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Energy efficiency plays a major role in sustaining lifespan and stability of the network, being one 
of most critical factors in wireless sensor networks (WSNs). To overcome the problem of energy 
depletion in WSN, this paper proposes a new Energy Efficient Clustering Scheme named African Vulture 
Optimization Algorithm based EECS (AVOACS) using AVOA. The proposed AVOACS method improves 
clustering by including four critical terms: communication mode decider, distance of sink and nodes, 
residual energy and intra-cluster distance. Through mimicking the natural scavenging behavior of 
African vultures, AVOACS continuously balances energy consumption on nodes resulting in an increase 
in network stability and lifetime. For CH selection, we use AVOACS, which considers the following 
parameters: communication mode decider, the distance between sink and node, residual energy, 
and intra-cluster distance. In comparison to the OE2-LB protocol, simulation findings demonstrate 
that AVOACS enhances stability, network lifetime, and throughput by 21.5%, 31.4%, and 16.9%, 
respectively. The results show that AVOACS is an effective clustering algorithm for energy-efficient 
operation in heterogeneous WSN environments as it contributes to a large increase of network lifetime 
and significant enhancement of performance.
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In recent years, Wireless Sensor Networks (WSNs) have become indispensable in many applications such as 
healthcare systems, environmental monitoring and military surveillance or smart cities et cetera1. These networks 
are composed of an assemblage of physically disseminated sensor nodes which all together operate to collect, 
process and transport data/mote towards impel sink node2. These devices face serious energy considerations, 
even though they are used for many purposes. While sensor nodes are normally battery powered, and the small 
energy available in them limits life of an operating network3,4. Therefore, prolonging the lifetime of wireless 
sensor networks along with their stable and efficient performance have been important issues addressed in 
design of WSNs. WSN can enable such virtual and real-world connections. Nonetheless, sensor nodes have 
limited computing power, memory, and battery5. They require batteries and are commonly employed in large-
scale unsupervised environments where battery maintenance or recharge is challenging.

In clustering is a major technique where many researchers focus to increase energy efficiency in WSNs. It 
utilizes cluster-based protocols, i.e., it groups sensor nodes into clusters that consist of a CH to aggregate data and 
deliver these to the sink6. The selection of CHs and the management of clusters are key factors which influence 
network performance even though this method reduces energy consumption7. Intra-cluster communication 
should be reduced to a minimum for energy efficiency and an ideal clustering algorithm helps in distributing 
the workload of all nodes across individual clusters, as well as minimizing intra cluster hops. Every cluster 
has a CH whose main responsibility is to collect data from the other members of the cluster. CH is chosen 
depending on several important factors such as intra-cluster distance, CMD, residual energy, etc. Using a meta-
heuristic method in CH selection has proved attractive in achieving optimum network performance8,9. When 
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intra-cluster communication occurs, the nodes closest to the sink use much energy. This issue is known as the 
hot-spot problem because these relaying nodes quickly consume energy10,11.

However, the existing cluster-based algorithms suffer from drawbacks: shorter operational duration of sensor 
nodes, high energy expenditure, delay in data delivery, hot-spot problems in large-scale applications, residual 
energy dependence, connection failure, etc12–16. From this current perspective, several studies have been 
conducted, each suggesting a unique energy-efficient routing strategy with the goal of extending the network’s 
useful life by reducing the drain on the sensor nodes’ batteries: the proposed approach analyses and monitors 
data from the wireless sensor networks17–19. However, despite its benefits of energy efficiency and network 
lifetime extension effect, there are limitations if the African Vulture Optimization Algorithm-based Energy 
Efficient Clustering Scheme (AVOACS) is applied. Among its drawbacks, it does not have the strong scalability 
powered by being enormous and possessing many clusters along with cluster heads that large-scale WSNs do; 
The resulting conciliation of both processing time as well as energy consumption is increased.

In this paper, we design a new energy efficient clustering scheme for WSN named AVOACS that is nature 
motivated approach of scavenging behavior in Africa vultures. The AVOACS (An algorithm for Optimization 
in energy Consumption using the four mandatory factors which improves network life) that is an efficient 
method to reduce power consumption and lifetime of networks by having four important parameters Based 
on communication mode decider, Sink –node distance, residual energy & intra cluster distance. AVOACS 
uses these parameters to dynamic cluster head selection and optimizing the clustering process for reducing 
energy consumption. The proposed AVOACS method is experimentally validated in terms of performance 
by comparing it with the performances for some well-known existing state-of-the-art clustering algorithms: 
PSO-ECSM, HWSHO, OE2-LB and ABC-DE. Experimental results indicate that AVOACS not only has better 
network stability, but also prolongs the lifetime of a wireless sensor network compared with another algorithm. 
Thus, a retrospective assessment reveals a few characteristics that might significantly increase network lifetime

The major contributions of this paper are highlighted as follows:

• The proposed AVOACS for WSNs formulated the cluster formation through several essential parameters 
such as communication mode decider, distance to sink, residual energy of sensors and intra-cluster distance.

• The optimal selection of cluster heads is compatible with the characteristics shown in AVOACS which demon-
strated significant advantages on energy efficiency for network Longevity.

• The dynamic clustering adapts cluster head selection and communication strategies by considering factors 
such as node energy levels or distance to the sink, optimizing energy usage and load sharing based on network 
conditions.

