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Background: This study investigates the prognostic value of M0 macrophage-related genes (M0MRGs) in esophageal cancer (ESCA) 
and identifies novel targets for immunotherapy.
Methods: Differentially expressed genes (DEGs) were screened with ESCA-related expression profile data (GSE5364 and 
GSE17351) from the GEO database, followed by GO and KEGG pathway enrichment analyses. Then, immune cell infiltration was 
examined with the CIBERSORT algorithm and multiplex fluorescence-based immunohistochemistry (MP-IHC). ESCA-related gene 
expression data and relevant clinical information were retrieved from TCGA. M0MRGs were identified with TCGA-ESCA based on 
Spearman’s correlation coefficient. Additionally, LASSO and Cox regression analyses were conducted to further construct an 
M0MRG-related prognostic model. ATP6V0D2 and MMP12 expression in ESCA was analyzed with tissue microarray. Finally, the 
half maximal inhibitory concentrations (IC50) of commonly used chemotherapeutics in TCGA-ESCA were calculated with the 
“oncoPredict” R package.
Conclusion: In summary, ATP6V0D2 and MMP12 were crucial components in a prognostic risk model for ESCA and were 
associated with poor prognoses, implicating the involvement of elevated M0 macrophages in disease progression and providing 
potential therapeutic targets and strategies for ESCA.
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Introduction
Esophageal cancer (ESCA) is one of the most prevalent malignancies worldwide, ranking seventh among the most 
common cancers worldwide in 2020, with approximately 604,000 new cases and 544,000 deaths annually.1 Based on 
histological classification, ESCA is primarily allocated into two subtypes: esophageal squamous cell carcinoma (ESCC) 
and esophageal adenocarcinoma (EAC).2 ESCA has the highest incidence rate in Asia and Africa, where ESCC is the 
predominant subtype.3 Notably, more than half of the global ESCC cases occur in China.4,5 ESCC is tightly associated 
with various risk factors such as smoking, alcohol consumption, and other environmental exposures. In contrast, EAC is 
more prevalent in Western countries and is frequently linked to conditions such as gastroesophageal reflux disease, 
obesity, and Barrett’s esophagus.3 These two subtypes have significant differences in their epidemiological profiles, 
pathogenic mechanisms, and clinical presentations, which consequently affect their respective treatment strategies and 
prognostic outcomes. ESCA typically presents with non-specific clinical symptoms at an early stage, making it difficult 
to detect. As a result, most patients are diagnosed only when they progress to a locally advanced stage or have distant 
metastasis.6,7 Therefore, there is an urgent need to identify specific and sensitive biomarkers for the treatment and 
prognostic prediction of ESCA.
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With the gradual deepening of domestic and international research on tumor immunology, immunotherapy, as a new 
treatment method, has experienced tremendous changes in cancer treatment and has become a hot spot in tumor 
research.8 Macrophages are essential components of the tumor microenvironment (TME) and the strategies targeting 
macrophages for cancer immunotherapy have attracted much attention.9,10 The anti-tumor potential of macrophages may 
provide novel therapeutic approaches. Macrophages possess versatile functions depending on their activation states, 
including resting (M0) and polarizing (M1 and M2) states.11 Conventionally, it’s believed that both M1 and M2 
macrophages can originate from M0, a resting state without specific functions before polarization. However, a recent 
study has analyzed immunophenotyping of glioma-associated macrophages with matched blood monocytes, healthy 
donor monocytes, normal brain microglia, nonpolarized M0 macrophages, and polarized M1 and M2 macrophages; this 
study demonstrates that glioblastoma-associated myeloid cells sustain a continuum state and have characteristics of both 
M1- and M2-like phenotypes while resembling M0 macrophages and that the differentiation of M0 macrophages, rather 
than M1 or M2 macrophages, is associated with high-grade tumors and can predict the poor prognosis of glioma.12 The 
study illuminates the tumorigenic role of M0 macrophages in gliomas, unveiling a novel perspective. Furthermore, Chen 
et al have observed markedly higher levels of M0 macrophages in hepatocellular carcinoma tissues than in normal liver 
tissues, and based on these findings, they have subsequently developed a prognostic model.13 However, the cellular 
infiltration and molecular features of M0 macrophages and their correlation with clinicopathological characteristics of 
ESCA need further investigation.

In the present study, we aimed to explore an M0 macrophage-related biomarker for predicting the prognosis of ESCA. 
After Cox and LASSO regression analyses, a risk-score model was generated based on M0 macrophage-related genes 
(M0MRGs), matrix metallopeptidase 12 (MMP12), and ATP6V0D2. MMP12, also called macrophage metalloelastase, 
has first been found in human alveolar macrophages.14 MMP12 is a member of the family of zinc-dependent proteases 
that are responsible for the degradation of extracellular matrix components.15 A prior study has reported that MMP12 
upregulation is significantly correlated with tumor grading and staging, nodal metastasis, and poor survival of ESCC, 
demonstrating that MMP-12 is an independent prognostic factor for ESCC.16 Lysosomal hydrolases require an acidic 
environment, which is facilitated by the proton-pumping activity of vacuolar-type ATPases (V-ATPases). V-ATPases is 
a complex consisting of a cytosolic V1 domain (8 subunits required for ATP hydrolysis) and an integral membrane V0 
domain (6 subunits in yeast, with an Ac45 protein in complex eukaryotes for the proton-pumping activity), among which 
ATP6V0D2/subunit d2, ATP6V1D/subunit D, and ATP6V1F collectively constitute the central stalk of V-ATPases. This 
complex rotates with the relevant Atp6V0C/proteolipid ring and favors the transmembrane transport of protons via ATP 
hydrolysis in the V1 domain.17 ATP6V0D/subunit D has two isoforms, ATP6V0D1 and ATP6V0D2, which share 82% 
sequence identity.18 Of note, ATP6V0D2 functions as an oncogene in esophagus cancer and is associated with epithelial- 
mesenchymal transition.19 However, little is known about the impact of ATP6V0D2 and MMP12 on tumor grading and 
staging and anti-tumor immunity.

