073735
https://doi.org/10.1002/bies.20236
https://doi.org/10.1016/j.ajhg.2009.08.006


Page 29 of 31Sha et al. BioData Mining           (2024) 17:61  

 4. Leamy LJ, Routman EJ, Cheverud JM. An Epistatic Genetic Basis for Fluctuating Asymmetry of Mandible Size in Mice. 
Evolution. 2002;56(3):642–53. https:// doi. org/ 10. 1111/j. 0014- 3820. 2002. tb013 73.x.

 5. Nelson MR, Kardia SLR, Ferrell RE, Sing CF. A Combinatorial Partitioning Method to Identify Multilocus Genotypic Par-
titions That Predict Quantitative Trait Variation. Genome Res. 2001;11(3):458–70. https:// doi. org/ 10. 1101/ gr. 172901.

 6. Zee RYL, Hoh J, Cheng S, Reynolds R, Grow MA, Silbergleit A, et al. Multi-locus interactions predict risk for post-PTCA 
restenosis: an approach to the genetic analysis of common complex disease. Pharmacogenomics J. 2002;2(3):197–
201. https:// doi. org/ 10. 1038/ sj. tpj. 65001 01.

 7. Rauscher R, Bampi GB, Guevara-Ferrer M, Santos LA, Joshi D, Mark D, et al. Positive epistasis between disease-
causing missense mutations and silent polymorphism with effect on mRNA translation velocity. Proc Natl Acad Sci. 
2021;118(4):e2010612118. https:// doi. org/ 10. 1073/ pnas. 20106 12118.

 8. Rohlfs EM, Shaheen NJ, Silverman LM. Is the Hemochromatosis Gene a Modifier Locus for Cystic Fibrosis? Genet Test. 
1998;2(1):85–8. https:// doi. org/ 10. 1089/ gte. 1998.2. 85.

 9. Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, et al. Multifactor-Dimensionality Reduction Reveals 
High-Order Interactions among Estrogen-Metabolism Genes in Sporadic Breast Cancer. Am J Hum Genet. 
2001;69(1):138–47. https:// doi. org/ 10. 1086/ 321276.

 10. Hallin J, Märtens K, Young AI, Zackrisson M, Salinas F, Parts L, et al. Powerful decomposition of complex traits in a 
diploid model. Nat Commun. 2016;7(1):13311. https:// doi. org/ 10. 1038/ ncomm s13311.

 11. Matsui T, Mullis MN, Roy KR, Hale JJ, Schell R, Levy SF, et al. The interplay of additivity, dominance, and epistasis on 
fitness in a diploid yeast cross. Nat Commun. 2022;13(1):1463. https:// doi. org/ 10. 1038/ s41467- 022- 29111-z.

 12. Batista S, Madar VS, Freda PJ, Bhandary P, Ghosh A, Matsumoto N, et al. Interaction models matter: an efficient, flex-
ible computational framework for model-specific investigation of epistasis. BioData Min. 2024;17(1):7.

 13. Hainmueller J, Mummolo J, Xu Y. How much should we trust estimates from multiplicative interaction models? 
Simple tools to improve empirical practice. Polit Anal. 2019;27(2):163–92.

 14. Gibson G. Epistasis and Pleiotropy as Natural Properties of Transcriptional Regulation. Theor Popul Biol. 
1996;49(1):58–89. https:// doi. org/ 10. 1006/ tpbi. 1996. 0003.

 15. Templeton AR. Epistasis and Complex Traits. In: Wolf J, Brodie B III, Wade M, editors. Epistasis and the Evolutionary 
Process. New York: Oxford University Press; 2000.

 16. Gallie DR. Protein-protein interactions required during translation. Plant Mol Biol. 2002;50(6):949–70. https:// doi. org/ 
10. 1023/A: 10212 20910 664.

 17. Rice SH. The Evolution of Canalization and the Breaking of Von Baer’s Laws: Modeling the Evolution of Development 
with Epistasis. Evolution. 1998;52(3):647–56. https:// doi. org/ 10. 1111/j. 1558- 5646. 1998. tb036 90.x.