• To test and validate the proposed methodology with the state-of-the-art optimized routing methods based on 
particle search, such as PSO-ECSM7, HWSHO20, OE2-LB21, and ABC-DE22, and it is shown to have achieved 
higher overall performance.

The remainder of the manuscript is summarised in the sections below. Sect “Literature review” provides the 
background research, while Sect  “Preliminaries”describes the proposed strategy. The simulation findings are 
detailed in Sect “Proposed methodology”, and the conclusion is in Sect “Experimentation, results and analysis”.

Literature review
Clustering algorithms have an important role to play in the energy efficiency of a Wireless Sensor Network 
(WSN), and lot of research has been done on developing efficient clustering algorithm for increasing the lifetime 
of network. Existing optimization-based clustering schemes are good energy conservation approaches, and 
some further improved by utilizing certain issues regarding cluster formation to verify their performance under 
different conditions. However, most of them experience difficulties in scalability as they adapt into a large-scale 
network rather than the target one for which these were proposed initially23–26. This part presents major works 
in energy-efficient clustering algorithms, mainly influenced by nature-based optimization methods27.

Deepa et al.28 proposed multi-path routing protocol utilizing swarm optimization. The cluster head is 
selected near the sink coverage area, and the energy hole problem is solved by using a modified Particle Swarm 
Optimization (PSO)-based clustering algorithm. A particle swarm optimization-based clustering technique with 
a mobile sink was suggested by Wang et al.29. Rambabu et al.30 suggested a HABC-MBOA algorithm for CH 
selection. HABC-MBOA was found to be useful in preventing sensor node overloading when used as CH. Thrun 
et al.31 presented the databionic swarm system. As a result, while Swarm-based algorithms are task-centred and 
data independent approaches for WSN optimization issues they struggle with premature convergence problems 
leading to suboptimal performance in Heterogeneous networks due to their static approach of deployment 
irrespective the network dynamics and heterogeneous energy-based node implementation32.

Palattella et al.33 proposed that IoT-based WSN universality may be hindered by the need for reliable, 
scalable, and cost-effective connectivity. It has been pointed out that these technologies may be used in diverse 
contexts, such as for consumer IoT and industrial IoT. The article focuses on the significant developments of 
5G technology in IoT and the commercial implications that follow from them. Ilango et al.34 used mapper and 
reducer programming to implement the ABC Algorithm in a Hadoop environment. The suggested ABC was 
shown to reduce execution time and fault of classification for a collection of ideally designed clusters in empirical 
testing. The findings show that the suggested ABC scheme outperforms differential evolution and PSO35.

In this paper, Gaikwad et al.36 has presented an enhanced ABC that optimizes large-scale data clustering. By 
using the modified ABC, the cluster consumes less power. For selecting CHs, the protocol methodology uses a 
distributed technique, and K-means is utilized to fix the threshold power based on experimental data. Amiri et 
al.37 proposed a novel fuzzy algorithm with enhanced discrete ABC for data clustering.
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Betzler et al.38 developed an IoT- based WSN technique for estimating round-trip times that incorporates 
the age factor for retransmission timeouts. Cluster formation is most important part of clustering process which 
has been accentuated by several researchers9,10. Das et al.39 presented a new clustering technique by utilizing 
probability-based selection mechanism for allocation of a set of data in each cyclic rotation. Rani et al.40 presented 
dynamic clustering-based technique utilizing Genetic algorithm. The CHs selection was made based on residual 
energy and node’s location. Pan et al.41 proposed a search model utilizing best-of-random mutation strategy. 
The performance assessment was done by employing various optimization techniques. The results obtained 
strengthen the claim made by suggested method as it depicted significant gain in performance42,43. Bagirov et 
al.44 suggested approach’s performance is compared to that of other methods, and the findings demonstrate that 
the suggested method outperforms its rivals. The performance of Bee Colony Optimization (BCO) in clustering 
datasets may be an essential research component, even if there are various clustering applications of BCO in 
the literature. It is combined the suggested approach with k-means algorithms to improve its performance and 
provide optimum solution45–47.

Verma et al.20 introduced the HWSHO approach in order to address the problem of green communication in 
6G-enabled large WSN devices. This was accomplished by using cluster-based data distribution in the network. 
This method is an excellent example of a solution that may be useful for a variety of malicious apps that are 
interested in green communication via 6G-enabled Internet of Things devices. CH selection is found to be 
an NP-Hard problem, and achieving optimal network performance is one of the difficult tasks that must be 
accomplished. As a consequence of this, there is a requirement for a metaheuristic strategy that is able to meet 
crucial characteristics in an optimum fashion. These critical parameters are necessary for CH selection48. As a 
result, many different metaheuristic approaches such as GA49, PSO50,51, WOA, MFO52, and were presented in 
order to optimize the cluster selection53. The existing metaheuristic algorithms used for routing have several 
limitations like lack of scalability, unbalanced exploration and exploitation and ineffectiveness in handling the 
dynamics of the network. Beside that the existing algorithms are still not able to truly optimize the decision 
of clustering and routing leading to ineffective energy consumption. The proposed optimization algorithm 
addressed these deficiencies and improves the performance on various metrics. Among the several metaheuristic 
algorithms available, AVOA is used in this research to enhance network efficiency. AVOA is used in this study to 
improve the efficiency of decision-making in order to provide the best possible value throughout the clustering 
process. The current routing protocols cannot provide an energy-efficient solution for routing in wireless sensor 
networks. AVOA may reduce application complexity by using the fitness function54.

