
Research article

Robust integer optimization of turning parameters for cutting tool 
sustainability and machining economics in discrete production

Chunhui Chung *, Agus Andrianto , Po-Chieh Wang
Department of Mechanical Engineering, National Cheng Kung University, Tainan, 701, Taiwan

A R T I C L E  I N F O

Keywords:
Machining economics
Robust optimization
Integer optimization
Cutting tool sustainability
Tool wear distribution
Turning

A B S T R A C T

Machining optimization is crucial for determining cutting parameters that enhance machining 
economics. However, few studies address the significant variation in cutting tool wear and the 
complexities of discrete production, often leading to lower cutting parameters to prevent oper-
ational failures. Moreover, variations in part geometries lead to differing contact conditions be-
tween the cutting tool and workpiece, as well as variations in material removal. This study 
employs a robust optimization approach tailored for discrete workpieces to experimentally 
determine optimal cutting parameters that balance machining efficiency with cutting tool sus-
tainability. An objective function was proposed to integrate tool wear probability and the number 
of workpieces, with case studies demonstrating its critical role in enhancing efficiency while 
achieving a tool overuse probability below 2.1 %. Our experiments reveal that processing either 
too few or too many parts with a single insert can escalate costs due to extreme tool wear or 
decreased efficiency; notably, the optimal number of parts to be machined was found to be four, 
yielding an objective function value of 380.6 NTD, which is lower than 394.5 NTD for three parts 
and 405.4 NTD for five parts in the case study. This research underscores the necessity of 
considering tool wear distribution and discrete production in machining optimization for sus-
tainable manufacturing applications, providing valuable insights into the impact of cutting pa-
rameters and tool wear distribution on the costs for discrete production.

1. Introduction

Cutting tool wear has been studied for over a century [1]; however, it remains a highly variable phenomenon and poses challenges 
in determining the optimal replacement time and avoiding production losses. Most studies have focused on continuous machining 
processes, with less attention given to discrete production. In discrete production, the part geometry is determined by specific re-
quirements, and the cutting tool must last through the entire operation without significant wear or frequent replacement. Ideally, the 
tool should reach the end of its life only after completing the full operation or a specified number of operations, ensuring consistent 
cutting quality. As a result, the optimal cutting parameters vary based on different part designs and operations, an area that has been 
relatively underexplored. Metal cutting is influenced by various uncertainties, including the machine tool, clamping device, tooling, 
and the cutting process [2]. Experimental studies have shown that even in stable processes, cutting tool wear can have a standard 
deviation of up to 10 % of the mean value [3]. Therefore, cutting tools are often underused to prevent unacceptable surface quality, 
shock, and excessive vibration, which increases waste disposal and production costs [4]. However, the underutilization of cutting tools 
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carries the risk of reducing their lifespan and wasting their potential usage. For affordable product prices and cost-effective production, 
continuous innovation and development in machining processes are necessary. Although the technologies such as coated cutting tools, 
minimum quantity lubrication, and spray cooling have been investigated to improve the cutting efficiency and sustainability [5–10], 
the fine-tuning of cutting settings to manage tool wear effectively in the process is still crucial due to the use of diverse materials and 
intricate product design. A sustainable machining process for discrete production requires robust optimization that considers the 
variation in tool wear.

Selecting cutting parameters is a multifaceted process that depends on material removal rate, tool life, part quality, and associated 
machining costs. Good cutting parameters can reduce wasted operation time and cutting tools while maintaining the part quality. 
Therefore, optimization methods have been applied to find the optimum cutting parameters. Cakir and Gurarda evaluated the effect of 
constraints on the objective function using graphical representation, and the revised graph can be inspected for possible improvements 
[11]. To model multi-stage turning operations, Lee and Tarng proposed polynomial networks to learn the relationship between the 
cutting parameters and the performance [12]. Following that, the sequential quadratic programming approach was used to optimize 
the highest production rate or minimal production cost while maintaining surface roughness. Hippalgaonkar and Shin optimized the 
multi-pass turning parameters by considering probabilistic tool life model to minimize the production cost [13]. Dynamic objective 
particle swarm optimization (DOPSO) method was utilized in this research to minimize the cost function. Das et al. modeled the surface 
roughness of turned Al-based metal matrix composite by linear regression [14]. Jena et al. employed response surface method (RSM) to 
model and optimize the surface roughness of turning AISI 4030 steel with a coated ceramic tool [15]. With the development of artificial 
intelligent algorithms, researchers have modeled the machining process using these methods for the optimization of machining 
processes. Xu et al. introduced an adaptive neuro fuzzy inference system (ANFIS) to estimate tool wear, which was used to optimize the 
cutting parameters using vibration and communication particle swarm optimization (VCPSO) algorithm [16]. Kumar et al. used 
artificial intelligence to model the machining performance of dry turning of grade-5 titanium alloy, which outperformed the model 
developed by response surface method (RSM) [17].