Hence, our study comprehensively delved into the correlation between ATP6V0D2 and MMP12 expressions and the 
malignancy level of ESCA using ESCA-related tissue microarray. Additionally, the immune microenvironment of ESCA 
was observed and macrophage infiltration in both high- and low-risk groups of ESCA patients was assessed using 
multiplex fluorescence-based immunohistochemistry (MP-IHC). This study may offer innovative targets for the immu-
notherapy and prognosis of ESCA.

Methods and Materials
Data Access and Differentially Expressed Gene (DEG) Screening
In this study, the transcriptomic, somatic mutation, and clinical data of the ESCA cohort were obtained from The Cancer 
Genome Atlas (TCGA) data portal (https://cancergenome.nih.gov/) and Gene Expression Omnibus (GEO, http://www. 
ncbi.nlm.nih.gov/geo/) datasets (GSE5364 and GSE17351). The study applied specific inclusion criteria, including 
patients histologically diagnosed with ESCA and had both gene expression data and clinical information. Cases lacking 
clinical data or having insufficient follow-up time were excluded, as detailed in Table S1. The gene expression profiles of 
ESCA patients in the GSE5364 and GSE17351 datasets were analyzed. A logarithmic (base 2) transformation was 
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applied to normalize the dataset. The R package “limma” was used for differential analysis [P < 0.05 and log2 (fold 
change) > 2].20 Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
analyses21–23 were performed in R software with the package “clusterProfiler”.24,25 The somatic mutation data were 
visualized using the “maftools” R package.26 M0MRGs were identified based on Spearman’s rank correlation coefficient 
(P < 0.001, |R| > 0.5).

Immune Cell Infiltration Analysis
CIBERSORT27 was utilized to quantify the relative proportions of 22 types of immune cells in each sample (GSE5364 
and GSE17351) and analyze immune cell infiltration in samples of high-risk and low-risk groups (from TCGA-ESCA). 
The correlation of risk scores with immune infiltration and immune checkpoint was analyzed using Spearman’s 
correlation coefficient. M0MRG-associated biological functions in ESCA were identified using GO analysis.

Establishment of an M0MRG Signature
LASSO and Cox regression analyses were conducted to further construct the prognostic model of M0MRGs in the 
TCGA-ESCA dataset. The risk score was calculated with M0MRG expression and coefficient values as follows: 
coefficient 1 × M0MRG 1 expression + coefficient 2 × M0MRG 2 expression. ESCA patients were assigned to the 
low- and high-risk groups based on the mean risk score (0.734). Survival analysis was performed using the “survival” 
R package. The independent prognostic factors were determined through univariate and multivariate Cox regression 
analyses. The nomogram and calibration curves were formulated with the “rms” R package.28 The nomogram integrated 
the risk score with key clinical features (such as gender, tumor stage, and other significant covariates). Each variable was 
assigned a point value proportional to its predictive weight, derived from the model coefficients. These points were 
summed to calculate the total score for each patient, which was then mapped to specific survival probabilities on the 
nomogram. Calibration curves were generated to evaluate the agreement between the predicted survival probabilities and 
the actual observed outcomes, thereby ensuring the reliability of the nomogram’s predictions.

Gene-Set Enrichment Analysis (GSEA)
GSEA was performed using GSEA v4.1.1 software to interpret M0MRG-related pathways in the whole TCGA-ESCA 
cohort. The gene sets of “c2.cp.kegg.symbols.gmt” were selected for GSEA. A P-value < 0.05 (adjusted by false 
discovery rate) indicated a statistically significant difference.

Evaluation of Potential Model Significance in Clinical Treatment
A sensitivity analysis of chemotherapeutics was performed to identify the differences between the high- and low-risk 
groups to evaluate potential clinical heterogeneity. The half maximal inhibitory concentrations (IC50) of commonly used 
chemotherapeutics were calculated using the TCGA-ESCA project dataset with the “oncoPredict” R package.29

Immunohistochemistry and Tissue-Microarray Analysis
A total of 96 primary ESCA tissue samples and 6 adjacent normal esophageal tissue samples were collected from patients 
undergoing surgery at the West China Hospital of Sichuan University. After surgical removal, the samples were 
immediately frozen in liquid nitrogen. This study was conducted following the Declaration of Helsinki (as revised in 
2013) and was approved by the Ethics Committee on Biomedical Research of West China Hospital of Sichuan University 
(No. 2019–318). Informed consent was obtained from all patients or their guardians.

