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Abstract 

The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play 
important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevel-
opmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity 
disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behav-
ioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation 
or longer-term learning processes. Using a 5-armed bandit task (5-ABT) and a novel Δrepeat rate analysis method 
that considers individual baseline choice tendencies, we investigated immediate trial-by-trial Win-Stay-Lose-Shift 
(WSLS) strategies and learning rates across multiple trials in KCNMA1 knockout (KCNMA1−/−) mice. Three key find-
ings emerged: (1) Unlike wildtype mice, which showed increased Δrepeat rates after rewards and decreased rates 
after losses, KCNMA1−/− mice exhibited impaired WSLS behavior, (2) KCNMA1−/− mice displayed shortened response 
intervals after unrewarded trials, and (3) despite these short-term behavioral impairments, their learning rates and task 
accuracy remained comparable to wildtype mice, with significantly shorter task completion times. These results sug-
gest that BK channel dysfunction primarily alters immediate behavioral responses to outcomes in the next trial rather 
than affecting long-term learning capabilities. These findings and our analytical method may help identify behavioral 
phenotypes in animal models of both BK channel-related and other neurodevelopmental disorders.
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Introduction
The large-conductance calcium- and voltage-activated 
potassium (BK) channels, encoded by the KCNMA1 
gene, play a crucial role in regulating neuronal excit-
ability through negative feedback mechanisms. These 
channels are located in both pre- and post-synaptic com-
partments, where they respond to membrane depolariza-
tion and increases in intracellular calcium by generating 
large outward potassium currents [24]. At the presynap-
tic terminal, BK channels limit calcium influx and neu-
rotransmitter release by promoting rapid repolarization. 
Postsynaptically, they contribute to spike repolarization 
and afterhyperpolarization, thereby controlling neuronal 
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firing patterns and excitability. This precise regulation of 
neuronal activity by BK channels is essential for normal 
brain function, and its disruption through mutations in 
KCNMA1 has been linked to various neurological and 
psychiatric conditions, including motor deficits, autism 
spectrum disorder (ASD), attention deficit hyperactivity 
disorder (ADHD), and intellectual disability [3, 11, 31, 38, 
41, 43–45, 58, 74]. A substantial number of patients with 
KCNMA1 mutations, encompassing both loss-of-func-
tion and gain-of-function variants, have been reported to 
exhibit neurodevelopmental disorders, with a subset dis-
playing autistic features [37, 38, 41, 43, 44].

Notably, reduced BK channel expression has been 
implicated in other neurodevelopmental disorders that 
present with autistic features. In Fragile X syndrome 
(FXS), a disorder characterized by intellectual disability 
and autism-like behaviors, the fragile X mental retar-
dation protein (FMRP) in the central nervous system 
directly modulates BK channel function to regulate 
action potential duration [16, 23]. Indeed, BK channels 
have emerged as a promising therapeutic target for FXS, 
with channel openers showing behavioral improvements 
in animal models [26, 27, 33, 75]. Similarly, Williams-
Beuren syndrome, another neurodevelopmental disor-
der with autistic features, exhibits decreased KCNMA1 
expression [36]. Additionally, Angelman syndrome, 
which is characterized by hyperactivity, has been shown 
to involve degradation of BK channels [63].

Studies of KCNMA1 knockout mice have revealed 
complex behavioral phenotypes. While these mice exhibit 
moderate ataxia and motor deficits [39, 50, 68, 69] and 
reduced wheel running [40], their open field locomotor 
activity remains normal [68, 69]. Intriguingly, they show 
increased home cage activity and Y-maze exploration 
[40, 68, 69], along with marked alterations in acoustic 
response and habituation [68, 69]. In comparison, Fmr1 
knockout mice modeling FXS display hyperactivity, sen-
sory hyperexcitability, and impaired short-term spatial 
memory-deficits that can be ameliorated by BK channel 
openers [8, 27, 33, 75]. While these findings demonstrate 
the broad impact of BK channels on behavior, they do 
not fully characterize how BK channel dysfunction might 
relate to the impaired behavioral adaptation to changing 
environments—a hallmark feature of ASD and ADHD in 
human individuals.

Our recent study using the 3-choice serial reac-
tion time task (3-CSRTT), found that, while KCNMA1 
knockout did not severely impair task acquisition, it did 
increase premature responses when cue waiting times 
are randomized [4]. This suggests that BK channels play 
a critical role in modulating the timing control of actions, 
in response to unpredictable stimulus patterns. Addi-
tionally, perseverative responses (repeating the choice 

behavior even after receiving a reward) decreased sig-
nificantly in KCNMA1−/− mice compared to the wild 
type [4], indicating that their outcome recognition or in 
action-chain executions are altered. While the 3-CSRTT 
was used to examine the ability to adapt to tasks that 
require attention, further research using other tasks 
might clarify adaptation in highly uncertain environ-
ments and responses to outcomes.