With increasing concerns about manufacturing sustainability, the machining parameter optimization now considers not only cost 
and production rate but also energy consumption. Bagaber and Yusoff optimized the cutting parameters by accounting for both 
machining cost and energy consumption [18]. Two optimization methods, RSM and Non-Sorted Genetic Algorithm II (NSGA-II), were 
utilized and compared for this multi-objective optimization problem. The improvement with the cutting parameters obtained by NSGA 
II was more than 70 % of that obtained by RSM in their study. However, the tool wear under dry and wet cutting was modeled using the 
same coefficients. Rajemi et al. included not only the machining energy but also the energy footprint of tooling to establish a new 
optimization model [19]. The results showed that the energy footprint of tooling is a significant factor and cannot be ignored in 
sustainable manufacturing. He et al. balanced energy consumption, cutting force, and processing time using the multi-objective 
optimization of the cutting parameters [20]. The range of the cutting parameters for the trade-off among these three objectives can 
be obtained effectively using Pareto fronts. Zhang et al. optimized the parameters of peck deep-hole drilling with regard to energy 
saving using particle swarm optimization algorithm [21]. Li et al. proposed a multi-objective cutting parameter optimization model for 
multi-feature parts batch processing and solved it by multi-objective cuckoo search (MOCS) algorithm [22]. Jia et al. optimized CNC 
plane milling parameters by including transient processing energy such as spindle acceleration for the multi-objective optimization 
[23]. The optimization problem was solved by NSGA-II for better processing efficiency and less energy consumption.

Tool life is crucial for machining processes. Improper tool life management can lead to increased machine downtime and poor 
product quality [24], which might indirectly account for 30 % of the overall machining costs [25]. Underusing the cutting tool in-
creases the cost of cutting tools. On the other hand, overusing the cutting tool results in poor surface and excessive vibration on the 
machine [4,26]. The machining effectiveness and tool life are constrained by the high tool wear rate that increases with cutting speed 
and other factors. McParland et al. employed a Bayesian hierarchical Gaussian process model to predict the tool wear rate during the 
turning of medical-grade cobalt-chromium-molybdenum alloy, aiming to establish the relationship between tool life and cutting 
parameters [27]. This model outperformed the regression model in accurately predicting tool wear rates under the given cutting 
parameters. Ráczkövi conducted a hard turning experiment using PCBN cutting inserts to machine tempered steel [28]. The results 
revealed that tool life was inversely proportional to the cubic equation of cutting speed. Sahoo et al. developed a flank wear model 
using RSM for turning harden steel by TiN coated mixed ceramic inserts [29]. Most studies integrated tool life equations into the 
optimization issues to determine the average cost of the cutting tool and the tool changing time to achieve the best turning process 
parameters [11,30]. Sardiñas et al. simultaneously improved tool life and operating time by genetic algorithm-based multi-objective 
optimization [31]. Taylor’s extended law was incorporated in the objective function to calculate the tool life, by which the tool usage 
time in the objective function could be estimated.

Although the optimization of cutting parameters and tool wear has been studied for decades, several issues remain under-discussed. 
First, most of the cutting processes belong to discrete production; however, the experiments are often conducted continuously to 
establish the tool life equations. Secondly, tool wear varies even under the same cutting condition, making optimization with a 
deterministic tool wear equation potentially impractical. Finally, part geometry varies and is typically defined by customer re-
quirements, leading to differences in material removal and cutting length between parts. Additionally, cutting parameters such as 
cutting speed, feed rate, and depth of cut can fluctuate when machining curved surfaces. In such cases, the conventional tool life 
equations commonly used in research may not be applicable. In discrete production, deciding when to replace cutting tools is chal-
lenging, as both underuse and overuse result in inefficiencies. Chung et al. [3] conducted experimental research on optimizing turning 
parameters based on tool wear and workpiece geometry. The results showed that even the material removal was the same, the tool 
wear patterns would vary depending on the workpiece geometry. Consequently, the optimal turning parameters were different to 
complete the operations. However, the tool wear was evaluated using the average values in the objective function in the study. Due to 
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uncertainty, tool wear could deviate from the optimal solution, making it necessary to consider variance in tool wear for robust 
optimization. Additionally, the study assumed that one cutting insert would be used for only one operation, a restriction that is un-
necessary in the machining process and could increase manufacturing costs.

In this study, tool wear variation was incorporated into the objective function, and robust optimization of machining economics 
was developed. Discrete production was included in the optimization to prevent the overuse or underuse of cutting tools for industrial 
sustainability. By integrating statistical methods into the optimization process, the optimized cutting parameters can keep tool wear 
within the set threshold by the end of operations, thereby preventing overuse of the cutting tools. Two case studies were conducted. 
The simplified conjugate gradient descent approach was used to solve the optimization problem based on experimental data in each 
iteration [3,32]. The advantage of this optimization method is that parts can be completed for sale with progressively optimized 
cutting parameters, while advanced optimization methods such as genetic algorithms and particle swarm optimization require 
extensive testing if there is no deterministic equation or simulation method to provide data such as tool wear variation. The number of 
tests, which should be as small as possible for the efficiency of the optimization process but large enough to ensure the reliability of the 
tool wear data, was determined by the estimated difference in tool wear. At least three tests were conducted for each set of cutting 
parameters, with the number of tests increasing when tool wear approached the wear limit for more accurate tool wear distribution. 
The first case assumed that the cutting edge must be replaced after each operation, and that extreme cutting parameters would result in 
significant tool variation. The robust optimization helped limit the probability of tool overuse to 2 %, and the objective function was 
reduced by 27 %. The second case demonstrated discrete production, in which the optimized number of workpieces to be cut was four 
before the cutting tool replacement. A smaller number of workpieces would waste cutting tool life; however, more workpieces required 
lower cutting speed and feed to complete the operations, which reduced efficiency. The optimal cutting parameters for four parts 
resulted in an objective function value of 380.6 New Taiwan Dollars (NTD), lower than 394.5 NTD for cutting three parts and 405.4 
NTD for cutting five parts. Both cases improved machining efficiency and cutting tool usage compared to the machining parameters 
suggested by the cutting tool catalog.