 18. Li W, Reich J. A Complete Enumeration and Classification of Two-Locus Disease Models. Hum Hered. 2000;50(6):334–
49. https:// doi. org/ 10. 1159/ 00002 2939.

 19. Carmelo VAO, Kogelman LJA, Madsen MB, Kadarmideen HN. WISH-R- a fast and efficient tool for construction of 
epistatic networks for complex traits and diseases. BMC Bioinformatics. 2018;19(1):277. https:// doi. org/ 10. 1186/ 
s12859- 018- 2291-2.

 20. Barabasi AL, Oltvai ZN. Network biology: understanding the cell’s functional organization. Nat Rev Genet. 
2004;5(2):101–13.

 21. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev 
Genet. 2011;12(1):56–68.

 22. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, et al. The genomic landscapes of human breast and colo-
rectal cancers. Science. 2007;318(5853):1108–13.

 23. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J, et al. Uncovering disease-disease relationships 
through the incomplete interactome. Science. 2015;347(6224):1257601.

 24. Gysi DM, Barábasi AL, Do Valle IF, Varol O, Gan X, Ameli A, et al.. Network Medicine Framework for Identifying Drug 
Repurposing Opportunities. Google Patents; 2022.

 25. Cheng F, Desai RJ, Handy DE, Wang R, Schneeweiss S, Barabási AL, et al. Network-based approach to prediction and 
population-based validation of in silico drug repurposing. Nat Commun. 2018;9(1):2691.

 26. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, et al. Global reconstruction of the human metabolic 
network based on genomic and bibliomic data. Proc Natl Acad Sci. 2007;104(6):1777–82.

 27. Ma H, Sorokin A, Mazein A, Selkov A, Selkov E, Demin O, et al. The Edinburgh human metabolic network reconstruc-
tion and its functional analysis. Mol Syst Biol. 2007;3(1):135.

 28. Maldonado EM, Fisher CP, Mazzatti DJ, Barber AL, Tindall MJ, Plant NJ, et al. Multi-scale, whole-system models of liver 
metabolic adaptation to fat and sugar in non-alcoholic fatty liver disease. NPJ Syst Biol Appl. 2018;4(1):33.

 29. Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabási AL. Hierarchical organization of modularity in metabolic 
networks. Science. 2002;297(5586):1551–5.

 30. Carninci P, Kasukawa T, Katayama S, Gough J, Frith M, Maeda N, et al. The transcriptional landscape of the mamma-
lian genome. Science. 2005;309(5740):1559–63.

 31. Das T, Kaur H, Gour P, Prasad K, Lynn AM, Prakash A, et al. Intersection of network medicine and machine learning 
towards investigating the key biomarkers and pathways underlying amyotrophic lateral sclerosis: a systematic 
review. Brief Bioinform. 2022;23(6):bbac442.

 32. Hu T, Sinnott-Armstrong NA, Kiralis JW, Andrew AS, Karagas MR, Moore JH. Characterizing genetic interactions in 
human disease association studies using statistical epistasis networks. BMC Bioinformatics. 2011;12(1):364. https:// 
doi. org/ 10. 1186/ 1471- 2105- 12- 364.

 33. Barabási AL, Bonabeau E. Scale-free networks. Sci Am. 2003;288(5):60–9.
 34. Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.
 35. Dong Z, Chen Y, Tricco TS, Li C, Hu T. Hunting for vital nodes in complex networks using local information. Sci Rep. 

2021;11(1):9190.
 36. Newman ME. Modularity and community structure in networks. Proc Natl Acad Sci. 2006;103(23):8577–82.
 37. Chen B, Fan W, Liu J, Wu FX. Identifying protein complexes and functional modules–from static PPI networks to 

dynamic PPI networks. Brief Bioinform. 2014;15(2):177–94.

https://doi.org/10.1111/j.0014-3820.2002.tb01373.x
https://doi.org/10.1101/gr.172901
https://doi.org/10.1038/sj.tpj.6500101
https://doi.org/10.1073/pnas.2010612118
https://doi.org/10.1089/gte.1998.2.85
https://doi.org/10.1086/321276
https://doi.org/10.1038/ncomms13311
https://doi.org/10.1038/s41467-022-29111-z
https://doi.org/10.1006/tpbi.1996.0003
https://doi.org/10.1023/A:1021220910664
https://doi.org/10.1023/A:1021220910664
https://doi.org/10.1111/j.1558-5646.1998.tb03690.x
https://doi.org/10.1159/000022939
https://doi.org/10.1186/s12859-018-2291-2
https://doi.org/10.1186/s12859-018-2291-2
https://doi.org/10.1186/1471-2105-12-364
https://doi.org/10.1186/1471-2105-12-364