Impaired behavioral flexibility, a characteristic of neu-
rodevelopmental disorders, is often studied using rever-
sal learning tasks [59, 66]. These tasks, which require 
remapping stimulus-action-outcome associations, are 
negatively affected by various neurological and mental 
disorders [51–53, 59]. Win-Stay-Lose-Shift (WSLS) strat-
egies are used to analyze trial-by-trial decisions in rever-
sal learning tasks [7, 12, 18, 19, 34, 35]. Win-Stay repeats 
rewarded choices, while Lose-Shift changes after no 
reward [25, 72]. Probabilistic reward-related outcomes 
increase task difficulty by the requiring integration of 
information from multiple trials. These designs, known 
as "probabilistic reversal learning” or "bandit tasks”, rep-
resent a reinforcement learning paradigm [13, 34, 47, 48, 
65].

Alterations in WSLS behaviors are common in neu-
rodevelopmental disorders [6, 62]. Individuals with ASD 
often exhibit reduced cognitive flexibility and difficulty 
in coping with uncertainty [55]. In probabilistic rever-
sal learning tasks, ASD patients tend to persist with the 
same choices, instead of adjusting responses accord-
ing to the outcomes [17, 21, 57]. However, few studies 
reported that adults with ASD exhibited extensive choice 
switching and a lack of Win-Stay, during repeated expe-
riential tasks [73] and probabilistic learning tasks [62]. 
This pattern is also characteristic of ADHD, where task 
adaptation is hindered by a tendency to switch choices 
regardless of the outcome [6].

Alterations in the temporal aspects of behavior, such 
as post-error slowing (where reaction time is prolonged 
after an unrewarded trial), are also often reported in neu-
rodevelopmental disorders. For instance, children with 
ADHD show shortened post-error slowing in challenging 
tasks, which is considered to indicate reduced error rec-
ognition [5].

The k-armed bandit task (k-ABT, k = number of 
choices) has been a valuable tool to investigate these 
behavioral characteristics in animal models, as it allows 
to examine several quantitative behavioral indicators, 
such as accuracy, behavioral flexibility, WSLS strategies, 
and temporal response characteristics in uncertain envi-
ronments [13, 30, 34, 59]. While previous studies using 
the 2-ABT (k = 2) have revealed abnormalities in mouse 
models of neurodevelopmental disorders [1, 2, 56], the 
potential role of BK channels in these behaviors has 
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not been explored using this paradigm. Therefore, we 
hypothesized that examining the WSLS strategies and 
temporal response characteristics of KCNMA1−/− mice 
in probabilistic learning tasks may reveal some kind of 
abnormalities or indication of these phenotypes. This 
study is expected to contribute to a deeper understanding 
of the behavioral characteristics of neurodevelopmental 
disorders originating from KCNMA1 mutations. Addi-
tionally, it may potentially be useful to classify subtypes 
of clinical symptoms, thereby enhancing our ability to 
identify and assess these neurodevelopmental disorders.

This study uses the 5-ABT, as described by Ohta et al. 
[48], to explore the behavioral responses of KCNMA1−/− 
mice to unexpected events. In this task, the mice are 
required to nose-poke into one of five holes, each asso-
ciated with a predefined probability of delivering food, 
thereby forcing the mice to learn from binary outcomes—
reward or no reward. This experimental setup allows the 
quantitative evaluation of WSLS behaviors observed in 
subsequent trials. In particular, we propose a method to 
calculate the difference between the repeat probability 
and the baseline probability of selecting the same choice 
in WSLS analysis, based on our previous work [48], 
which was considered useful to detect behavioral differ-
ences in WSLS strategy. By reversing the reward prob-
abilities, behavioral flexibility can also be assessed. While 
the 2-ABT has been successfully used in many studies 
[56, 61, 65], its design inherently limits shifting choices 
to a single alternative option, making it difficult to dis-
tinguish between learned alternation behavior and true 
choice flexibility. In contrast, the 5-ABT allows the ani-
mals to choose among four remaining options, enabling 
a broader evaluation of choice variation characteristics 
with reduced influence of simple alternation tendencies. 
The positive and negative learning rates and explora-
tion tendency indexes can also be calculated by fitting a 
Q-learning model to the behavioral data. This provides 
insights into the long-term learning efficacy and choice 
policy [48, 49].