Nature-inspired optimization algorithms are promising for real-world engineering problems. One such 
technique is the Arithmetic Optimization technique (AOA), designed for optimization23. AOA helps engineers 
with constraint management tasks like resource allocation and system optimization traverse and use the solution 
space. Kumar et al.24 proposed chaotic marine predators algorithm (CMPA) has promise. Chaos theory and 
predator-prey interactions improve optimization exploration and convergence. CMPA optimises mechanical and 
structural designs that traditional approaches struggle with. Optimizing shell and tube heat exchangers has been 
successful. The AVOA solves complicated multi-dimensional and non-linear optimization problems by balancing 
efficiency and accuracy25. These methods improve exploration-exploitation harmony to solve optimization 
problems. Engineering situations benefit from convergence rates and effective constraint management. Data 
transmission mechanisms are essential for optimizing energy efficiency and network durability. The ELFO 
algorithm is inspired by eel foraging26. ELFO’s adaptive foraging technique allows efficient network exploration 
to find optimum paths while reducing energy. PROA uses reinforcement learning and optimization to improve 
decision-making in scenarios like tuning automobile suspension elements for performance55. It might improve 
clustering and node communication in WSNs, ensuring network stability even when circumstances change. 
These methods may improve energy utilization and operating efficiency in WSN installations, overcoming 
optimization challenges. Though, much work has been done on Energy efficient clustering algorithms but still 
there is a requirement of adaptive and scalable solutions, especially for WSNs having heterogeneous nodes with 
varying capabilities as well energy levels. Table 1 shows the reference study of the optimization methods on IoT 
based WSN.

Preliminaries
In this part, we outline the network assumptions before proposing the suggested work’s operational structure.

AVOACS network assumptions
It is vital to note that while replicating the proposed study, several network assumptions about medical things 
must be considered.

 1.  The network is composed of randomly deployed sensor nodes, with node uniformly placed in a two-di-
mensional region. The nodes are battery-powered and, after deployment, do not move from their respective 
locations for the lifetime of the network. The nodes have the ability to sense, process and transmit data.

 2.  A single sink node or base station is located inside the sensor field between sinks and source nodes. Sensor 
nodes are presumed to be limited in power and incapable of remote recharging. Nonetheless, the sink has no 
energy constraints since it gets a constant source of energy.

 3.  The network is clustered where sensor nodes clustered in clusters. In each cluster, a specific node called the 
Cluster Head (CH) is responsible for collecting data from all the member nodes of her corresponding in its 
hotspots and then transmit it directly to Sink. The cluster head is dynamically selected each round according 
to residual energy, distance to the sink and intra-cluster communication costs.

 4.  The nodes are considered homogeneous, meaning they possess processing, initial energy, and sensing range 
configurations.
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Energy consumption model
Energy consumption of the Network is one important factor which directly impacts on network lifetime and 
performance as a whole, hence in the proposed AVOACS by considering energy consumed by each node. Energy 
model. The energy consumption model used in this work is based on a generic radio power dissipation that 
accounts for transmission and reception cost of the whole communication protocol. It includes the following 
assumptions and equations for them as energy consumption model of sensor nodes in network. A distance dij 
between two nodes i and j is expressed as follows. The energy used by node i during the transmission of z-bit 
data to node j is

 
Etx (z, dij) =

{
z ∗ Eel + z ∗ Eefs*dij

2 for dij ≤ do
z ∗ Eel + z ∗ Eamp*dij

4 for dij > do
 (1)

The energy spent rather than starting a transmitter and reception circuit is denoted by Eel, and ‘do’ denotes a 
minimum distance and has to be written as in Eq. (2).

 
do =

√
Eefs

Eamp
 (2)

Where, Eqs. (3), (4) Erx (z) represent the energy spent by a node in accepting and aggregating z-bit data packets, 
and Edx (z) represent the consumption of energy throughout aggregation of data respectively.

 Erx (z) = z*Eel (3)

And

 Edx (z) = x*z*Eda (4)

Equation (5) calculates the overall energy ET otal spent in packet forwarding, processing, and data aggregation.

 ET otal = Etx+ Eel + Edx (5)

Proposed methodology
We aim to build a cluster-based data aggregation routing scheme in WSNs using the network above paradigm. 
Using four important parameters, the proposed method extends the life of the network. As a result, the primary 
goal to be explored is creating a load-balanced data aggregation routing scheme that efficiently links all sensors 
to the sink node. The remaining energy usage among multiple sensors in the Network utilizes a modified energy-
aware AVOA algorithm to choose the optimal CH for each cluster. AVOACS presents the Network’s energy usage 
and reduces the Network’s overall energy transmissions. The AVOA meta-heuristic method was first presented 
by Abdollahzadeh et al.54 in the year 2021. Since that time, it has been implemented in a variety of real-world 
engineering applications. In order to build the AVOA, simulations and models were used that were based on the 
feeding behaviors and daily routines of African vultures. The following considerations are taken into account in 
order to carry out the simulation that is known as AVOA. This simulation recreates the life patterns and foraging 
strategies of African vultures, and it is carried out by using the following elements.

References Method Objective Research gaps

Pravin et al.56 Genetic Algorithm for Stochastic 
cluster head selection Cluster head selection, energy balancing in IoT-WSN Energy balancing in IoT-WSN is considered, but the 

optimization technique used there is crude.