Page 30 of 31Sha et al. BioData Mining           (2024) 17:61 

 38. Han JDJ, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, et al. Evidence for dynamically organized modularity in 
the yeast protein-protein interaction network. Nature. 2004;430(6995):88–93.

 39. Mitra K, Carvunis AR, Ramesh SK, Ideker T. Integrative approaches for finding modular structure in biological net-
works. Nat Rev Genet. 2013;14(10):719–32.

 40. Watts DJ, Strogatz SH. Collective dynamics of ‘small-world’networks. Nature. 1998;393(6684):440–2.
 41. Fell DA, Wagner A. The small world of metabolism. Nat Biotechnol. 2000;18(11):1121–2.
 42. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D, Alon U. Network motifs: simple building blocks of complex 

networks. Science. 2002;298(5594):824–7.
 43. Sun Z, Wei W, Zhang M, Shi W, Zong Y, Chen Y, et al. Synthetic robust perfect adaptation achieved by negative feed-

back coupling with linear weak positive feedback. Nucleic Acids Res. 2022;50(4):2377–86.
 44. Subramanian N, Torabi-Parizi P, Gottschalk RA, Germain RN, Dutta B. Network representations of immune system 

complexity. Wiley Interdiscip Rev Syst Biol Med. 2015;7(1):13–38. https:// doi. org/ 10. 1002/ wsbm. 1288.
 45. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a web server for functional enrichment 

analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019;47(W1):W191-8. https:// doi. org/ 10. 
1093/ nar/ gkz369.

 46. Hansen C, Spuhler K. Development of the National Institutes of Health Genetically Heterogeneous Rat Stock. Alco-
hol: Clin Exp Res. 1984;8(5):477–9. https:// doi. org/ 10. 1111/j. 1530- 0277. 1984. tb057 06.x.

 47. Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, et al. Genome-Wide Association Study in 3,173 
Outbred Rats Identifies Multiple Loci for Body Weight, Adiposity, and Fasting Glucose. Obesity. 2020;28(10):1964–73. 
https:// doi. org/ 10. 1002/ oby. 22927.

 48. Chitre AS, Polesskaya O, Holl K, Gao J, Cheng R, Bimschleger H, et al. Genome-Wide Association Study in 3,173 
Outbred Rats for Body Weight, Adiposity, and Fasting Glucose. 2020;28(10):1964-1973. https:// doi. org/ 10. 1002/ oby. 
22927.

 49. Clauset A, Newman MEJ, Moore C. Finding community structure in very large networks. Phys Rev E. 2004;70:066111. 
https:// doi. org/ 10. 1103/ PhysR evE. 70. 066111.

 50. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech 
Theory Exp. 2008;2008(10):P10008.

 51. Traag VA, Waltman L, Van Eck NJ. From Louvain to Leiden: guaranteeing well-connected communities. Sci Rep. 
2019;9(1):5233.

 52. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, Clawson H, et al. The UCSC genome browser database: 
update 2006. Nucleic Acids Res. 2006;34(suppl_1):D590–8.

 53. Grote S. GOfuncR: Gene ontology enrichment using FUNC. R Packag Version. 2018;1:10–18129.
 54. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and 

visualization of omics data using g:Profiler, GSEA. Cytoscape and EnrichmentMap Nat Protoc. 2019;14(2):482–517. 
https:// doi. org/ 10. 1038/ s41596- 018- 0103-9.

 55. Kucera M, Isserlin R, Arkhangorodsky A, Bader G. AutoAnnotate: A Cytoscape app for summarizing networks with 
semantic annotations [version 1; peer review: 2 approved]. F1000Research. 2016;5(1717). https:// doi. org/ 10. 12688/ 
f1000 resea rch. 9090.1.