This study addresses three key aspects: (1) the nature 
of WSLS behavior in KCNMA1−/− mice, (2) their per-
formance in a reversal learning task, and (3) the tem-
poral characteristics of their responses. Through this 
comprehensive approach, we aim to elucidate the role 
of BK channels on the immediate behavioral adaptation 
and temporal aspects of operant learning, which carries 
implications for the understanding of KCNMA1-related 
neurodevelopmental disorders.

Materials and methods
Animals
The KCNMA1 knockout strain was originally pro-
vided by Dr. Andrea L. Meredith at Department of 

Physiology, University of Maryland School of Medicine 
[39]. KCNMA1+/− mutant mice were backcrossed with 
C57BL/6 J mice for more than 10 generations and main-
tained at National Defense Medical College. Male BK 
channel-deficient mice (KCNMA1−/−, n = 16) and their 
male wild-type (KCNMA1+/+, WT) littermates (n = 16) 
were used for the behavioral experiments. Genotyping 
was conducted at 2–3  weeks of age using primers: (F) 
ATA GCC TGA AGA ACG AGA TCAGC; (R) CCT CAA 
GAA GGG GAC TCT AAAC for detecting KCNMA1−/− 
and (F) TTC ATC ATC TTG CTC TGG CGG ACG; (R) CCA 
TAG TCA CCA ATA GCC C for WT. After genotyping, 
mice were housed in groups of 2 or 3 per cage, with each 
cage containing both WT and KCNMA1−/− littermates. 
Animals were maintained in a temperature-controlled 
room (22–25 °C) with a 12-h light/dark cycle. Mice were 
tested in the 5-ABT from 11 to 28 weeks of age, and were 
food-restricted for the 24  h hours preceding the test. 
Average group weights were as follows: WT, 27.6 ± 1.6 g 
(mean ± SD) at baseline and 24.7 ± 1.9  g (89.5% of base-
line) after food restriction; KCNMA1−/−, 22.3 ± 2.2  g 
at baseline and 19.6 ± 2.1  g (87.9%) post-restriction. 
Throughout the experiment, mice could obtain food 
reward pellets (Dustless Precision Pellets, 20  mg, Bio-
Serve, Frenchtown, NJ, USA) by performing the 5-ABT.

Apparatus
The 5-ABT was conducted individually in an operant 
chamber measuring 18.8 × 23.0 × 17.5  cm (MED-NP9M-
B1, Med Associates Inc., VT, USA). This chamber fea-
tured a curved rear panel fitted with a horizontal array of 
nine round holes (diameter: 1.2 cm), each equipped with 
an infrared photocell beam sensor for nose-poke detec-
tion and an LED light. From the nine holes, five were used 
for the test and four were covered with plastic plates for 
the duration of the task. The front panel included a food 
magazine outfitted with an infrared sensor and an LED 
light. An acrylic nest box measuring 13.6 × 20.8 × 11.5 cm 
(SN-798; AS ONE Corp., Japan) was connected to the 
operant box by a 3-cm diameter passage linking the two 
box walls. This setup allows the continuous monitoring 
of the mice’s choices in response to changes in reward 
probabilities, across several days [28, 48, 54]. Water was 
freely available from a bottle mounted on the nest box.

Experimental procedures
The experiment comprised two stages, training and test-
ing, as previously described by Ohta et al. [48]. Initially, 
during the training stage, the process was divided into 
four progressive phases (i.e., Phase 0 to Phase 3). In Phase 
0, magazine training, mice were trained to nose-poke the 
magazine to receive a pellet, with the phase ending after 
50 pellets were dispensed. In Phase 1, mice were allowed 
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to nose-poke any of five available holes to receive a pel-
let, and this phase also concluded after 50 pellets. Phase 
2 began with the first nose-poke to the magazine (task 
call), and the mice received a pellet with every nose-
poke, ending once 25 pellets were dispensed. In Phase 3, 
the reward probability at each of the five holes was set to 
70%, and this phase was completed once another 25 pel-
lets were delivered.

After completing all training phases, mice performed 
the testing stage, which involved three distinct tasks: 
ALL, BIT and REV (Reversal). In the ALL task, each hole 
had a 30% chance of receiving a pellet; in the BIT task, 
only the third hole offered a 50% chance of a pellet, with 
all other holes having zero probability; and in the REV 
task, every hole except the third offered a 30% chance of 
receiving a pellet. Each task continued until 151 pellets 
were collected. If mice failed to collect at least 75 pel-
lets within 24 h, they were manually fed 75 pellets. The 
allotted time from task call to nose-poke was 15  s, and 
failures to act within this window were recorded as time-
outs. The inter-trial interval (ITI) was consistently main-
tained at 4 s.

All mice successfully progressed through the training 
phases and completed the experimental protocol, with 
no exclusions necessary due to training failures or incom-
plete task performance.