Sahoo et al.57 Metaheuristic (CBA-EH) Method Network longevity, Cluster head selection, and energy 
harvesting in WSN

Application in WSNs restricted to IoT with wok on 
multiple objective optimizations for energy conservation.

Moghaddasi et al.58 DRL method Energy consumption, resource efficiency and task 
offloading

It concentrates on offloading efficiency but has a shallow 
clustering mechanism for WSNs.

Moghaddasi et al.59 DDQN method Multi-objective optimization and task offloading Thoroughly discusses security but do not emphasize 
energy efficiency in WSN clustering.

Gharehchopogh et al.60 Dynamic Harris Hawks 
optimization (HHO) IoT security, botnet detection and dynamic HHO Security in IoT is the focus, but the main goal of this 

paper is not energy-efficient clustering.

Gharehchopogh et al.61 AVOA optimization Method Multilevel thresholding and image segmentation For image processing; not applicable for WSN clustering 
or energy efficiency.

Gharehchopogh et al.62 Chaotic Quasi-oppositional 
farmland fertility algorithm

Optimization, solving optimization engineering 
problems

Strictly related with engineering optimization, for signals 
from a controlled experiment are not directly applicable 
to optimizing the energy efficiency of WSNs.

Kumar et al.63 Caddisfalcon optimization 
algorithm Optimization and energy transfer in IoT network Only high-level energy transfer — not clustering in 

WSNs.

Zhou et al.64 GSHFA-HCP clustering method Performance monitoring, Clustering with agricultural 
IoT

Applicability mostly on agriculture IoT system not 
suitable for wider range of WSN applications.

Table 1. References study of the optimization methods on IoT based WSN.
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 (i)  There are N vultures in the African vulture population, and the user of the algorithm decides how large N 
should be depending on the conditions at the time of the calculation. The position space of each vulture is 
represented by a grid with D dimensions; the size of D varies depending on the complexity of the issue.

 (ii)  The population of African vultures may be broken down into three distinct clusters according to the way 
in which they make their livelihood. The first cluster determines the most optimal viable solution by using 
the fitness value of the viable solution as a metric to evaluate the quality of the approach. The second cluster 
of thought maintains that out of all of the potential solutions, the one that can really be implemented is the 
one that is second-best. The third and final group is made up of the remaining vultures.

Algorithm 1. AVOACS Procedure.
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 (iii)  The vulture hunts in groups throughout the population in which it resides. As a direct consequence of this, 
several species of vultures fulfil a variety of roles within the community.

 (iv)  Similarly, if the fitness value of the population’s feasible solution may be understood to reflect the advan-
tages and downsides of vultures, then the vultures who are the weakest and most hungry correspond to 
the vultures that are the worst at the current time. On the other hand, the vulture that is the healthiest and 
most numerous at this time is the greatest option. Vultures in AOVA strive to position themselves near the 
greatest and away from the bad.

Based on the fundamental ideas about vultures and the four assumptions used to replicate the artificial vulture’s 
optimization algorithm, the problem-solving process can be broken down into five stages that represent the 
foraging behaviours of different vultures.

Identifying the best vulture in clusters
After the initial population has been formed, the fitness of each solution is determined, and the best and worst 
performers are chosen to serve as vultures for the first and second groups, respectively. At each iteration of the 
fitness test, populations are subjected to a thorough analysis.

 
S (i) =

{
Bestv1 if fi = P1
Bestv1 if fi = P2

, where fi = Fv (i)∑
n
i=1Fv (i)  (6)

The probability that the chosen vultures will lead the other vultures to one of the best solutions in each cluster 
is determined by Eq. (6), where P1 and P2 are the best solutions in the cluster. Both of the search operation’s 
input parameters must have values between 0 and 1, with the total being 1. Using the rank selection to choose 

the best fitness from each set using fi = Fv(i)∑
n
i=1Fv(i)

 increases the probability of selecting the optimal solution.

Vulture hunger rate
Vultures are remaining on the hunt for food, and when they get it, they have a burst of energy that helps them 
to go further in their quest for more. On the other hand, they are more aggressive when they are hungry since 
they lack the strength to fly long distances or to hunt for food alongside larger, stronger vultures. This sort of 
behaviour has been modelled mathematically with the help of Eq. (7). The rate at which the vultures are satiated 
or hungry has also been used to mark the shift from the exploratory to the exploitative phase. Equation (7), 
which accounts for the decreasing rate of satisfaction, has been used to predict this phenomenon.

 
Fv = (2 ∗ r1 + 1) ∗⇕∗

(
1 − itri

itrmax

)
+ ⊔ (7)

 
⊔ = \∗

(
sinw

(
π

2 ∗ itri

itrmax

)
+ cos

(
π

2 ∗ itri

itrmax

)
− 1

)
 (8)

In Eqs.  (7), (8), the symbol Fv  indicates that the vultures have consumed all of the food available to them, 
iteration i represents the number of the current iteration, itrmax represent the overall number of iterations, 
and ⇕ is a random value ranging from − 1 to 1 that fluctuates with each new iteration. \ are an integer chosen at 
random from the range − 2 to 2. rand1 returns a result that is completely random between 0 and 1. If the z value 
goes below zero, it indicates that the vulture is starving, and if it goes above zero, it indicates that the vulture has 
satiated.