All tissues were assembled into a tissue microarray. Immunostaining for ATP6V0D2 and MMP12 was performed 
following the standard procedures. ATP6V0D2 antibody (ab236375; Abcam) and MMP12 (ab137444, Abcam) anti-
bodies were used. The percentage of positively stained cells was scored as 0 (cells < 5%), 1 (5% to 25%), 2 (26% to 
50%), 3 (51% to 75%), and 4 (76% to 100%). The positive staining intensity was scored as 0 (no staining), 1 (weak 
staining), 2 (moderate staining), and 3 (strong staining). The expression levels of ATP6V0D2 and MMP12 were assessed 
to determine their immunoreactive scores (IRSs) using the algorithm IRS = Si × Pi (where Si and Pi represent the 
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intensity and percentage of positively stained cells, respectively). Samples were allocated into four groups based on their 
IRS: 0, negative (-); 1–4, weakly positive ( +); 5–8, positive (+ +); and 9–12, strongly positive (+ + +).

MP-IHC
Eight markers were used for MP-IHC staining to detect pan-macrophages (CD68, ab213363), M1 macrophages (CD80, 
ab315832), M2 macrophages (CD163, ab182422), CD8+ T cells (CD8, ab237709), regulatory T (Treg) cells (Foxp3, 
ab20034), α-smooth muscle actin (α-SMA, ab7817), tumor cells (PanCK, ZM-0069), and 4′,6-diamidino-2-phenylindole 
(DAPI). The seven-color multiplex immunofluorescence was conducted using an Opal 7-Color Manual IHC kit 
(PerkinElmer, NEL811001KT) as per the manufacturer’s protocol and imaged by a PerkinElmer Vectra 3.0 (Perkin 
Elmer, Hopkinton, MA) multispectral microscope.

Statistical Analysis
All statistical analyses were carried out with the R package v4.1.1. A P-value of less than 0.05 was considered 
a statistically significant difference.

Results
DEG Expression Profiles in ESCA
DEG analysis was performed to identify genes with altered expression between ESCA and normal tissues. Two 
independent datasets, GSE5364 and GSE17351, were analyzed using the “limma” and “heatmap” R packages to generate 
heatmaps of the top 20 DEGs (Figure 1A and B). After intersecting the two datasets, a total of 200 DEGs were identified, 
of which 113 were upregulated and 87 were downregulated in ESCA tissues compared to normal tissues (Figure 1C, 
Table S2). These DEGs were subsequently subjected to KEGG pathway enrichment analysis using the “clusterProfiler” 
R package. The results indicated significant associations with key pathways involved in ESCA development, including 
pathways related to cancer progression, immune modulation, and metabolism (Figure 1D). These findings underscored 
the complex molecular mechanisms driving ESCA and suggested potential therapeutic targets. However, further 
investigations are needed to fully understand the interaction networks and biological roles of these genes in the 
ESCA TME.

Analysis of Immune Cell Infiltration
To investigate the immune landscape of ESCA, we utilized the “CIBERSORT” R package to quantify the infiltration 
levels of 22 immune cell types in both ESCA and normal tissue samples. The analysis revealed that plasma cells, M0 
macrophages, and M1 macrophages were significantly enriched in ESCA tissues compared to adjacent normal tissues. 
Conversely, resting memory CD4+ T cells, monocytes, resting mast cells and resting dendritic cells were found to be 
more abundant in normal tissues, indicating a potential immune imbalance in the TME. Notably, M0 macrophages 
exhibited the highest enrichment in ESCA, highlighting their potential role in modulating the immune response in ESCA 
(Figure 2A). This observation suggested that M0 macrophages may play a crucial role in the tumor immune response, 
and further analysis of M0MRGs could provide valuable insights into ESCA prognosis. To investigate the relationship 
between M0 macrophage infiltration and gene expression, we performed a co-expression analysis using the TCGA-ESCA 
dataset (P < 0.001, |R| > 0.5). This analysis identified 39 M0MRGs that were significantly correlated with M0 
macrophage infiltration (Figure 2B and C, Table S3). This result was validated through MP-IHC, which confirmed the 
localization of macrophages predominantly in the tumor stroma, near the tumor core, but not within the core region itself 
(Figure 2D and E). These findings suggested that macrophages play an important role in ESCA immunotherapy, and 
further studies on M0 macrophage biology may provide new therapeutic strategies for targeting the immune micro-
environment in ESCA.
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Construction of a Prognostic Signature of M0MRGs
M0MRGs have been previously implicated in the prognosis of other cancers, such as hepatocellular carcinoma, but their 
role in ESCA has not been extensively explored.13 Our analysis of GO and KEGG enrichment pathways showed that 
M0MRGs were involved in various biological processes, including immune modulation and tumor progression, which 
are crucial for ESCA pathogenesis (Figure 3A and B). In this study, a prognostic model was constructed based on 
M0MRGs using Cox regression and Lasso regression methods. After univariate Cox analysis on the 39 identified 
M0MRGs, two genes were filtered, ATP6V0D2 and MMP12, as prognostic markers (Figure 3C, Table S4). The risk 
score was calculated based on the expression levels of ATP6V0D2 and MMP12, and patients were classified into the 
high-risk and low-risk groups based on the median risk score (0.734) (Table S5). High-risk patients exhibited 
a significantly poorer prognosis, with a three-year survival rate of only 36.8%, indicating that high-risk patients had 
shorter overall survival than low-risk patients, who had a three-year survival rate of 43.7% (Figure 3D). Protein 
expression levels of ATP6V0D2 and MMP12 were further validated using tissue microarray analysis. The results 

Figure 1 DEG expression analysis. (A) Heatmap analysis of the top 20 DEGs based on the GSE5364 dataset (Normal = 13, Tumor = 16). (B) Heatmap analysis of the top 20 
differential genes based on the GSE17351 dataset (Normal = 5, Tumor = 5). (C) Venn diagram of the DEGs in GSE5364 and GSE17351 datasets. (D) KEGG pathway 
enrichment analysis.
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demonstrated that ATP6V0D2 and MMP12 expression levels were significantly higher in ESCA tissues compared to 
adjacent normal tissues, reinforcing their potential as prognostic biomarkers (Figure 3E and F, Figure S1). In summary, 
the risk score based on ATP6V0D2 and MMP12 expression levels was found to be an independent predictor of poor 
clinical outcomes in ESCA patients.