Indexes
The outcomes measured in the study were as follows: 
Accuracy, which corresponded to the number of times 
a mouse selected the correct hole (i.e., the option with a 
non-zero reward probability), divided by the number of 
selection attempts for each task (BIT, REV). Timeout, 
which corresponded to the number of trials in which a 
mouse failed to nose-poke a hole within the 15-s time 
limit following a task call. Repeat rate, which repre-
sented the rate at which a mouse chose the same hole 
after obtaining (repeat rate after Win) or not obtain-
ing (repeat rate after Lose) a reward, across all subtasks. 
Δrepeat rate, which represented the rate of change in the 
repeat rate after win (Δrepeat rate after Win) or repeat 
rate after lose (Δrepeat rate after Lose) across all sub-
tasks. Reaction time, which corresponded to the median 
time elapsed between a task call after a rewarded (i.e., 
reaction time after Win) or an unrewarded (i.e., reaction 
time after Lose) trial, and a nose-poke. Reward latency, 
which corresponded to the median time elapsed from 
the correct nose-poke to the magazine nose-poke. Task 
call latency after Lose, which indicated the median time 
taken between an unrewarded nose-poke and the start 
of a new task with a magazine nose-poke. Inter-response 
interval (IRI), which corresponded to the median time 
elapsed between a rewarded (i.e., IRI after Win) or an 

unrewarded (i.e., IRI after Lose) nose-poke, and the next 
nose-poke. The IRI was calculated across the trials of 
each subtask. Entropy, was calculated based on the prob-
ability distribution of nose-pokes for each hole i for the 
first 300 trials of each task, using the definition by Shan-
non [60]: H = −�pilog2pi.

Q‑learning‑based analysis
Behavioral data were analyzed in the assumption that 
each mouse continuously attributed an action value to 
each hole, as previously described [13, 34, 48]. Action 
values were determined according to the Differential 
Learning Rate Q-learning model (DLR-Q) [9, 14, 29, 48], 
which can be summarized as follows:

Let A be the set actions, where A = {1, 2, 3, 4, 5} , with 
each number corresponding to choosing a specific hole. 
On each trial t , where an action a ∈ A was selected and 
an outcome r ∈ {0,1} was obtained, the action value Qt of 
choosing action a was calculated/updated as:

where α+ and α− are free parameters that control the 
magnitude of value updates based on the presence or 
absence of reward. They are referred to as the positive 
and negative learning rates, respectively. The probabil-
ity of selecting action a on trial t was predicted using the 
soft-max policy function:

where β is a free parameter called the inverse tempera-
ture, which governs the exploration–exploitation trade-
off [64]. These three free parameters ( α+,α−and β ) were 
estimated using the importance sampling method [29].

Statistical analysis
Duration was compared between both groups across 
all seven phases (training phases 0–3 and test phases 
ALL, BIT, and REV) using a two-way repeated meas-
ures ANOVA, with Sidak’s post-hoc test for multiple 
comparisons. For other measures, comparisons were 
made as follows: Accuracy was compared between 
both groups and two tasks (BIT, REV) using a two-
way repeated measures ANOVA with Sidak’s post-hoc 
test. Entropy, timeout, IRIs after Win and Lose, reward 
latency, task call latency after Lose, and reaction times 
after Win and Lose were compared between both 
groups across three test tasks (ALL, BIT, REV) using a 
two-way repeated ANOVA with Sidak’s test for post-
hoc multiple comparisons. Repeat rates after Win and 
Lose, Δrepeat rates after Win and Lose, positive and 

Qt+1(a) = Qt(a)+

{

α+(r − Qt(a)) if r = 1

α−(r − Qt(a)) if r = 0

P(a) =
exp(Qt(a)β)

∑

b∈Aexp(Qt(b)β)
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negative learning rates and inverse temperature were 
analysed using the two-tailed t-test with Welch’s cor-
rection. All statistical analysis were performed with 
GraphPad Prism 10 (GraphPad Software, USA).

Results
We investigated the reinforcement learning abilities of 
WT and KCNMA1−/− mice using the 5-ABT (Fig.  1). 
Figure  2A, B show choice rate changes of individual 
representative mice (one WT, and another KCNMA1−/− 
mouse, respectively) for the five-hole options in the sub-
tasks ALL, BIT, and REV. In BIT, hole 3 had a 50% reward 
probability while others were 0%; both WT (Fig. 2A) and 
KCNMA1−/− (Fig.  2B) mice gradually increased their 
selection of the hole 3. In REV, all holes except hole 3 
had 30% reward probability, and both genotypes corre-
spondingly decreased their selection of hole 3. The aver-
age choice rates for each group are presented separately 
for BIT (Fig. 2C, D) and REV (Fig. 2E, F), aligned to the 
start of each subtask to account for individual differences 
in task completion times. Both groups successfully iden-
tified the correct hole choice in BIT and its reversal in 
REV.