Exploration
Here, we examine the AVOA exploration phase. Vultures have keen vision, which helps them find prey and dead 
animals. When searching for food, vultures fly long distances and do detailed observations of their surroundings. 
The vultures in the AVOA may use one of two methods to explore seemingly random sites, with the method 
being selected at random. Exploration stage is need to provide a value between 0 and 1 for this option before 
you can begin the search process. Which method is used is up to it. A random integer between 0 and 1 is created 
during the exploration phase and used to decide which approach to pursue. The Eq. (9) is utilized if the number 
is greater than or equal to the parameter. If, however, the digit count is under Eq. (11), the formula will be used. 
This is shown by Eq. (12).

 V (i + 1) = S (i) − D (i) ∗ Fv  (9)

 D (i) = |ϵ ∗ S (i) − V (i)| (10)

 V (i + 1) = S (i) − Fv + r2 ∗ ((UB − LB) ∗ r3 + LB) (11)

 
V (i + 1) =

{ |ϵ ∗ S (i) − V (i)| if V1 ≥ rv1
S (i) − Fv + r2 ∗ ((UB − LB) ∗ r3 + LB) if V1 < rv1

 (12)

The position vector of a vulture in the iteration that follows will be indicated by the V (i + 1), and the satiation 
rate of the vulture in the current iteration will be denoted by the symbol Fv , which can be determined by using 
Eq. (7). In Eq. (10), S (i) is a good example of the kind of vulture that is chosen by Eq. (12). The vultures patrol 
the area randomly in order to protect their meal from the other vultures. ϵ  is created via the formula ϵ  = r2
, where r2 is a randomly produced number between 0 and 1, and ϵ  is then utilized as a coefficient vector to 
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enhance the random motion, which shifts with each iteration. r3 is a randomly generated number between 0 
and 1. The vector location is determined by the vulture’s V1. The variable boundaries are shown by LB and 
UB. r3 increases the amount of unpredictability. If r3 is somewhat close to 1, solutions that are comparable are 
spread, which adds a random motion to the LB.

Exploitation stage-1
At this point, the AVOA’s efficiency stage is being analysed for its effectiveness. The AVOA will proceed to the 
exploitation phase if the value of Fv  is less than 1, since this indicates that there is room for profit. This phase, 
like the previous one, is divided into two sections, and each of those portions employs a distinct tactic. Two 
factors, V2 and V3, define the likelihood that each approach will be selected throughout each of the phases that 
take place internally. The strategy for the first phase is determined by the parameter V2, whereas the second 
phase is determined by the parameter V3. Both of the parameters need to be set to 0 and 1 before the search 
operation can be carried out. When the value of | Fv | is between 1 and 0.5, the exploitation phase starts. During 
the initial phase of the battle, both a rotating flying strategy and a siege-fighting strategy will be used. Before 
performing a searching operation, the value of V2, which ranges between 0 and 1, will be used to choose which 
strategy to use. rv2 is constructed right at the beginning of this phase. If this amount is more than or equal to 
V2, the implementation of the Siege-fight will go more slowly. In the event that the random number is lower 
than V2, the rotating flying method will be used. The Eqs. (13), (14) illustrates how to carry out this technique.

 V (i + 1) = D (i) ∗ (Fv + r4) − d (t) (13)

 d (t) = S (i) − V (i) (14)

The value of D (i) may be found by using Eq. (10), and the value of Fv  can be found by applying Eq. (7) to the 
satiation rate of vultures. A random number between 0 and 1, r4 is added to the formula to make the random 
coefficient even more unpredictable. In Eq. (14), S (i) represents one of the best vultures from the two groups 
that was chosen using Eq. (17) during the current iteration. V (i) represents the current vector location of the 
vulture, which is used to calculate the distance between the vulture and one of the best vultures from the two 
groups.

Vultures typically perform a flying pattern that may be described as a rotating flight, and this flight pattern 
can be utilized to mimic spiral motion. Mathematical modelling of circular flight has been accomplished via the 
use of the spiral model. Using this approach will result in the formation of a spiral Eq. (18) involving all of the 
vultures and one of the top two vultures. Equations (15) and (16) are used to compute a1 and a2 and provide 
an expression for the rotational flight.

 
a1 = S (i) ∗

(
r5 ∗ V (i)

2π

)
∗ cos (V (i)) (15)

 
a2 = S (i) ∗

(
r6 ∗ V (i)

2π

)
∗ sin (V (i)) (16)

 V (i + 1) = S (i) − (a1 + a2) (17)

 
V (i + 1) =

{
D (i) ∗ (Fv + r4) − d (t) if V2 ≥ rv2
S (i) − (a1 + a2) if V2 < rv2

 (18)

Exploitation stage-2
During the second stage of the exploitation process, the movements of the two vultures lure many other species 
of vultures to the food supply, where a siege and a vigorous fight for food ensue. When the value of Fv  is lower 
than 0.5, the transition into this phase begins. During this step, the random number generator rv3 will produce 
a value between 0 and 1. If rv3 is more than or equal to V3, a large number of different kinds of vultures should 
converge around the source of food. Alternately, the aggressive siege-fight approach described in Eq.  (23) is 
adopted if the value created is less than V3. This occurs if the value generated is less than V3.