 56. Oesper L, Merico D, Isserlin R, Bader GD. WordCloud: a Cytoscape plugin to create a visual semantic summary of 
networks. Source Code Biol Med. 2011;6(1):7. https:// doi. org/ 10. 1186/ 1751- 0473-6-7.

 57. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated 
models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

 58. Loker ES, Adema CM, Zhang SM, Kepler TB. Invertebrate immune systems – not homogeneous, not simple, not well 
understood. Immunol Rev. 2004;198:10–24.

 59. Sinclair BJ, Ferguson LV, Salehipour-shirazi G, MacMillan HA. Cross-tolerance and Cross-talk in the Cold: Relating Low 
Temperatures to Desiccation and Immune Stress in Insects. Integr Comp Biol. 2013;53(4):545–56. https:// doi. org/ 10. 
1093/ icb/ ict004.

 60. Sun Y, Zhang X, Wang Y, Day R, Yang H, Zhang Z. Immunity-related genes and signaling pathways under hypoxic 
stresses in Haliotis diversicolor: a transcriptome analysis. Sci Rep. 2019;9(1):19741. https:// doi. org/ 10. 1038/ 
s41598- 019- 56150-2.

 61. Saijo Y, Loo EPi. Plant immunity in signal integration between biotic and abiotic stress responses. New Phytol. 
2020;225(1):87–104. https:// doi. org/ 10. 1111/ nph. 15989.

 62. Freda PJ, Toxopeus J, Dowle EJ, Ali ZM, Heter N, Collier RL, et al. Transcriptomic and functional genetic evidence for 
distinct ecophysiological responses across complex life cycle stages. J Exp Biol. 2022;225(11):jeb244063. https:// doi. 
org/ 10. 1242/ jeb. 244063.

 63. Chrousos GP. The stress response and immune function: clinical implications. The 1999 Novera H. Spector Lecture. 
Ann N Y Acad Sci. 2000;917:38–67. https:// doi. org/ 10. 1111/j. 1749- 6632. 2000. tb053 71.x.

 64. Berthoud HR, Zheng H. Modulation of taste responsiveness and food preference by obesity and weight loss. Physiol 
Behav. 2012;107(4):527–32.

 65. Hajnal A, Covasa M, Bello NT. Altered taste sensitivity in obese, prediabetic OLETF rats lacking CCK-1 receptors. Am J 
Physiol-Regul Integr Comp Physiol. 2005;289(6):R1675–86.

 66. Gesta S, Blüher M, Yamamoto Y, Norris AW, Berndt J, Kralisch S, et al. Evidence for a role of developmental genes in 
the origin of obesity and body fat distribution. Proc Natl Acad Sci. 2006;103(17):6676–81. https:// doi. org/ 10. 1073/ 
pnas. 06017 52103.

 67. Kure Liu C, Joseph PV, Feldman DE, Kroll DS, Burns JA, Manza P, et al. Brain imaging of taste perception in obesity: A 
review. Curr Nutr Rep. 2019;8(2):108–19.

 68. Adler E, Hoon MA, Mueller KL, Chandrashekar J, Ryba NJ, Zuker CS. A novel family of mammalian taste receptors. 
Cell. 2000;100(6):693–702.

 69. Chandrashekar J, Mueller KL, Hoon MA, Adler E, Feng L, Guo W, et al. T2Rs function as bitter taste receptors. Cell. 
2000;100(6):703–11.

https://doi.org/10.1002/wsbm.1288
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1111/j.1530-0277.1984.tb05706.x
https://doi.org/10.1002/oby.22927
https://doi.org/10.1002/oby.22927
https://doi.org/10.1002/oby.22927
https://doi.org/10.1103/PhysRevE.70.066111
https://doi.org/10.1038/s41596-018-0103-9
https://doi.org/10.12688/f1000research.9090.1
https://doi.org/10.12688/f1000research.9090.1
https://doi.org/10.1186/1751-0473-6-7
https://doi.org/10.1093/icb/ict004
https://doi.org/10.1093/icb/ict004
https://doi.org/10.1038/s41598-019-56150-2
https://doi.org/10.1038/s41598-019-56150-2
https://doi.org/10.1111/nph.15989
https://doi.org/10.1242/jeb.244063
https://doi.org/10.1242/jeb.244063
https://doi.org/10.1111/j.1749-6632.2000.tb05371.x
https://doi.org/10.1073/pnas.0601752103
https://doi.org/10.1073/pnas.0601752103


Page 31 of 31Sha et al. BioData Mining           (2024) 17:61  

 70. Matsunami H, Montmayeur JP, Buck LB. A family of candidate taste receptors in human and mouse. Nature. 
2000;404(6778):601–4.