No significant group differences were found for accu-
racy in the BIT and REV tasks (task × group: p = 0.274, 
F [1, 30] = 1.24; task: p < 0.001, F [1, 30] = 44.7; group: 
p = 0.638, F [1, 30] = 0.227; Fig.  3A). Analysis of choice 
entropy showed only a significant main effect of task 
(Fig.  3B; task × group: p = 0.142, F [2, 60] = 2.02; task: 
p < 0.001, F [1.741, 52.22] = 9.99; group: p = 0.440, F 
[1, 30] = 0.612), indicating that all mice altered their 

food magazine

1 2 3 54

ITI

4s

magazine
nose poke

cue

<15s

hole
nose poke

reward or no reward

reward probability (%)

1 2 3 4 5

ALL 30 30 30 30 30

BIT 0 0 50 0 0

REV 30 30 0 30 30nest box

Fig. 1 The five-armed bandit task (5-ABT). A nose-poke 
into the magazine initiated a trial (task-call), after which the mouse 
was required to nose-poke into one of the five holes within 15 s. Each 
hole was associated with a preset probability of food pellet delivery. 
The experiment consisted of three consecutive tasks—ALL, BIT (only 
one choice yields reward), and REV (reverse)—each featuring distinct 
reward probabilities for each hole. Each task ended after 151 food 
pellets had been dispensed

Fig. 2 5-ABT responses of WT and KCNMA1−/− mice. A and B A representative choice history of WT and KCNMA1−/− mice in subtasks ALL, BIT 
and REV. Blue, green, orange, magenta, and yellow lines represent selection rates for holes 1, 2, 3, 4, and 5, respectively, plotted as 20-step moving 
averages of choice ratios. Vertical dotted lines indicate task switching. C and D Group average of 20-step moving averages of hole selection for each 
mouse in the subtask BIT. Since mice completed BIT in different numbers of trials, averages are shown for the first 500 steps. E and F Group average 
in REV. The horizontal, blue, dotted lines indicate a 50% choice ratio
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exploration patterns across different task phases, regard-
less of genotype. A significant interaction between task 
and genotype was found in the duration to complete 
all task phases, including training phases 0–3 and the 
three test phases (Fig.  3C; task × group: p < 0.001, F [6, 
180] = 5.58; task: p < 0.001, F [3.52, 106] = 149; group: 
p = 0.377, F [1, 30] = 0.80). Post-hoc analyses did not 
show significant difference in each task phase (Phase 0: 
WT 2.36 h vs KCNMA1−/− 2.96 h, p = 0.998; Phase 1: 3.49 
vs 7.38, p = 0.085; Phase 2: 2.51 vs 3.01, p = 0.996; Phase 
3: 5.91 vs 13.0, p = 0.225; ALL: 46.4 vs 36.2, p = 0.284; 
BIT: 35.1 vs 26.5, p = 0.131; REV: 32.7 vs 30.4, p = 0.976). 
The groups did not differ significantly in the number of 
timeouts (Fig. 3D; task × group: p = 0.108, F [2, 60] = 2.31; 
task: p < 0.001, F [1.477, 44.32] = 28.9; group: p = 0.075, 
F [1, 30] = 3.39; WT: mean = 179.2; KCNMA1−/−: 
mean = 119.6).

We examined group differences in the Win-Stay-Lose-
Shift (WSLS) strategy. We calculated the probability of 
both a rewarded (Fig. 4A, Win-Stay) and an unrewarded 
(Fig. 4D, Lose-Shift) choice being re-selected after n tri-
als (repeat rate). Our previous research showed that, after 
a rewarded trial, the probability of selecting the same 
option was higher only for the immediately subsequent 

trial [48]. Based on this, we used the mean probability 
of the same-option selection from the 6th to the 10th 
trial, following either Win or Lose as a baseline. We 
then established the Δrepeat ratio by computing the dif-
ference between this baseline and the repetition rate in 
the immediately subsequent trial for each individual 
mouse (Fig. 4B, E). The Δrepeat ratio after Win differed 
significantly between groups (p < 0.001, t [27.18] = 4.51; 
Fig.  4B), with an average of 0.0490 ± 0.034 (SD) for WT 
mice and 0.0020 ± 0.024 for KCNMA1−/− mice. Similarly, 
a significant difference was found for Δrepeat ratio after 
Lose (p < 0.001, t [28.05] = 5.65; Fig. 4E), with an average 
of -0.050 ± 0.025 for WT mice and -0.0050 ± 0.019 for 
KCNMA1−/− mice. For comparison with previous studies 
using other ASD mouse models [1, 56], the repeat rates 
for the trial that followed a rewarded and an unrewarded 
trial, were also calculated and compared between groups 
(Fig. 4C, F). In contrast to our findings using the Δrepeat 
rates analysis, conventional repeat rate calculations 
showed that KCNMA1−/− mice had significantly higher 
repeat rates after Lose (p = 0.047, t [27.19] = 2.08) but not 
after Win (p = 0.053, t [29.91] = 2.02).