The remainder of this paper is organized as follows: Section 2 details the formulation of machining optimization, including the 
objective function and optimization procedure. Section 3 describes the experimental setup. Section 4 presents the experimental results, 
followed by Section 5, which discusses these results in the context of the optimization process. Lastly, Section 6 summarizes the 
conclusions.

2. Formulation of machining optimization

2.1. Objective function

The stochastic tool wear condition was included in the objective function of machining economics in this study. In discrete pro-
duction, the cutting tool was replaced after a certain number of operations. When an overworn tool was used, surface quality could 
become unacceptable. As a result, the failed part could not be sold to cover costs or generate profit, and an extra cost was incurred. 
Additionally, an overworn tool might increase spindle load during machining and damage the machine. Therefore, the cost of over-
using the cutting tool is considered the lost sales of the last machined part. On the other hand, the cost of underusing the tool represents 
wasted cutting time, as higher cutting speeds and feed rates could be used. The formulation of the robust integer optimization problem 
is presented in this section.

The conventional total cost of machining one part is as follows [33]: 

Co ×To + Ct ×
TC

T
(1) 

where Co is the operating cost per unit time, Ct is the cutting tool cost, To is the total operating time, TC is the cutting time, and T is the 
tool life. The operating cost Co is the combination of labor cost Cl, depreciation cost Cd, and utility fee Cu per unit time, which is that 
Co = Cd + Cl + Cu. The total operating time, To, is defined as follows: 

To =TC +
TC

T
× TR + Tcs + Te + TL + Tp (2) 

where TR is the time of replacing the used cutting tool, Tcs is the tool changing time in the tool magazine, Te is the operating time for the 
tool magazine, TL is the presetting time, and Tp is the time for changing the parts. One cutting tool can be used in multiple operations, 
and T

TC 
represents the number of parts that can be machined by one cutting tool, which is denoted as N.

Another objective of this study is to examine the impact of tool underuse and overuse in discrete machining processes. The optimal 
tool life is determined by the tool wear criterion. Premature replacement of the tool is considered wasteful, as machining efficiency 
could have been improved by utilizing higher cutting parameters. Conversely, failing to replace the tool once it reaches its wear limit 
can result in significant damage to the workpiece and potential production failures. When machining multiple parts with one cutting 
insert, the last part is likely to be non-compliant if the tool is overused. In this study, the loss is assumed to be the sales price of the last 
machined part. Therefore, controlling tool wear is crucial in cutting operations. Tool wear is not a constant value, even under the same 
cutting parameters, so it is necessary to establish the tool wear distribution to calculate the probability of an overworn tool. This 
distribution can be estimated by calculating the probability density function using the average and standard deviation of tool wear 
data. The loss due to tool overuse is assumed as follows: 
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Ps × P(VB>VBlimit) (3) 

where Ps is the sales price of one product, which includes the profit and the manufacturing cost such as the workpiece, tooling, and 
operating costs. The tool flank wear is denoted as VB, and VBlimit is the limit. The term P(VB> VBlimit) represents the probability of 
overused tools after the operation, which is illustrated in Fig. 1. Although most of the tool wear is under the set limit, it is always 
possible to exceed the set limit and cause severe damage. Balancing machining efficiency with the percentage of overusing cutting tools 
is the key challenge in this study.

Including the loss from tool overuse, as shown in Eq. (3), into the machining process cost described in Eq. (1), the objective function 
that combines machining cost and the potential loss due to tool overuse is proposed as follows: 

f(X) = CoTo(v, f , d) +
Ct

N
+

(

Ps × P
(

VB > VBlimit

N

)

(4) 

where f(X) is the objective function, and X = (x1, x2,⋯) is a vector of variables. The symbol N represents number of parts to be 
machined by one insert and must be an integer. The sales loss is divided by the number of parts because the objective function rep-
resents the cost per part. This loss is assumed to be shared by the parts machined with the same insert. The machining parameters are 
the design variables in this study, where v is the cutting speed, f is the feed rate, and d is the depth of cut. The machining time TC and 
the tool flank wear VB are dependent on these three cutting parameters. However, their relationships are highly nonlinear, and no 
analytical expressions exist to account for the machining of varying part geometries.

The objective function is minimized using optimization techniques. Although modern optimization methods such as particle swarm 
optimization and genetic algorithms have proven their advantages over gradient descent, they require significantly more datasets for 
the optimization procedure. The absence of an analytical equation for tool wear and its variation with changing part geometries makes 
it difficult to generate the values of particles or genes. Furthermore, tool overuse results in failed cutting and an unevaluable objective 
function. This is why the gradient descent method was used in this study to gradually approach the optimal solution. The optimization 
process was carried out experimentally to determine the optimal turning parameters based on the objective function. The simplified 
conjugate gradient method was employed to solve the optimization problem [3,32]. The initial cutting parameters were defined based 
on the cutting tool catalog, and the parameters were normalized with respect to their initial values during the optimization process.

2.2. Termination criteria

Three termination criteria were defined to stop the iteration process in this study. The first criterion is the difference in the values of 
the objective function between two consecutive iterations. 