 
A1 = Bestv1 (i) − Bestv1 (i) ∗ V (i)

Bestv1 (i) − V (i)2 ∗ Fv  (19)

 
A2 = Bestv2 (i) − Bestv2 (i) ∗ V (i)

Bestv2 (i) − V (i)2 ∗ Fv  (20)

In the last step, the vultures are summed up with the help of Eq. (20), in which A1 and A2 come from the 
previous Eqs. (19), (20), and V (i + 1)is the vulture vector for the next iteration. The names given to the best 
vultures in the first and second groups of this iteration are Bestv1 (i) and Bestv2 (i), respectively. V (i) stands 
for the vector position of a vulture at any given moment.

 V (i + 1) = (A1 + A2)/2 (21)

 V (i + 1) = S (i) − |d (t)| ∗ Fv ∗ levy (d) (22)
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V (i + 1) =

{ (A1 + A2)/2 if V3 ≥ rv3
S (i) − |d (t)| ∗ Fv ∗ levy (d) if V3 < rv3

 (23)

When the value of | Fv | is more than 0.5, the head vultures begin to hunger, and as a result, they are unable to 
compete with the other vultures in terms of strength. Equation (22) is utilized in order to simulate this motion 
as accurately as possible. d (t) represents the distance that the vulture is from one of the best vultures in the two 
groups, and this distance is determined by applying Eq. (21) to the equation found in Eq. (22). Patterns of Levy 
flight65 have been exploited to improve the performance of the AVOA in Eq. (23), and LF has been recognized 
and used in the operations of metaheuristic algorithms.

The IPSO-CS method that has been proposed can analyze the fitness population to determine which node 
is most suitable for becoming CH. The fitness function evaluates each individual, or node, to determine their 
level of physical fitness and recommends the most effective method for preserving the nodes’ available energy. 
In this particular scenario, one must be careful not to discount the significance of fitness-related factors. It is 
of the utmost importance to provide those essential physical characteristics that will, in the end, determine 
whether CH is selected. The parameters of fitness include. To select the optimal CH, we base our decision on 
four fundamental measures of fitness.

1. Residual energy: The node’s remaining energy value, which is the most important parameter. The CH has 
a higher per-second energy consumption than the other nodes. Therefore, the node with the most energy must 
be selected. All nodes have access to the starting energy, but their reserves decrease at different rates depending 
on how close they are to the sink. Therefore, the amount of energy still available plays a role in picking a CH. 
Through the use of Eq. (26), we can calculate the residual energy of each sensor node, which can then be summed 
to get the total residual energy.

 
f1 = 1

N

∑
N
i=1E(i) (24)

 
f2 = 1

cl

∑
cl
i=1E(n) (25)

 
Obj1 = f1

f2
 (26)

2. Distance between sink and node: In this parameter, energy is used to calculate how far away each node in the 
network is from the sink. In any case, the total amount of energy used by the sink is proportional to its separation 
from the node. So, the base station may be improved in light of the parameters below the median spacing 
between the member nodes, which are taken into consideration by the networking approach for CH selection. 
Instead of basing decision-making on CH proximity, Obj2 and Eq. (27) with distance is represented as:

 
Obj2 =

∑
N
i=1(

D(N(i)−S)

DAV G(N(i)−S)
 (27)

 
DAV G(N(i)−S) =

(∑ N

i=1,
D(N(i)−S)

N

)
 (28)

Evaluating distance costs between nodes i and sink using the second fitness parameter ( Obj2) in Eq. (27), and 
calculating Euclidean distance DN(i)−S  and average distance DAV G(N(i)−S) in Eq. (28).

3. Communicating mode decider: The CMD is a crucial parameter in AVOACS that adaptively chooses the 
communication scheme, which can be used for transmissions between sensor nodes and from them to the sink. 
It decides some factors like whether the communication between nodes take place in single hop manner and 
multi hops communication nature of transferring data packet by other nearby cluster head according residual 
energy, distance with the sink node. Single-hop communication is used for short distances to reduce energy 
consumption and multi-hop communication for long-distances due the expensive cost of high power. Minimum 
CMD value for a Network CH node.

Thus, a node’s CMD may be calculated using the following formula and the fifth fitness parameter ( Obj3). 
The total number of CHs or clusters in the Network is denoted by the variable NC.

 
Obj3 =

(∑ NC

i=1, j=1D(CH(i)−CH(j))

NC
+ D(N(i)−S)

)
 (29)

The distance between the CHs is represented by D(CH(i)−CH(j)) in the Eq. (29), while the distance between the 
node i and sink is represented by D(N(i)−S) in the same equation. If the value of Obj3, is decreased, the value 
of ‘CMD’ will increase in proportion.

4. Intra-cluster distance: The chance of becoming a CH increase for nodes that are both more energetic and 
closer to the control centre. Better distribution of cluster leaders throughout the Network means less variations 
in inter- and intra-cluster distances. The average distances between cluster members and cluster heads are 
minimized using the new technique. The Obj4 represent in Eq. (30) is as follows:
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Obj4 =

∑N

i=1

(
D(N(i)−S)

DAV G(N(i)−S)

)
∗ 1

0.1M
 (30)

 

The standard clustering procedure identifies CHs and member nodes for each particle. Subsequently, 
clusters are established by assigning each member node to the nearest location-based cluster leader. 
The amount of error for each ith population is assessed using the suggested fitness function. Here, we 
presuppose that a certain fitness function represents the network’s incorporation of four fitness parameters:

 
F = 1

α ∗ Obj1 + β ∗ Obj2 + γ ∗ Obj3 + δ ∗ Obj4
 (31)

Improving network performance requires minimizing fitness F in Eq. (31). Comprises a wide range of fitness 
metrics derived by the provided Eqs. (26), (27), (28), (29), (30). Parameters utilized in the integration of the 
fitness function are given varying degrees of importance according to the weight coefficients in Eq. (31). It is up 
to the user to fine-tune these settings for their specific sensor network deployment.