To explore the temporal characteristics of the behavior 
that followed the outcome of each choice, we evaluated 
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Fig. 3 Behavioral characteristics exhibited in the 5-ABT. A Accuracy, the ratio of correct choices in BIT and REV. B Choice entropy. C Duration, time 
required to complete each task. D Number of timeout trials per task. No significant differences were found between groups
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the inter-response interval (IRI), which measured the 
time elapsed between two-hole choices. No significant 
difference was found between groups for IRI after a Win 
(Fig.  5A; task × group: p = 0.796, F [2, 60] = 0.229; task: 
p < 0.011, F [1.188, 35.63] = 6.63; group: p = 0.056, F [1, 
30] = 3.96; WT: mean = 62.8; KCNMA1−/−: mean = 46.2). 
However, the groups differed significantly in the IRI after 
a Lose (Fig. 5B; task × group: p = 0.505, F [2, 60] = 0.691; 
task: p < 0.001, F [1.346, 40.39] = 22.0; group: p = 0.002, 
F [1, 30] = 11.4; WT: mean = 20.0; KCNMA1−/−: 
mean = 14.5). These findings suggest a temporal response 
alteration, specific to trials in which no reward is 
obtained, which prompts a detailed breakdown of the IRI 
components.

We measured the time from the rewarded hole nose-
poke to the magazine nose-poke to obtain a reward, 
known as reward latency, and the time from the hole 
nose-poke to the magazine nose-poke to task call when 
no reward was given. No significant difference was 
found in the reward latency of the two groups (Fig. 5C; 

task × group: p = 0.214, F [2, 60] = 1.58; task: p < 0.001, F 
[1.856, 55.67] = 18.6; group: p = 0.258, F [1, 30] = 1.33; 
WT: mean = 2.28  s; KCNMA1−/−: mean = 2.12  s). How-
ever, the groups differed significantly on the latency to 
a new task call following a Lose (Fig.  5D; task × group: 
p = 0.127, F [2, 60] = 2.14; task: p < 0.001, F [1.481, 
4.44] = 23.3; group: p = 0.005, F [1, 30] = 9.46; WT: 
mean = 12.8  s; KCNMA1−/−: mean = 9.1  s). Regarding 
the reaction time after initiating the task, no significant 
difference was found between the groups in the trial 
that followed a Win (Fig.  5E; task × group: p = 0.216, 
F [2, 60] = 1.58; task: p < 0.001, F [1.960, 58.79] = 21.8; 
group: p = 0.875, F [1, 30] = 0.0251; WT: mean = 6.79  s; 
KCNMA1−/−: mean = 6.69  s), while the groups differed 
significantly in the trial that followed a Lose (Fig.  5F; 
task × group: p = 0.190, F [2, 60] = 1.71; task: p < 0.001, F 
[1.435, 43.04] = 59.1; group: p = 0.018, F [1, 30] = 6.22; 
WT: mean = 5.50 s; KCNMA1−/−: mean = 4.63 s).

Taken together, our results indicate that KCNMA1 
knockout leads to altered choices and temporal control 
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of behavior, on a scale from seconds to tens of seconds 
for the next trial. However, since the overall learning of 
the task was still achieved (Fig.  2 and 3A), we further 
investigated long-term reinforcement learning capa-
bilities across multiple trials using Q-learning model-
based analysis. We found no significant differences 
between the groups in both positive (Fig. 6A; p = 0.779, 
t [27.14] = 0.284) and negative learning rates (Fig.  6B; 
p = 0.223, t [28.00] = 1.25). Additionally, no signifi-
cant differences were found for inverse temperature, 

a parameter related to exploratory behavior (Fig.  6C; 
p = 0.932, t [25.88] = 0.0867).