⃒
⃒
⃒
⃒
f
(
Xk+1) − f

(
Xk)

f
(
Xk)

⃒
⃒
⃒
⃒ < ϵ1 (5) 

where k represents the kth iteration, and ϵ1 is the criterion value defined by the users. The other two termination conditions are as 
follows: 

Δxi < ϵ2 (6) 

η < ϵ3 (7) 

where Δxi is the finite difference interval of the variable xi for gradient calculation, η is the step size along the search direction, and ϵ2 

Fig. 1. Tool wear distribution and the loss of overusing cutting tool.
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and ϵ3 are the criteria of the finite difference interval and the step size, respectively, used to stop the iteration. For a detailed 
explanation of the simplified conjugate gradient method used for cutting parameter optimization, refer to Ref. [3]. In the optimization 
procedure, the cutting parameters are expected to be increased to reduce machining time and, consequently, machining costs. 
However, extreme cutting parameters can result in failed operations, such as machine overloading or vibration, making it impossible to 
complete operations in the infeasible region. The step size or finite difference interval should be reduced to ensure that the optimi-
zation process remains within the feasible region and converges properly.

Nevertheless, tool wear variations may introduce uncertainty into the experimental data. If the finite difference interval and step 
size are too small, the optimization procedure can become unstable and may not reach completion. Therefore, appropriate criteria for 
the finite difference interval and step size are necessary to terminate the process effectively.

2.3. Determination of sample size

Taylor’s equation or its extensions have been used in many studies on machining economics. These equations are deterministic, 
estimating tool wear based on cutting parameters. However, tool wear is probabilistic, even under the same cutting parameters. If the 
optimum parameters are obtained using deterministic equations without considering the distribution of tool wear, the cutting tool 
could reach the end of its life before completing the operation. This would lead to rework or the scrapping of failed parts, causing 
significant losses for manufacturers.

A probability density function of tool wear is necessary for robust optimization, and its accuracy depends on the sample size. 
However, performing many operations with the same cutting parameters can make the optimization process tedious and inefficient. To 
determine the appropriate sample size, this study adopts the concept of the confidence interval (CI). A one-sided CI with an upper 
bound is used as follows [34]: 

CI =
[

− ∞, VB + tα,n− 1
s
̅̅̅
n

√

]

(8) 

where VB is the sample mean of tool flank wear, tα,n− 1 is the right-tailed critical value of the confidence interval at a (1 − α)× 100% 
level based on the t-distribution, s is the sample standard deviation, and n represents the sample size. When the sample mean is ob-
tained, the question arises how close the sample mean is to the true mean. The confidence interval defines the range within which the 
true mean lies, given a certain confidence level. A smaller confidence interval indicates higher accuracy of the sample mean. The 
confidence interval can also be interpreted as an estimated error when using the sample mean. If a series of tests is conducted, the 
sample mean, standard deviation, and confidence interval can be calculated.

In this study, the sample size is determined by the confidence interval. If the confidence interval indicates a low probability of 
exceeding the tool wear limit, it is acceptable to continue the optimization process with the current sample size. Otherwise, the sample 
size must be increased to obtain a more accurate probability distribution. Increasing the sample size narrows the t-distribution until it 
closely approximates a normal distribution. Initially, a small number of tests may suffice if the sample mean is far from the tool wear 
limit. However, as the mean approaches the set limit, increasing the sample size is crucial for accurately defining the tool wear dis-
tribution. Therefore, the sample size is considered adequate if the upper bound of the confidence interval is smaller than the tool wear 
limit, as follows: 

VBlimit ≥VB + tα,n− 1
s
̅̅̅
n

√ (9) 

Equation (9) can be rewritten as follows. 

D=VBlimit − VB ≥ tα,n− 1
s
̅̅̅
n

√ (10) 

where D is the estimated difference between the tool wear limit and the mean. Equation (10) can be modified to determine the sample 
size as follows. 

n ≥
(tα,n− 1s

D

)2
(11) 

However, the estimated difference approaches zero when the mean is near the tool wear limit, resulting in a large sample size. This 
problem is addressed by modifying the definition of the estimated difference as follows: 

Dm = a + b|VBlimit − VB| (12) 

where a and b are two positive constants used to adjust the estimated wear difference in the optimization procedure. The constant a is 
applied to prevent large sample size when VB is close to VBlimit, while b is used to scale the estimated difference. Equation (11) is 
modified by replacing D with the estimated wear difference Dm. As shown in Equation (13), the estimated wear difference decreases as 
the optimization procedure approaches the set threshold of the tool wear, prompting an increase in sample size to ensure a more 
accurate probability distribution until the sample size becomes sufficiently large. 
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n ≥

(
tα/2,n− 1s

Dm

)2

(13) 

The initial sample size was set at 3. After conducting these tests, the sample mean and standard deviation were calculated, and Eq. 
(13) was employed to determine whether the sample size was adequate to confidently assert that the mean tool wear was sufficiently 
distant from the limit. If Eq. (13) was not satisfied, another 3 tests were conducted with the same cutting parameters. After every set of 
3 tests, the required sample size was updated using the new sample mean and standard deviation until either Eq. (13) was satisfied or 
the sample size reached 30, which is assumed to be the maximum sample size for this study. The sample size would not be reduced even 
if calculations indicated that fewer tests were necessary in later iterations. This is due to the smaller standard deviation resulting from a 
larger sample size and the inherent uncertainty of experiments. Fig. 2 illustrates the flowchart of the robust optimization process for 
machining.

3. Experimental setup

Two cases were studied to demonstrate the robust integer optimization of cutting parameters while considering tool wear distri-
bution and discrete production. The first case involved using one cutting insert for a single part, highlighting the importance of tool 
wear distribution and robust optimization. The second case focused on machining multiple parts with a single cutting insert to address 
the challenges of discrete production. The raw material used in the experiment was a SUS 304 stainless steel bar measuring 160 mm in 
length and 75 mm in diameter. For both cases, the initial cutting parameters were set as follows: a cutting speed of 110 m/min, a feed 
rate of 0.15 mm/rev, and a depth of cut of 1.5 mm.