Independent Prognostic Analysis of Risk Scores and Clinical Parameters
To assess the independent prognostic value of the risk score, we performed both univariate and multivariate Cox 
regression analyses. It was found that both the tumor stage and the risk score were independent prognostic factors for 
ESCA outcomes (Figure 4A and B). A prognostic nomogram was developed by integrating tumor stage and the risk 
score, enabling the prediction of the 1-, 3-, and 5-year survival for ESCA patients (Figure 4C and D, Table S6). 
Furthermore, the prognostic impact of the risk score was explored within subgroups of patients stratified by tumor stage. 
The analysis results showed that among patients with low-grade (stage I–II) ESCA, those in the high-risk group had 
a worse prognosis compared to those in the low-risk group. Similarly, in patients with high-grade (stage III–IV) ESCA, 
patients in the high-risk group also exhibited poorer outcomes (Figure 4E). The time-dependent AUC analyses further 
clarified the predictive ability of the risk score and ESCA staging for patient prognosis, demonstrating a modest 
improvement in prognostic ability after incorporating the risk score (Figure S2). This result was also observed across 
different genders, indicating that the prognostic value of the risk score was consistent regardless of sex (Figure 4F). 

Figure 2 M0MRG analyses. (A) Immune cell infiltration analysis in GSE5364 and GSE17351 datasets by CIBERSORT. (B) Co-expression network diagram of M0MRGs. (C) 
Heatmap of M0MRGs expression. (D and E) MP-IHC staining for normal esophageal tissues (D) vs ESCA tissues (E). Pan-macrophages: CD68; M1 macrophages cells: CD80; 
α-smooth muscle actin: α-SMA; tumor: CK.
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Figure 3 Construction of a prognostic signature based on M0MRGs. (A) GO analysis and (B) KEGG pathway enrichment analysis of M0MRGs. (C) Multivariate prognostic 
analyses of M0MRGs. (D) Stratified survival analysis according to risk grouping. (E and F) Detection of ATP6V0D2 expression using tissue microarray and immunohisto-
chemical staining. N: Normal (n = 6), I: WHO I (n = 4), II: WHO II (n = 32), III: WHO III (n = 54). IV: WHO IV (n = 7). ATP6V0D2 expression in different grades of ESCA 
tissues was detected, with normal tissues as the control. * P <  0.05 by one-way analysis of variance with Tukey’s test.

OncoTargets and Therapy 2024:17                                                                                                 https://doi.org/10.2147/OTT.S483536                                                                                                                                                                                                                       

DovePress                                                                                                                       
1215

Dovepress                                                                                                                                                              Zuo et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


These findings underscored the ability of the risk score to stratify patients within the same pathological stage, effectively 
identifying individuals at higher risk of poor prognosis.

Furthermore, we further investigated the impact of the risk score on progression-free survival (PFS) in patients with ESCA. 
PFS was defined as the time interval from the date of initial diagnosis to the date of documented disease progression or death from 
any cause. Patients who were alive without disease progression at the last follow-up were censored at that point. By considering 
all deaths as PFS events, we provided a comprehensive assessment of patient outcomes. The analysis results showed that high- 
risk ESCA patients had significantly shorter PFS compared to low-risk patients (Figure 4G). Moreover, a PFS-based nomogram 
that incorporated both clinicopathological variables and the risk score was constructed to predict the 1-, 3-, and 5-year PFS for 
ESCA patients (Figure 4H and I). These findings indicated that the pathological stage and risk score based on M0MRGs were 
independent prognostic factors. While the pathological stage is a well-established marker for prognosis, the M0MRG risk score 
may provide additional advantages by offering molecular-level insights into tumor behaviors. Specifically, the M0MRG risk 
score can stratify patients within the same pathological stage and identify individuals with a high potential risk of poor prognosis 
despite having a low-stage disease. This can enhance the precision of risk assessment and guide personalized treatment strategies.

Figure 4 Independent prognostic analysis of risk scores and clinical parameters. (A) Univariate independent prognostic analysis of ESCA. (B) Multivariate independent 
prognostic analysis of ESCA. (C) Calibration curves for the overall survival. (D) Nomogram for predicting overall survival (predicting 1-year, 3-year, and 5-year). Red line: 
Represents the prediction trajectory corresponding to the specific variable values of an individual patient. Blue box: Represents the score range corresponding to the 
variable values, indicating the contribution of different variable values to the model. Probability density curve: Represents the distribution trend of variable values in the 
sample data, with peaks indicating the common value range of the variable. (E and F) Survival prediction by clinical parameters and risk scores. (G) PFS curves of patients 
with ESCA. (H) Calibration curves for the PFS nomogram. (I) Nomogram for predicting PFS (predicting 1-year, 3-year, and 5-year). 
Abbreviations: T, Tumor; M, Metastasis; N, Node.
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GSEA
GSEA was performed to further explore the molecular pathways associated with the high- and low-risk groups. The low- 
risk group showed significant enrichment in pathways related to glycerolipid metabolism, oxidative phosphorylation, and 
histidine metabolism, which are indicative of a more metabolically active and less aggressive tumor phenotype 
(Figure 5A). In contrast, the high-risk group demonstrated significant enrichment in pathways related to chemokine 
signaling, cytokine-receptor interactions, and focal adhesion, which are associated with tumor progression, immune 
evasion, and metastasis (Figure 5B). These findings suggested that distinct treatment strategies may be required for 
patients with different risk profiles, highlighting the potential for pathway-specific interventions.