To determine the relative relevance of the variables in the fitness function integration, the weight coefficients 
α, β, γ, and δ are used. It is up to the user to adjust these parameters so the sensor network works as intended. In 
Eq. (32) the weights of these components are expressed differently.

 α + β + γ + δ = 1 (32)

Thus, the optimizing Network performance by maximization of this function across metaheuristic processes is 
the primary focus of search space.

The pseudocode for the suggested AVOACS algorithm is shown in Algorithm 1. The suggested algorithm 
takes and returns the highlighted phrases as input and output.

As previously mentioned, the procedures outlined in Algorithm 1 are followed while using AVOACS. 
The sink is positioned in the centre of the network once the nodes have been distributed in the network of 
given dimensions. The AVOA operation, which involves many steps as previously mentioned, may be used to 
understand the clustering and CH selection processes. After choosing the CH, the Network enters a steady-state 
phase. The procedure will now end when all nodes’ energy has been utilized. The process of data transmission 
from CH to sink is shown in Fig. 1.

Complexity analysis of AVOACS
It is essential to perform real-time analysis in terms of the complexity and feasibility of suggested algorithms. 
The algorithm’s complexity is determined to be O ( rmax × N ), as seen in Algorithm 1, where N  denotes the 
population’s size (particle size) and rmax denotes the maximum number of rounds for which the Network is 
conducted. The computational overload of the AVOA algorithm takes place due to two main reasons; first is a 
number of sensor nodes ( N ) while secondly, it occurs because several iterations are required for optimization 
i.e., iteration rmax. The O ( rmax × N )in this function can be approximated as the number of nodes that need 
to consider for cluster head selection and rmax is another constant-like iteration counts before it converges into 
a specific value. For each iteration, cluster heads are selected intelligently based on various factors.

Experimentation, results and analysis
This section explores the simulation environment, evaluation metrics, and innovative methodologies for 
performance assessment and analysis. All simulations were conducted on a system equipped with 8GB RAM, 
1 TB HDD, and an Intel i5 CPU with MATLAB R2022a. We have given the simulation Table 2 that mentions the 
various parameters used in the simulation analysis.

The simulation we performed had 100 nodes spread out throughout the (100 × 100 m). Table 2 summarizes 
the consistency of sensor nodes and AVOACS parameters, and also offers accurate normative values for the 
sample size. AVOACS procedures for CH selection use generational counts and other criteria to optimize 
performance. The assessment of suitable values has been conducted by optimizing the control parameters of 
proposed AVOACS method and rival methods like PSO-ECSM, HWSHO, OE2-LB, and ABC-DE. This has been 
executed to ascertain the values that should be used. Three levels were established for control parameter tuning: 
population size (P) = [20, 30, 40], personal learning coefficient ( C1)= [0.5, 1, 1.5], global learning coefficient 
( C2) = [1, 1.5, 2], and total vultures = [10, 30, 50]. The optimal configuration yielded the following results: [P, 
C1, C2, total vultures] = [30, 1, 1.5, 30]. Prior to its finalization, an elitist approach based on rank selection was 

used. At some point, members of a given cluster may decide to adopt a different aesthetic. The truth is that all 
node types will operate according to the same rules throughout the network’s existence.

Performance metrics
Performance of our proposed AVOACS (African vulture optimization algorithm-based energy efficient clustering 
scheme) has been assessed in terms of different performance parameters- network lifetime, stability period, 
energy consumption, and throughput. Lastly, the cluster head selection frequency as well as assessment metrics 
allow for energy expensive tasks to be evenly distributed on different nodes enhancing network life span by 
maximizing energy consumption. Together, these metrics validate the contribution of AVOACS in consummate 
energy efficiency and lifetime expansion to WSNs. For the purposes of measuring the AVOACS against with 
PSO-ECSM7, HWSHO20, OE2-LB21, and ABC-DE22 protocols.
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Network’s remaining energy
The AVOACS algorithm balance the energy consumption in a better way across the network by having more 
residual energies of nodes operating different stages on their life. The dynamic cluster head selection mechanism 
also ensures that nodes with more remaining energy are selected for the tasks which consume lots of power 
including data aggregation and communicating to sink. It has been shown that the AVOACS protocol expects 
a decrease in network energy use as a result of data transmission. Networks’ residual energy performance 
improved with the increase of iterations, as predicted. As shown in Fig. 2, AVOACS outperforms other protocols 

Fig. 1. Proposed method data transmission process between CH and sink.
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Fig. 2. Network’s remaining energy analysis of AVOACS with existing protocols.