Discussion
This study demonstrates three key characteristics of BK 
channel dysfunction of mice, in the context of the 5-ABT: 
(1) it abolishes the WSLS strategy, (2) it shortens the time 
to retry after an unrewarded trial, and (3) despite these 
short-term behavioral impairments, their learning rates 
and task accuracy remained comparable to wild type 
mice.
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Widely used analyses of WSLS behavior in other stud-
ies have investigated the probability of repeating the 
same choice in the trial that follows a Win or a Lose out-
come [56, 61, 65]. In the present study, using the same 
method, we initially hypothesized that, similar to other 
ASD models such as Fmr1-KO and BTBR mice [1, 56], 
KCNMA1−/− mice would increase Lose-Shift behavior 
(Fig. 4F). However, acknowledging the possibility of indi-
vidual variations in the baseline probability of repeating 
the same choice, we refined the analysis method, based 
on our previous work [48]. In this refined approach, we 
calculated the difference between an individual’s aver-
age repeat probability and the repeat rate immediately 
after a Win/Lose outcome. Intriguingly, this new analy-
sis revealed that KCNMA1−/− mice actually showed a 
decrease in both Lose-Shift (Fig. 4E) and Win-Stay behav-
iors (Fig. 4B), thus contradicting the previous conclusions 
that KCNMA1−/− mice increased Lose-Shift behav-
ior (Fig.  4F) and did not change in Win-Stay behavior 
(Fig. 4C). By pooling up to 10 subsequent trials, instead 
of considering only the first trial after a Win or a Lose, 
and assuming the number of trials after which the effects 
of Win or Lose would disappear, the expected value could 
be calculated based on the average repeat rate of each 
individual mouse. This, in turn, allowed to calculate the 
Δrepeat rate. This analytical method can potentially be 
useful to identify short-term behavioral characteristics 
in probabilistic learning task, both for animal models of 
various neurodevelopmental disorders and for patients 
with those disorders.

Human studies use multi-choice tasks like Iowa Gam-
bling Task [46], while animal studies often use two-choice 
paradigms (2-ABT). In the case of 2-ABT, after animals 
are trained in alternating behavior, the probability pat-
terns are changed or reversed. However, this makes it 
difficult to distinguish between WSLS strategies and the 
learned alternating behavior. To enhance translational 
studies between human neurodevelopmental/mental 
disorders and animal models, it is crucial to investigate 
using Δrepeat rate how the number of available choices 
influences the sensitivity in detecting WSLS strategy 
differences.

Despite the significant loss of WSLS strategy observed 
in KCNMA1−/− mice, only partial changes were found 
in their long-term learning ability. Since the positive 
and negative learning rates did not differ significantly 
between groups (Fig.  6A, B), it is concluded that their 
ability to update the action value of each choice over the 
long term was not significantly impaired. This indicates 
the lack of a direct correlation between the short-term 
WSLS strategy and the update of the long-term action 
value, which suggests that they function through inde-
pendent mechanisms.

In terms of reversal learning, KCNMA1−/− mice did 
not show severely impaired behavioral flexibility, as evi-
denced by similar accuracy to WT mice in both BIT and 
REV tasks (Fig. 3A). The inverse temperature parameter 
indicates the balance between exploration and exploita-
tion: lower values suggest a stronger tendency to explore 
regardless of past outcomes, while higher values indicate 
a preference for choices that previously yielded rewards 
[15, 20, 65]. The absence of significant differences in 
inverse temperature and choice entropy between groups 
(Figs. 6C, 3B) suggests that their overall exploration ten-
dencies were similar.

The KCNMA1−/− mice exhibit a unique form of hyper-
activity that becomes apparent under specific circum-
stances. While these knockout mice demonstrated 
comparable task performance metrics (accuracy, dura-
tion, and timeouts) to WT mice (Fig.  3A, C, D), they 
showed distinctive temporal patterns in their inter-
trial behavior. Analysis of inter-response intervals (IRI) 
revealed that KCNMA1−/− mice had shorter retry times 
following unrewarded trials (Fig. 5B). They also demon-
strated reduced task call times after non-reward (Fig. 5D) 
and decreased reaction times, specifically after Lose 
(Fig.  5F). These findings point to a distinctive tendency 
in KCNMA1−/− mice to rapidly engage in subsequent 
actions, particularly following negative outcomes. This 
behavioral pattern is further corroborated by Y-maze 
experiments, where KCNMA1−/− mice exhibited twice 
the number of explorations compared to WT mice, 
while maintaining similar alternation rates [68, 69]. This 
suggests a propensity for quick exploration of alterna-
tive paths without perseveration. Additionally, in the 
3-CSRTT, KCNMA1−/− mice showed significantly fewer 
perseverative responses [4], contrasting with other ASD 
model mice. The hyperactivity observed in KCNMA1−/− 
mice is characterized by increased actions per unit time, 
especially after unsuccessful experiences. This behav-
ior is distinct from simple repetitive actions and is not 
marked by a fixation on specific choices, as evidenced by 
their diminished Win-Stay strategy (Fig.  4B). Instead, it 
reflects a rapid transition to new actions, particularly in 
response to negative outcomes, similar to the hyperactiv-
ity observed after stress induction in KCNMA1−/− mice 
[50]. However, while these behavioral changes might 
appear to reflect cognitive alterations, they could poten-
tially arise from more fundamental sensory processing 
deficits. Given that BK channels play crucial roles in both 
locomotor function and auditory and visual systems [26, 
67–69] abnormalities in sensory processing might sec-
ondarily lead to these apparent changes in trial-to-trial 
behavior.