Immune Cell Infiltration and Tumor Mutation Burden (TMB) Between Different Risk 
Groups
Immune cell infiltration analysis was conducted to deeply understand the differences in immune cell infiltration between 
the low-risk and high-risk groups. The results revealed a significant enrichment of M0 macrophages in the high-risk 
group and an obvious enrichment of plasma cells, CD8+ T cells, and monocytes in the low-risk group (Figure 6A). The 
risk score demonstrated a positive correlation with M0 macrophages and memory B cells but a negative correlation with 
Treg cells, CD8 T cells, and plasma cells. Additionally, ATP6V0D2 was positively associated with M0 macrophages and 
negatively associated with Treg cells, CD8+ T cells, and plasma cells. MMP12 shared a positive association with M0 
macrophages, activated mast cells, neutrophils, and memory B cells and a negative association with naïve B cells, Treg 
cells, CD8+ T cells, and plasma cells (Figure 6B). Additionally, based on ATP6V0D2 and MMP12 expression levels, 
tissue samples were acquired from ESCA patients in the high-risk and low-risk groups, followed by MP-IHC. Our 
findings revealed that patients in the low-risk group showed significantly elevated infiltration of CD8+ T and Treg cells 
relative to those in the high-risk group (Figure 6C and D). These correlations suggested that the high-risk group may be 
characterized by a more immunosuppressive microenvironment, which could contribute to worse outcomes.

Furthermore, a correlation analysis was conducted to determine the relationship between risk scores and immune 
checkpoint molecules. The findings manifested that immune checkpoint molecules CTLA4, PDCD1, CD274, IDO1, 
HAVCR2, and PDCD1LG2 were upregulated in high-risk subjects versus low-risk individuals (Figure 6E). Additionally, 
the number of mutated genes in each tumor sample was calculated to determine the TMB; it was found that the high- and 
low-risk groups demonstrated substantial differences in TMB (Figure 6F and G). These findings may provide further 
support for the clinical relevance of the risk score in predicting immune response and therapeutic sensitivity.

Figure 5 GSEA. (A and B) GSEA of the low-risk and high-risk groups.
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Finally, we explored the potential for drug sensitivity prediction based on the risk score using the “oncoPredict” 
R package. The findings unraveled that an elevated risk score was linked to diminished IC50 values for various drugs, 
including AMG-319 (Figure 7A), AZ960 (Figure 7B), AZD1332 (Figure 7C), Entospletinib (Figure 7D), Dasatinib 
(Figure 7E), and PLX-4720 (Figure 7F). This highlights the potential of the M0MRG-based risk score not only as 
a prognostic marker but also as a tool for guiding personalized treatment strategies.

Figure 6 Immune cell infiltration and TMB between the high- and low-risk groups. (A) Immune cell infiltration in high- and low-risk groups. (B) Correlation analysis 
between risk scores and immune cells. (C and D) MP-IHC staining for infiltration of immune cells. (E) Correlation analysis between risk scores and immune checkpoints. 
(F and G) TMB analysis in high- and low-risk groups. CD8+ T cells: CD8; regulatory T cells: Foxp3.
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Discussion
In ESCA, M0 macrophages as the predominant subset of immune cells exhibit diverse phenotypes and functions.9,30 

Previous studies have provided evidence for the involvement of M0 macrophages in gliomas.12 In ESCA, the polarization 
of M0 macrophages towards M2 macrophages may promote immune evasion and tumor growth.31 However, due to the 
lack of specific markers, the analysis of the functions of M0 macrophages in the TME is hindered, resulting in their role 
in ESCA not being fully elucidated. This study aimed to investigate the potential contributions of M0MRGs in the TME 
and identify prognostic markers for ESCA.

Notably, our results indicated that elevated M0MRGs (ATP6V0D2 and MMP12) were associated with unfavorable 
prognoses. ESCA tissue microarray and multivariate analysis results confirmed that upregulated ATP6V0D2 and MMP12 
in tumor tissues were reliable independent prognostic markers for ESCA patients. A recent study has demonstrated that 
ATP6V0D2, as a pivotal element in the macrophage-specific autophagosome-lysosome fusion mechanism, is crucial in 
preserving organelle homeostasis within macrophages, therefore impeding inflammation and mitigating bacterial 
infections.32 Moreover, another study has exhibited that lactate diminishes ATP6V0D2 expression in tumor-associated 
macrophages to boost HIF-2α-mediated tumor progression.33 Nevertheless, whether ATP6V0D2 affects the function of 
M0 macrophages in ESCA needs to be further explored. Li et al have analyzed MMP expression patterns in ESCC 
patients and found that MMP12 emerges as a significant predictor for the 5-year survival of ESCC patients and is 
positively correlated with advanced clinical stages. The impacts of MMP12 extend to key tumor-associated pathways and 
are associated with the infiltration of immune cells, especially activated mast cells and M0 macrophages, whilst MMP12 
knockdown can effectively reduce ESCC cell proliferation, which collectively demonstrates that highly expressed 
MMP12 is a novel potential and valuable prognostic factor for ESCC.34 Based on the above studies, M0 macrophage 
aggregation, which was observed in our study, may lead to poor prognosis in tumor patients. Nonetheless, there is still 
a need to analyze the effect of M0MRGs on the function of M0 macrophages and to determine M0 macrophage-specific 
molecular markers with the use of ATP6V0D2 and MMP12 transgenic mice (knockout or overexpression) and single-cell 
sequencing techniques.