The CNC turning machine used in this study was the Force One FCL-2004, manufactured by Force One Machinery in Taiwan. This 
turning machine was equipped with a Siemens SINUMERIK 828D controller. Fig. 3(a) illustrates the experimental setup of the cutting 
tool and workpiece. The cutting tool used in the experiment was a coated carbide insert (VNMG160404-MA US735) manufactured by 
Mitsubishi Materials in Japan. Tool wear was monitored and analyzed using a Keyence VHX-7000 optical microscope after each 
turning operation, as illustrated in Fig. 3(b). The threshold for tool flank wear was set at 300 μm [35]. The design variables considered 
in the study included cutting speed and feed rate. Other parameters, such as depth of cut and lubrication, were excluded as they cannot 
be adjusted directly through the CNC controller without modifying the NC code or equipment.

The parameters were normalized before proceeding with the calculations for determining searching direction. The initial finite 
difference interval Δxi was set to be one-tenth of the initial values of the parameters, and the initial step size η was set at 1× 10− 4 to 
mitigate the influence of tool wear variation. The termination criteria ϵ1, ϵ2, and ϵ3 described in Eqs. (5)–(7) were established as 1×

Fig. 2. Flow chart of the robust optimization process.
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10− 2, 2.5× 10− 2, and 2.5× 10− 5, respectively. Three tests were conducted for each parameter combination at the beginning of the 
optimization. The distribution of tool flank wear was incorporated into the calculation of the objective function to identify the op-
timum point. The constants a and b in Eq. (12) were set at 10 and 0.2, respectively, and the confidence level α was set at 0.05.

4. Experimental results

4.1. Results of profiling one part using one cutting insert

A profiling experiment was conducted under the condition that one cutting insert was used for only one part. The shape of the part 
is illustrated in Fig. 4, and the material removal was 328,118 mm3. The operating cost was calculated as the sum of depreciation, labor, 
and utility fees per unit time, assumed to be 0.2 NTD/s, 0.3 NTD/s, and 1.5 × 10⁻³ NTD/s, respectively. The costs associated with the 
cutting edge, workpiece, and estimated operating expense were 80 NTD, 600 NTD, and 466 NTD, respectively. It is important to note 
that each insert had two cutting edges available for operations. These fees were assumed based on standards in Taiwan at the time of 
the study and may vary depending on time and location. The profit from manufacturing one part was assumed to be 10 % of the total 

Fig. 3. (a) Experimental setup and (b) tool wear measurement.

Fig. 4. Part geometry and cutting paths for the first case study.
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manufacturing cost, resulting in a sales price of 1261 NTD. In this case, it was assumed that one cutting tool was used for only one 
operation, and N equaled 1. Additionally, Ct and the variables Tcs, Te, TR, TL, and TP in Eqs. (2) and (4) were constants, as they would 
not contribute to the optimization process. Consequently, the objective function was simplified as follows: 

f(X)=Co×TC(v, f , d)+Ps × P(VB(v, f , d)>VBlimit) (14) 

The results of the optimized cutting parameters, costs, and tool flank wear for the profiling process are presented in Figs. 5 and 6. 
The procedure gradually converged with each iteration. After optimization, the objective function was reduced from 487.78 NTD to 
352.17 NTD, while the final average tool flank wear was 217.95 μm, with a standard deviation of 35.92 μm. The optimal parameters 
were a cutting speed of 130.73 m/min and a feed rate of 0.193 mm/rev. A total of 12 tests were conducted in the final iteration, and the 
probability of tool overuse was 2 %.

Fig. 5 illustrates the changes in cutting parameters for each iteration, with the numbers in parentheses representing the sample 
sizes. From the first to the second iteration, the preset finite difference interval and step size were utilized to compute the gradient and 
determine the search direction. However, during the fourth iteration, the gradient calculation for the feed rate failed. To resolve this 
issue, both the finite difference interval and step size were reduced, allowing the completion of the fourth iteration. Nevertheless, the 
fifth iteration could not be completed, as the criterion for the finite difference interval in Eq. (6) was reached. Consequently, the 
optimization was terminated, and the optimized results were obtained in the fourth iteration.

The sample size increased throughout the optimization procedure due to the higher standard deviation and the tool wear value 
approaching its limit, as indicated by Eq. (13). Initially, the tool wear distribution showed a significantly lower probability of overused 
cutting tools, allowing the sample size to remain at 3. However, the number of tests increased to 9 in the third iteration and 12 in the 
fourth iteration to satisfy Eq. (13). As the average tool wear approached the set threshold, the tolerable uncertainty decreased, 
necessitating an increase in the required sample size to ensure it was large enough. Consequently, the sample size was expanded to 
validate the optimized cutting parameters as the optimization procedure neared its optimum point. The objective function was reduced 
by more than 27 % compared to the initial cutting parameters. It is noteworthy that while the percentage of overused cutting tools 
increased during the optimization, the objective function continued to decrease. This is attributed to the fact that the reduction in 
cutting time costs outweighed the costs associated with overused tools. The risk of producing failed parts was deemed tolerable given 
the low probability of overused tools in this turning operation. If the sales price were significantly higher, the optimum cutting pa-
rameters would decrease to ensure a higher yield rate.