 71. Schneeberger M, Brice NL, Pellegrino K, Parolari L, Shaked JT, Page KJ, et al. Pharmacological targeting of glutamater-
gic neurons within the brainstem for weight reduction. Nat Metab. 2022;4(11):1495–513.

 72. Darlenski R, Mihaylova V, Handjieva-Darlenska T. The link between obesity and the skin. Front Nutr. 2022;9:855573.
 73. Serra D, Mera P, Malandrino MI, Mir JF, Herrero L. Mitochondrial fatty acid oxidation in obesity. Antioxid Redox Signal. 

2013;19(3):269–84.
 74. Shao D, Kolwicz SC Jr, Wang P, Roe ND, Villet O, Nishi K, et al. Increasing fatty acid oxidation prevents high-fat diet-

induced cardiomyopathy through regulating parkin-mediated mitophagy. Circulation. 2020;142(10):983–97.
 75. Vasconcelos LHC, Souza ILL, Pinheiro LS, Silva BA. Ion channels in obesity: pathophysiology and potential therapeu-

tic targets. Front Pharmacol. 2016;7:58.
 76. Alzohily B, AlMenhali A, Gariballa S, Munawar N, Yasin J, Shah I. Unraveling the complex interplay between obesity 

and vitamin D metabolism. Sci Rep. 2024;14(1):7583.
 77. de Noronha SIR, de Moraes LAG, Hassell JE Jr, Stamper CE, Arnold MR, Heinze JD, et al. High-fat diet, microbiome-

gut-brain axis signaling, and anxiety-like behavior in male rats. Biol Res. 2024;57(1):23.
 78. Vanweert F, Schrauwen P, Phielix E. Role of branched-chain amino acid metabolism in the pathogenesis of 

obesity and type 2 diabetes-related metabolic disturbances BCAA metabolism in type 2 diabetes. Nutr Diabetes. 
2022;12(1):35.

 79. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural 
Netw. 2008;20(1):61–80.

 80. Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. 2017. arXiv preprint arXiv: 
1710. 10903.

 81. Dong Z, Chen Y, Tricco TS, Li C, Hu T. Ego-Aware Graph Neural Network. IEEE Trans Netw Sci Eng. 2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1710.10903

	Distinct network patterns emerge from Cartesian and XOR epistasis models: a comparative network science analysis
	Abstract 
	Background: 
	Results: 
	Conclusions: 

	Background
	Materials
	Data source
	Epistatic pairs
	Construction of epistatic networks
	Nodes and edges
	Quantifying the extent of community separation

	Determination of the epistatic network by tuning edge weight threshold
	Network comparison
	LD edge pruning for epistatic network
	Network permutation
	Functional enrichment analysis
	g:Profiler
	Comparative analysis of g:Profiler biological terms
	EnrichmentMap


	Results
	XOR and Cartesian interaction models yield distinct network structures
	XOR and Cartesian interaction models share similar SNPs but have distinct epistatic interactions
	Comparative analysis of node and edge overlap in XOR and Cartesian interaction models
	XOR exhibits more triangle network motifs than Cartesian
	XOR captures additional epistatic interactions that link to communities in Cartesian

	Enrichment analysis
	Network-scale enrichment analysis
	Community-specific enrichment analysis for different interaction models

	Network investigation for permuted networks

	Discussion
	Distinct epistatic networks evolve under each interaction model
	Network level enrichment analysis reveals shared and unique biological signals between interaction models
	Community level enrichment analysis highlights the advantages of the XOR model and network investigation
	LD network pruning reduces redundancy but may lead to network fragmentation
	Limitations and future work

	Conclusions
	Acknowledgements
	References