Figure 7 Drug sensitivity analysis by “oncoPredict”. (A–F) Drug sensitivity analysis in different risk groups based on risk scores.
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Through MP-IHC, the present study determined that although the overall number of macrophages in the vicinity of 
ESCA was elevated, M1 macrophage infiltration into the central region of the tumor was comparatively diminished, 
which suggested that there may be a potential issue pertaining to tumor cell evasion. Furthermore, patients with high 
ATP6V0D2 and MMP12 expressions showed substantially more CD8 T and Treg cells in the low-risk group than those in 
the high-risk group. CD8+ tumor-infiltrating lymphocytes play an essential role in tumor rejection by recognizing tumor 
antigens and directly killing transformed cells. Effector CD8+ T cells in TME can produce interleukin (IL)-2, IL-12, and 
interferon-gamma (IFN-γ), which increases the cytotoxic capacity of CD8+ T cells and facilitates targeted tumor cell 
killing. Elevated levels of cytotoxic CD8+ T cells in TME exert anti-tumor effects and can improve prognosis in all types 
of cancer,35 consistent with our findings that high-risk ESCA patients had low CD8+ T cell infiltration. However, our 
study also exhibited marked enrichment of Treg cells in the low-risk group, which is inconsistent with previous results 
that Treg cells are the principal barrier to initiating the immune effects of immunotherapy.36 These results fully validate 
that the heterogeneity of the tumor immune microenvironment is also a manifestation of the diverse responses of 
different patients to immunotherapy. Innovatively, our study constructed a risk prediction model based on M0MRGs to 
distinguish between high- and low-risk patients and screened out sensitive chemicals based on risk scores, thus providing 
a new complementary regimen for immunotherapy.

Undoubtedly, there are some limitations in the present study. Specifically, the present study exclusively identified 
ATP6V0D2 and MMP12 as prognostic indicators. However, the correlation of ATP6V0D2 and MMP12 with M0 
macrophages and the therapeutic effects of targeting ATP6V0D2 and MMP12 was not verified through in vivo and 
in vitro experiments. Second, the distribution of sample sizes across different tumor stages is unequal. In short, samples 
in stages I and IV were fewer than those in stages II and III. This imbalance reflects the clinical presentation of ESCA 
and the availability of surgical specimens but may limit the generalizability of our findings across all disease stages. 
Therefore, larger and more balanced cohorts are needed in the future to validate our results and to further explore the 
roles of ATP6V0D2 and MMP12 in early and late-stage ESCA. Our study partially elucidated the functions of M0 
macrophages, ATP6V0D2, and MMP12 in ESCA. By highlighting the potential significance of these factors, the present 
study may provide preliminary guidance for future research on the therapeutic potential of targeting M0 macrophages in 
ESCA management.

Conclusion
In conclusion, our results demonstrated the significance of ATP6V0D2 and MMP12 in the prognostic risk model for 
ESCA, linking the presence of ATP6V0D2 and MMP12 to unfavorable prognoses and unveiling a plausible involvement 
of increased M0 macrophages in ESCA progression. Additionally, our results also elucidated that high-risk scores were 
associated with diminished responsiveness to certain chemotherapeutics. Overall, this study may provide novel ther-
apeutic targets and innovative treatment strategies for ESCA management.

Data Availability Statement
In this study, the transcriptomic, somatic mutation, and clinical data of the ESCA cohort were obtained from TCGA data 
portal (https://cancergenome.nih.gov/) and GEO datasets (GSE5364 and GSE17351) (http://www.ncbi.nlm.nih.gov/geo/). 
All data were publicly available.

Acknowledgments
We would like to appreciate the sample donors and research teams for the TCGA and GEO cohort that provided data for 
this article.

Author Contributions
All authors made significant contributions to the work reported, whether in terms of conception, study design, execution, 
acquisition of data, analysis and interpretation, or in all these areas. All authors took part in drafting, revising, or 
critically reviewing the article and gave final approval of the version to be published. All authors have agreed on the 
journal to which the article is to be submitted and agreed to be responsible for all aspects of the work.

https://doi.org/10.2147/OTT.S483536                                                                                                                                                                                                                                  

DovePress                                                                                                                                                            

OncoTargets and Therapy 2024:17 1220

Zuo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://cancergenome.nih.gov/
http://www.ncbi.nlm.nih.gov/geo/
https://www.dovepress.com
https://www.dovepress.com


Funding
This study was supported by the Key Research Project of Sichuan Province (No.2023YFS0199), Chengdu Science and 
Technology Project (No.2022-YF05-01833-SN), and Sichuan Cadre Health Care Research Project (GBKT23020).

Disclosure
The authors declare no competing interests.

References
1. Sung H, Ferlay J, Siegel RL, et al.. global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 

185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi:10.3322/caac.21660
2. Arnold M, Soerjomataram I, Ferlay J, Forman D. Global incidence of oesophageal cancer by histological subtype in 2012. Gut. 2015;64 

(3):381–387. doi:10.1136/gutjnl-2014-308124
3. Then EO, Lopez M, Saleem S, et al.. Esophageal cancer: an updated surveillance epidemiology and end results database analysis. World J Oncol. 