4.2. Results of profiling multiple parts using one cutting insert

A part, as illustrated in Fig. 7, was designed for the discrete production experiment. The material removal for one workpiece was 
295,288 mm3. Initially, 3 parts were machined with one insert to determine the optimized parameters for N = 3, and the initial sample 
size was set to 3. Therefore, a total of 9 parts needed to be machined to obtain the results in one iteration. Once the optimum solution 
was achieved, the number of parts was increased until the lowest cost function was confirmed. The integer optimization was conducted 
for the number of parts, with N = 3,4,5, and the best solution was found when N = 4. Unlike the first case, the cutting tool cost, Ct , 
presetting time, TL, and tool replacement time, TR, could not be ignored in Eq. (2). The cutting tool replacement time and presetting 
time were assumed to be 60 and 360 s, respectively. The depreciation cost, labor cost, and utility fee per unit of time were estimated at 
0.2 NTD/s, 0.3 NTD/s, and 1.5✕10− 3 NTD/s. The costs for the cutting edge, workpiece, and estimated operating costs were 84 NTD, 
882 NTD, and 466 NTD, respectively. The sales price was assumed to be 1389 NTD. Detailed experimental data was listed in the 
Appendix.

Fig. 5. Progress of cutting parameter optimization in the first case study.
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Fig. 6. Results of cost and tool wear in each iteration of the first case study.

Fig. 7. Part geometry and cutting paths for the discrete production experiment.

Fig. 8. Progress of cutting parameter optimization for case N = 3.
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4.2.1. Results of profiling 3 parts
Figs. 8 and 9 illustrate the optimization process and the results of the optimized cost and tool wear for profiling 3 parts. Detailed 

experimental data can be found in the Appendix. The red triangles in Fig. 8 represent the failed tests caused by vibrations or collapsed 
cutting tool edges, leading to a reduction in the finite difference interval or step size. The initial cutting parameters were a cutting 
speed of 110 m/min and a feed rate of 0.15 mm/rev, resulting in a cost of 481.3 NTD according to objective function Eq. (4). The cost 
gradually converged, and the optimization successfully reduced the objective function to 394.6 NTD with the optimal parameters of a 
cutting speed of 129.027 m/min and a feed rate of 0.171 mm/rev. The average tool flank wear in the optimum iteration was 277.39 
μm, which is very close to the threshold of 300 μm. The standard deviation of the tool wear was 3.56 μm, and only 1.2 % of the cutting 
tool wear was expected to exceed the set threshold. The experiment was terminated due to the second criteria, Δxi < ϵ2.

From the first to the second iteration, the preset finite difference interval and step size were used to calculate the search direction. In 
the third iteration, a test with an increment in the feed rate, labeled as f1 in Fig. 8, failed due to the tool edge collapsing. To address this 
issue, the finite difference interval Δxi was reduced from 0.1 to 0.05 to continue the tests. Consequently, the increase in the cutting 
parameter for the feed rate in the third iteration was minimal. In the fifth iteration, the average tool wear reached 277.39 μm, 
prompting a further reduction of the finite difference interval to 0.025 after the 0.05 value failed to yield successful results. This 
indicates that large finite difference intervals and step sizes can lead to infeasible ranges when iterations approach the wear limit and 
the optimized solution. The result in the sixth iteration with a finite difference of 0.025 also failed, leading to the termination of the 
experiment due to the criterion ϵ2 being met. The objective function was reduced by 18.0 % compared to the initial cutting parameters.

4.2.2. Results of profiling 4 parts
Another experiment was conducted using one insert to cut four workpieces. The results, including the progress of the cutting 

parameters, optimized cost, and tool flank wear, are shown in Figs. 10 and 11. As in the previous experiment, the initial cutting 
parameters were a cutting speed of 110 m/min and a feed rate of 0.15 mm/rev, resulting in an initial cost of 460.4 NTD. This cost was 
lower than that for three workpieces due to the shared expenses of the cutting tool and tool replacement time. The optimization 
procedure gradually converged with each iteration, ultimately reducing the objective function from 460.4 NTD to 380.6 NTD. The 
average tool flank wear recorded was 275.39 μm, with a standard deviation of 5.29 μm. The optimum parameters identified were a 
cutting speed of 129.394 m/min and a feed rate of 0.167 mm/rev, with a 2.1 % probability of tool overuse. Compared to the optimized 
parameters in the case of N = 3, a slightly lower feed rate allowed for the extension of tool life for one additional part while further 
reducing manufacturing costs.

Fig. 10 illustrates the changes in cutting parameters across each iteration. In the first two iterations, a preset finite difference 
interval of 0.1 and a step size of 0.00001 were used to calculate the gradient and search direction. However, in the third iteration, the 
gradient calculation failed for both the cutting speed and feed rate. To complete the iteration, the finite difference was reduced to 0.05, 
but it failed again. Ultimately, the third iteration was successfully completed by further reducing the finite difference to 0.025. Despite 
this progress, the fourth iteration could not be completed, reaching the criterion for the finite difference interval. Consequently, the 
optimization was terminated, yielding an optimized result from the third iteration, with the objective function reduced by 17.3 % 
compared to the initial cutting parameters.

4.2.3. Results of profiling 5 parts
Figs. 12 and 13 illustrate the optimization procedure and the results of profiling five parts using a single cutting insert. Following 

the optimization, the objective function was reduced from 447.6 NTD to 405.4 NTD. The optimized average tool flank wear was 
measured at 245.59 μm, with a standard deviation of 9.31 μm. The optimal cutting parameters were determined to be a cutting speed of 
117.083 m/min and a feed rate of 0.159 mm/rev. The probability of the tool being overused was found to be 0.5 %.