Our findings have significant implications for the 
understanding of various neurodevelopmental disorders. 
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Recent studies in humans using probabilistic reversal 
learning, have revealed distinct behavioral patterns in 
patients with different neurodevelopmental issues. For 
example, ASD patients aged 8–44 years old have exhib-
ited Lose-Shift errors following reversal of task probabil-
ity conditions, maintaining the choice for the previously 
learned option, which lead to deteriorated performance 
[21]. Additionally, adolescents with ASD were found 
to have significantly lower Win-Stay probabilities and 
positive learning rates compared to typically developing 
subjects [17]. Adults with ASD have also been reported 
to show lower Win-Stay probabilities, while maintaining 
intact Lose-Shift probabilities [62]. Fragile X syndrome 
(FXS) patients exhibiting ASD symptoms presented 
slower task learning and significant deficits in Lose-Shift 
learning [56]. In contrast, young adults with ADHD 
tended to switch choices after both Win and Lose out-
comes and displayed a decreased negative learning rate 
[6]. While the exact relationship between BK channels 
and these disorders remains to be clarified [22, 37, 38, 74] 
it is noteworthy that both KCNMA1−/− mice and patients 
with BK channel-related disorders [38] share at least one 
common behavioral/phenotypic feature: altered WSLS 
strategy.

Post-error slowing is typically observed in probabilis-
tic learning tasks where reaction time increases after a 
Lose, and differs among distinct cohorts. Notably, chil-
dren with ADHD exhibit shorter post-error slowing 
in more challenging tasks [5], which indicates dimin-
ished error recognition. This feature may share common 
underlying factors with the decreased reaction time after 
Lose and the absence of the WSLS strategy observed in 
KCNMA1−/− mice.

The impaired WSLS strategy observed in KCNMA1−/− 
mice indicates a significant dysfunction in the neural 
circuits responsible for rapid behavioral adaptation to 
positive and negative outcomes. Previous animal and 
human studies have identified the specific brain regions 
associated with WSLS behavior [42, 61], Van Den [70, 
71]. However, since our study was based on a non-selec-
tive, whole-body KCNMA1−/− model, it was not possible 
to pinpoint the exact brain regions involved, which high-
lights important directions for future research. Given 
that BK channels play a critical role in suppressing neu-
ronal hyperexcitability [24], the loss of this regulatory 
mechanism in KCNMA1−/− mice may lead to excessive 
neural activity, ultimately resulting in impaired behav-
ioral adjustments following outcome recognition. Sub-
sequent studies are needed to identify specific brain 
regions and neuronal cell types that contribute for a non-
zero Δrepeat ratio, which quantifies WSLS behavior.

A limitation of this study is the inclusion of only male 
mice, as sex differences in WSLS strategies have been 

reported [10]. Our decision to focus on male mice was 
driven by two key considerations. First, we aimed to 
establish and validate our novel Δrepeat ratio analy-
sis method as a sensitive tool for detecting subtle or 
uncharacterized behavioral alterations in various types of 
knockout mouse models. Second, we sought to minimize 
potential confounding variables related to food restric-
tion required for operant conditioning. Female BK KO 
mice are known to show different metabolic responses 
compared to males, including distinct patterns of body 
composition and weight regulation [32], suggesting they 
may be more sensitive to food restriction protocols. 
While this approach allowed us to demonstrate the util-
ity of our analytical method and identify specific behav-
ioral phenotypes, we acknowledge that extending this 
investigation to include female mice is crucial for future 
research. Such studies would not only provide a more 
comprehensive understanding of BK channel function 
across sexes but would also better align with the current 
emphasis on sex-inclusive research in pre-clinical studies 
for neurodevelopmental disorders.

Conclusion
This study demonstrates that KCNMA1−/− mice pre-
sent lower Win-Stay-Lose-Shift (WSLS) behavior and 
shorter retry time after unrewarded trials than WT mice, 
indicating that BK channels are crucial for short-term 
behavioral adjustment and temporal control. This study 
therefore shows a strong correlation between KCNMA1 
gene mutations and specific indications or symptoms of 
neurodevelopmental disorders.
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