2020;11(2):55–64. doi:10.14740/wjon1254
4. Xia C, Dong X, Li H, et al.. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J. 2022;135 

(5):584–590. doi:10.1097/CM9.0000000000002108
5. Chen R, Zheng S, Zhang S. Patterns and trends in esophageal cancer incidence and mortality in China: an analysis based on cancer registry data. 

J Natl Cancer Cent. 2023;3(1):21–27. doi:10.1016/j.jncc.2023.01.002
6. Hirano H, Kato K. Systemic treatment of advanced esophageal squamous cell carcinoma: chemotherapy, molecular-targeting therapy and 

immunotherapy. Jpn J Clin Oncol. 2019;49(5):412–420. doi:10.1093/jjco/hyz034
7. Lee S, Cohen DJ. Pharmacotherapy for metastatic esophageal cancer: where do we need to improve?. Expert Opin Pharmacother. 2019;20 

(3):357–366. doi:10.1080/14656566.2018.1551881
8. Miller JF, Sadelain M. The journey from discoveries in fundamental immunology to cancer immunotherapy. Cancer Cell. 2015;27(4):439–449. 

doi:10.1016/j.ccell.2015.03.007
9. DeNardo DG, Ruffell B. Macrophages as regulators of tumour immunity and immunotherapy. Nat Rev Immunol. 2019;19(6):369–382. doi:10.1038/ 

s41577-019-0127-6
10. Dinh HQ, Pan F, Wang G, et al. Integrated single-cell transcriptome analysis reveals heterogeneity of esophageal squamous cell carcinoma 

microenvironment. Nat Commun. 2021;12(1):7335. doi:10.1038/s41467-021-27599-5
11. Zhao YL, Tian PX, Han F, et al.. Comparison of the characteristics of macrophages derived from murine spleen, peritoneal cavity, and bone 

marrow. J Zhejiang Univ Sci B. 2017;18(12):1055–1063. doi:10.1631/jzus.B1700003
12. Gabrusiewicz K, Rodriguez B, Wei J, et al.. Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 2016;1 

(2). doi:10.1172/jci.insight.85841
13. Zhang Y, Zou J, Chen R. An M0 macrophage-related prognostic model for hepatocellular carcinoma. BMC Cancer. 2022;22(1):791. doi:10.1186/ 

s12885-022-09872-y
14. Shapiro SD, Kobayashi DK, Ley T. Cloning and characterization of a unique elastolytic metalloproteinase produced by human alveolar 

macrophages. J Biol Chem. 1993;268(32):23824–23829. doi:10.1016/S0021-9258(20)80459-1
15. Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem. 1999;274(31):21491–21494. doi:10.1074/jbc.274.31.21491
16. Han F, Zhang S, Zhang L, Hao Q. The overexpression and predictive significance of MMP-12 in esophageal squamous cell carcinoma. Pathol Res 

Pract. 2017;213(12):1519–1522. doi:10.1016/j.prp.2017.09.023
17. Cotter K, Stransky L, McGuire C, Forgac M. Recent insights into the structure, regulation, and function of the V-ATPases. Trends Biochem Sci. 

2015;40(10):611–622. doi:10.1016/j.tibs.2015.08.005
18. Nishi T, Kawasaki-Nishi S, Forgac M. Expression and function of the mouse V-ATPase d subunit isoforms. J Biol Chem. 2003;278 

(47):46396–46402. doi:10.1074/jbc.M303924200
19. Qi M, Liu DM, Ji W, Wang HL. ATP6V0D2, a subunit associated with proton transport, serves an oncogenic role in esophagus cancer and is 

correlated with epithelial-mesenchymal transition. Esophagus. 2020;17(4):456–467. doi:10.1007/s10388-020-00735-8
20. Ritchie ME, Phipson B, Wu D, et al.. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids 

Res. 2015;43(7):e47. doi:10.1093/nar/gkv007
21. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27 

(1):29–34. doi:10.1093/nar/27.1.29
22. Kanehisa M, Furumichi M, Sato Y, Kawashima M, Ishiguro-Watanabe M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic 

Acids Res. 2023;51(D1):D587–d592. doi:10.1093/nar/gkac963
23. Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–1951. doi:10.1002/pro.3715
24. Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2(3):100141. doi:10.1016/j. 

xinn.2021.100141
25. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics. 2012;16(5):284–287. 

doi:10.1089/omi.2011.0118
26. Mayakonda A, Lin DC, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome 

Res. 2018;28(11):1747–1756. doi:10.1101/gr.239244.118
27. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling Tumor Infiltrating Immune Cells with CIBERSORT. Methods Mol Biol. 

2018;1711:243–259. doi:10.1007/978-1-4939-7493-1_12
28. Ma X, Zhang L, Huang D, et al. Quantitative radiomic biomarkers for discrimination between neuromyelitis optica spectrum disorder and multiple 

sclerosis. J Magn Reson Imaging. 2019;49(4):1113–1121. doi:10.1002/jmri.26287

OncoTargets and Therapy 2024:17                                                                                                 https://doi.org/10.2147/OTT.S483536                                                                                                                                                                                                                       

DovePress                                                                                                                       
1221

Dovepress                                                                                                                                                              Zuo et al