Fig. 12 illustrates the change in cutting parameters across each iteration. In the transition from the initial to the first iteration, a 
preset finite difference interval of 0.1 and a step size of 0.00001 were used to calculate the gradient and search direction. However, the 
finite difference tests in the first iteration were unsuccessful due to overused cutting tools, labeled as f1 and f2 in Fig. 12. The recorded 
average tool wears were 298.42 μm and 301.76 μm, significantly higher than those observed with the initial parameters. This resulted 

Fig. 9. Results of cost and tool flank wear in each iteration for case N = 3.
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in a higher objective function value and an inverted gradient, altering the search direction of the optimization process and hindering 
improvement. Consequently, these tests were deemed failures, prompting a reduction of the finite difference to 0.05 to complete the 
first iteration. However, the third iteration failed during the feed rate test, despite the finite difference being further reduced to 0.025. 
The criterion for the finite difference interval was ultimately reached, leading to the termination of the optimization process. The 
optimized result was obtained in the second iteration, yielding an objective function value of 405.4 NTD, representing a 9.4 % 
reduction compared to the initial cutting parameters.

Fig. 10. Progress of cutting parameter optimization for case N = 4.

Fig. 11. Results of cost and tool flank wear in each iteration for case N = 4.

Fig. 12. Progress of cutting parameter optimization for case N = 5.
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It is evident that the insert cannot sustain high cutting efficiency when machining 5 parts, unlike when machining 4 parts. 
Consequently, the best solution and the lowest objective function were achieved when N = 4, with a cutting speed of 129.394 m/min 
and a feed rate of 0.167 mm/rev. Although the recommended cutting parameters from the catalog were lower than those obtained in 
this experiment, the results of this study suggest increasing these parameters to enhance cutting efficiency while ensuring the cutting 
tool remains sustainable.

4.3. Discussion

Cutting tool wear is not a fixed value. As demonstrated in this study, standard deviations can exceed 10 % of the mean values. 
Relying solely on average values in the optimization procedure poses a significant risk of overusing the cutting tool. To address this 
issue, this study introduced robust optimization. By incorporating the distribution of tool wear into the proposed objective function, we 
aimed to balance machining costs and the risk of overusing cutting tools. The results indicate that the probability of tool overusage 
with the optimal parameters was consistently less than 2.1 % across all cases. The losses incurred from overused cutting tools are 
substantially higher than machining costs, prompting the optimization process to maintain tool wear below the established limits, 
thereby preventing a significant increase in the objective function due to high overusage probability. Since the sales price encompasses 
the manufacturing cost, losses from failed products always outweigh machining costs. Consequently, it is crucial to control tool wear 
below the set limit. However, the decision regarding the tool wear limit ultimately depends on product quality and the load on the 
machine tools. In roughing operations, a higher tool wear limit may be acceptable if the resulting quality is sufficient for subsequent 
processes, potentially leading to further cost reductions.

Previous studies often relied on average tool wear values, treating both underuse and overuse of cutting tools with equal penalties. 
The ideal scenario using this approach occurs when average tool wear equals the tool wear limit [3], implying that approximately 50 % 
of the cutting tools would be overused. However, the costs associated with reworking or discarding defective parts far exceed those of 
underusing cutting tools. This discrepancy explains why most cutting tools tend to be underused [4], even though increasing cutting 
parameters could potentially lower costs.

In discrete production, the number of workpieces significantly impacts production costs. With the initial cutting parameters, it is 
expected that tool wear increases with the number of parts machined, leading to reduced costs, as shown in Table 1. However, the most 
economical solution after optimization was determined to be machining 4 parts. Compared to 3 parts, only a slight reduction in feed 
rate was necessary to ensure the cutting tool could sustain machining for 4 parts. In contrast, optimizing conditions for 5 parts required 
lower cutting speeds and feed rates, which substantially reduced machining efficiency and increased costs. Therefore, the optimal 

Fig. 13. Results of cost and tool flank wear in each iteration for case N = 5.

Table 1 
Comparison of optimization results of discrete production.

Before Optimization N ¼ 3 N ¼ 4 N ¼ 5

Cutting speed 110 m/min 110 m/min 110 m/min
Feed rate 0.15 mm/rev 0.15 mm/rev 0.15 mm/rev
Average tool wear 119.60 μm 180.04 μm 197.67 μm
Tool wear deviation 7.43 μm 10.32 μm 11.10 μm
Objective function 481.3 NTD 460.4 NTD 447.6 NTD

   
After Optimization N¼3 N¼4 N¼5

Optimum cutting speed 129.027 m/min 129.394 m/min 117.083 m/min
Optimum feed rate 0.171 mm/rev 0.167 mm/rev 0.159 mm/rev
Average tool wear 277.39 μm 275.39 μm 245.59 μm
Tool wear deviation 3.57 μm 5.29 μm 5.87 μm
Objective function 394.5 NTD 380.6 NTD 405.4 NTD
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strategy was to cut 4 parts using a single insert. Processing a larger number of workpieces with one cutting tool does not necessarily 
result in lower production costs, as the reduced speeds and feed rates required for extended tool life can lead to decreased machining 
efficiency and potentially higher overall costs.