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.3322/caac.21660
https://doi.org/10.1136/gutjnl-2014-308124
https://doi.org/10.14740/wjon1254
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.1016/j.jncc.2023.01.002
https://doi.org/10.1093/jjco/hyz034
https://doi.org/10.1080/14656566.2018.1551881
https://doi.org/10.1016/j.ccell.2015.03.007
https://doi.org/10.1038/s41577-019-0127-6
https://doi.org/10.1038/s41577-019-0127-6
https://doi.org/10.1038/s41467-021-27599-5
https://doi.org/10.1631/jzus.B1700003
https://doi.org/10.1172/jci.insight.85841
https://doi.org/10.1186/s12885-022-09872-y
https://doi.org/10.1186/s12885-022-09872-y
https://doi.org/10.1016/S0021-9258(20)80459-1
https://doi.org/10.1074/jbc.274.31.21491
https://doi.org/10.1016/j.prp.2017.09.023
https://doi.org/10.1016/j.tibs.2015.08.005
https://doi.org/10.1074/jbc.M303924200
https://doi.org/10.1007/s10388-020-00735-8
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1093/nar/27.1.29
https://doi.org/10.1093/nar/gkac963
https://doi.org/10.1002/pro.3715
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1007/978-1-4939-7493-1_12
https://doi.org/10.1002/jmri.26287
https://www.dovepress.com
https://www.dovepress.com


29. Maeser D, Gruener RF, S R. Huang: oncoPredict: an R package for predicting in vivo or cancer patient drug response and biomarkers from cell line 
screening data. Brief Bioinform. 2021;22(6). doi:10.1093/bib/bbab260

30. Gao J, Liang Y, Wang L. Shaping polarization of tumor-associated macrophages in cancer immunotherapy. Front Immunol. 2022;13:888713. 
doi:10.3389/fimmu.2022.888713

31. Schiffmann LM, Plum PS, Fuchs HF, Babic B, Bruns CJ, Schmidt T. Tumor microenvironment of esophageal cancer. Cancers. 2021;13(18):4678. 
doi:10.3390/cancers13184678

32. Xia Y, Liu N, Xie X, et al. The macrophage-specific V-ATPase subunit ATP6V0D2 restricts inflammasome activation and bacterial infection by 
facilitating autophagosome-lysosome fusion. Autophagy. 2019;15(6):960–975. doi:10.1080/15548627.2019.1569916

33. Liu N, Luo J, Kuang D, et al. Lactate inhibits ATP6V0d2 expression in tumor-associated macrophages to promote HIF-2α-mediated tumor 
progression. J Clin Invest. 2019;129(2):631–646. doi:10.1172/jci123027

34. Mao JT, Lu Q, Jing PY, et al.. Comprehensive analysis of prognostic value and immune infiltration of MMP12 in esophageal squamous cell 
carcinoma. J Oncol. 2022;2022:4097428. doi:10.1155/2022/4097428

35. van der Leun AM, Thommen DS, Schumacher TN. CD8(+) T cell states in human cancer: insights from single-cell analysis. Nat Rev Cancer. 
2020;20(4):218–232. doi:10.1038/s41568-019-0235-4

36. Tay C, Tanaka A, Sakaguchi S. Tumor-infiltrating regulatory T cells as targets of cancer immunotherapy. Cancer Cell. 2023;41(3):450–465. 
doi:10.1016/j.ccell.2023.02.014

OncoTargets and Therapy                                                                                                                Dovepress 

Publish your work in this journal 
OncoTargets and Therapy is an international, peer-reviewed, open access journal focusing on the pathological basis of all cancers, potential 
targets for therapy and treatment protocols employed to improve the management of cancer patients. The journal also focuses on the impact of 
management programs and new therapeutic agents and protocols on patient perspectives such as quality of life, adherence and satisfaction. The 
manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit 
http://www.dovepress.com/testimonials.php to read real quotes from published authors.  

Submit your manuscript here: https://www.dovepress.com/oncotargets-and-therapy-journal

DovePress                                                                                                                          OncoTargets and Therapy 2024:17 1222

Zuo et al                                                                                                                                                              Dovepress

Powered by TCPDF (www.tcpdf.org)

https://doi.org/10.1093/bib/bbab260
https://doi.org/10.3389/fimmu.2022.888713
https://doi.org/10.3390/cancers13184678
https://doi.org/10.1080/15548627.2019.1569916
https://doi.org/10.1172/jci123027
https://doi.org/10.1155/2022/4097428
https://doi.org/10.1038/s41568-019-0235-4
https://doi.org/10.1016/j.ccell.2023.02.014
https://www.dovepress.com
http://www.dovepress.com/testimonials.php
https://www.facebook.com/DoveMedicalPress/
https://twitter.com/dovepress
https://www.linkedin.com/company/dove-medical-press
https://www.youtube.com/user/dovepress
https://www.dovepress.com
https://www.dovepress.com

	Introduction
	Methods and Materials
	Data Access and Differentially Expressed Gene (DEG) Screening
	Immune Cell Infiltration Analysis
	Establishment of an M0MRG Signature
	Gene-Set Enrichment Analysis (GSEA)
	Evaluation of Potential Model Significance in Clinical Treatment
	Immunohistochemistry and Tissue-Microarray Analysis
	MP-IHC
	Statistical Analysis

	Results
	DEG Expression Profiles in ESCA
	Analysis of Immune Cell Infiltration
	Construction of aPrognostic Signature of M0MRGs
	Independent Prognostic Analysis of Risk Scores and Clinical Parameters
	GSEA
	Immune Cell Infiltration and Tumor Mutation Burden (TMB) Between Different Risk Groups

	Discussion
	Conclusion
	Data Availability Statement
	Acknowledgments
	Author Contributions
	Funding
	Disclosure