Many earlier studies utilized extended Taylor’s tool life equation in their optimization efforts [11,29,31], leading to the expectation 
that optimized cutting parameters must be reduced to prevent tool overuse. Additionally, tool wear variations fluctuate with cutting 
conditions and part geometry, and there is currently no established model that accounts for these variations alongside part geometry, 
cutting parameters, and materials. The experimental results demonstrated a progressive improvement in machining costs while 
effectively limiting the overuse of cutting tools. Given the absence of an accurate model for tool wear variation in complex part ge-
ometries, the statistical analysis and experimental optimization methods proposed in this study offer a more practical approach for 
industrial applications.

The selection of initial cutting parameters could pose a challenge for the proposed method, potentially prolonging the optimization 
process. While deterministic tool wear equations may yield suboptimal solutions through numerical calculations, further verification 
and fine-tuning with the proposed experimental optimization method will be essential.

5. Conclusions

Robust optimization was effectively applied to the machining economics of discrete turning operations in this study. By utilizing 
the proposed objective function, the tool wear distribution was incorporated to manage the risk of overusing cutting tools during the 
optimization process. The results demonstrated that the variation in tool wear values could be accurately represented using statistical 
methods and included in the objective function. Only machining time and tool wear values needed to be collected after each operation 
for the gradient descent method. Importantly, no additional experiments were necessary to establish the coefficients of the tool wear 
equation, making this approach easily implementable in machine workshops to fine-tune cutting parameters.

Experiments were conducted to optimize cutting parameters across different scenarios involving the use of one cutting tool for 
multiple workpieces. The objective function incorporated the distribution of tool wear to balance machining costs with the risk of 
overusing cutting tools. Results indicated that the probability of tool overuse with the optimized parameters was less than 2.1 %, 
alongside reductions in objective functions ranging from 9.4 % to 27 % across the case studies. The cost associated with reworking or 
abandoning defective parts was significantly higher than that of underusing cutting tools. Given the lack of an accurate tool wear 
variation model for intricate geometries, the statistical analysis employed in this study proved practical for optimizing cutting pa-
rameters, effectively approaching optimal solutions while limiting tool overuse.

Additionally, the study highlighted that the number of workpieces processed with a single cutting tool significantly impacts 
production costs. Processing many workpieces with one tool does not always lead to lower costs due to reduced efficiency. In the 
discrete production experiment, the optimal number of parts to be cut was determined to be four, resulting in an objective function 
value of 380.6 NTD, lower than 394.5 NTD for cutting three parts and 405.4 NTD for cutting five parts. The acceptable tool wear limit 
depends on product quality and the load on the machine tools. In roughing operations, a higher tool wear limit may be acceptable if the 
quality remains sufficient for subsequent processes, allowing for potential cost reductions.

The optimal conditions for machining depend on specific material and part geometry. Given the variations in tool wear and 
complexities of part geometries, the experimental optimization method proposed in this study is particularly well-suited for industrial 
applications. However, numerous experiments are necessary to establish the tool wear distribution under different cutting conditions, 
and the development of a model for tool wear distribution would significantly enhance this research. Moreover, with increasing in-
dustry focus on energy consumption and carbon emissions, a key challenge lies in reducing energy use and emissions while main-
taining production quality and efficiency.
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APPENDIX 

Table A 
Parameters and tool wear values in each iteration of the optimization procedure of discrete production in Section 4.2.

Parameters with Finite Difference Interval Solutions in the Iteration

Cutting Speed (m/min) Feed Rate (mm/rev) Tool Wear 
Avg. ± Std (μm)

Cutting Speed (m/min) Feed Rate (mm/rev) Tool Wear 
Avg. ± Std (μm)

3 workpieces (N = 3)
Initial 

Iteration
   110.00 0.150 119.60 ± 7.43

1st Iteration 121.00 0.150 141.72 ± 21.04 113.25 0.154 137.63 ± 11.15
110.00 0.165 152.23 ± 19.09

2nd Iteration 124.57 0.154 210.58 ± 8.20 119.90 0.162 162.02 ± 9.21
113.25 0.170 195.59 ± 16.95

3rd Iteration 131.89 0.162 227.14 ± 8.51 124.45 0.163 215.75 ± 15.80
119.90 0.171 271.73 ± 8.21

4th Iteration 129.95 0.163 260.20 ± 8.97 128.05 0.164 253.61 ± 10.69
124.45 0.170 255.36 ± 10.52

5th Iteration 130.80 0.164 273.06 ± 8.61 129.03 0.171 277.39 ± 3.57
128.05 0.168 267.05 ± 8.16

4 workpieces (N = 4)
Initial 

Iteration
   110.00 0.150 180.04 ± 10.32

1st Iteration 121.00 0.150 256.82 ± 9.53 112.83 0.154 219.10 ± 10.21
110.00 0.165 217.10 ± 14.04

2nd Iteration 123.83 0.154 242.64 ± 4.20 119.88 0.163 251.60 ± 8.06
112.83 0.169 239.91 ± 12.91

3rd Iteration 122.63 0.163 263.82 ± 2.97 129.39 0.167 275.39 ± 5.29
119.88 0.167 258.44 ± 10.79

5 workpieces (N = 5)
Initial 

Iteration
   110.00 0.150 197.67 ± 11.10

1st Iteration 115.50 0.150 205.25 ± 5.05 114.31 0.156 179.69 ± 17.17
110.00 0.158 215.53 ± 3.76

2nd Iteration 119.81 0.156 256.49 ± 10.82 117.08 0.159 245.59 ± 5.87
114.31 0.164 269.39 ± 9.26
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