 

Parameters Values

Area covered 100 × 100 m

No of sensor nodes 100, 200

Sink node 1

Initial energy ( Eo) 0.5

Essential transceiver energy ( Eel) 50nJ/bit

Threshold-distance ( do) 86 m

Packets size 4000bits

Eefs 10pJ/bit/m2

Emp 0.0013pJ/bit/m4

Eda 5nJ/bit/signal

α , β , γ , and δ 0.5, 0.25 ,0.15, and 0.1

P1  and P2 0.8 and 0.2

Antenna type Omni Antenna

Simulation time 100 s, 250 s, 400 s

MAC type IEEE 802.11

Simulation runs 30

w 2.5

Population size 30

Initial position of the vulture 0.5

Table 2. Simulation setting for AVOACS.
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like PSO-ECSM7, HWSHO20, OE2-LB21, and ABC-DE22 because it uses a greater number of iterations and 
improves data transmission. Furthermore, AVOACS uses less energy each round than competing protocols in 
dual hop communication.

Network longevity
The AVOACS scheme can prolong the lifetime of a general network, denoted as time duration among arriving 
alive and leaving away from in valuable nodes. This enhancement is mostly due to the energy consumption model 
of AVOACS being efficient and has adaptive communication strategies so that both near nodes from sink as well 
as far away nodes contribute without depleting all their initial energies. AVOACS completed after 9833 rounds, 
and we can observe that PSO-ECSM42, HWSHO43, OE2-LB21, and ABC-DE22 all have much shorter network 
lifetimes (3716) to (8470) rounds. Figure 3 shows that compared to the PSO-ECSM7, HWSHO20, OE2-LB21, and 
ABC-DE22 protocols, AVOACS completes 6117, 4285, 2353, and 1363 more cycles. Through the integration of 
intra-cluster and CMD components into the objective function, AVOACS keeps an eye on the progress made in 
extending the lifespan of the networks involved. Consequently, the average distance between a node and a CH is 
greatly reduced when there are several such nodes in proximity.

Dead nodes versus rounds
The AVOACS algorithm shows a slower rate to the number of dead nodes, in contrast with other approaches 
there are less periodic dead/alive over their round. We compare AVOACS to other protocols; we can observe that 
it has less rounds for each dead node. Figure 4 shows that the First Node Dead (FND) occurs after 4762 rounds in 
AVOACS but only after 2096 rounds in PSO-ECSM, 2754 rounds in HWSHO, 3919 rounds in OE2-LB, and 4168 
rounds in ABC-DE, and that the Half Nodes Dead (HND) occurs after 7133 rounds in AVOACS but only after 
3011 rounds in HWSHO, 4976 rounds in OE2-LB, and 6112 rounds in ABC-DE. And in the improvement of last 
node dead (LND), also known as the network longevity, AVOACS is also indicated covering 9833 rounds, while 
PSO-ECSM, HWSHO, OE2-LB, and ABC-DE protocols cover 3716, 5548, 7480, and 8470 rounds, respectively. 
Higher energy conservation is realized in AVOACS compared to other protocols individually when the CH 
selection has been improved according to numerous criteria, as discussed above.

Throughput (number of packet delivery)
AVOACS does an improvement with throughput, this combines the total amount of data that has been able to be 
successfully sent over the wire and received by sink. The introduced method results in enhanced throughput as 
a result of the reliable network topology and less delays derive from communication. Optimized clustering and 

Fig. 3. Comparative analysis of alive node of AVOACS with existing protocols.
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communication mode decider to reduce energy wastage while in the transmission of data, for prolonged amount 
of data transmission before nodes are dead. As illustrated in Fig. 5, AVOACS sends 212,572 data packets whereas 
PSO-ECSM7, HWSHO20, OE2-LB21, and ABC-DE22 transmit 80,284, 127,164, 181,726, and 186,841. In terms 
of throughput, AVOACS improves PSO-ECSM, HWSHO, OE2-LB, and ABC-DE by 164.7%, 67.1%, 16.9%, and 
13.7%, respectively. The proposed protocol’s throughput enhancements are a direct result of its lower reported 
loss and its use of increased CH during data packet transfer.

Stability period
The stability period, the time duration where all nodes are observed to be alive (active) in AVOACS method is 
much enhanced. As a result, by extending the stability period of the new network it is achieved that this network 
has operational capacity for longer than much time in comparison to before. It can be noted that the first node 
is eliminated in AVOACS after 4762 rounds, however in the scenario, PSO-ECSM, HWSHO, OE2-LB, and 
ABC-DE protocols, it is reduced to merely 2096, 2754, 3919, and 4168 rounds, respectively, as shown in Fig. 6. 
The critical point is having an awareness that knowing AVOACS improves stability period by 127.19%, 72.9%, 
21.5%, and 14.2% when compared to the protocols PSO-ECSM, HWSHO, OE2-LB, and ABC-DE, respectively. 
Unifying four fitness criteria to enable energy saving during data transmission improves both stability period 
and HND. The distance between nodes and nodes and the sink and nodes has been reduced.

Analysis and interpretation
Table  3 succinctly encapsulates the enhancements recorded by the AVOACS. According to the comparative 
analysis, AVOACS surpasses other protocols in several performance metrics. Table  4 shows the percentage 
improvement achieved by AVOACS in terms of FND, HND, LND, and Throughput.

Statistical result
The significance of the AVOACS statistical tests was determined by conducting the tests. Using the F-test, a 
sample from the same normal group may be evaluated to see whether it has the same variance. When analyzing 
data from three methods, an F-test (based on analysis of variance (ANOVA)) is used to see whether the data is 
consistent or significant differences. Thirty samples from each procedure were used to calculate the remaining 
energy values. In Table 5, the residual energy for each method is described in detail. According to Tables 5 and 6, 
AVOACS has a greater mean residual energy value (= 33.403) than the other algorithms. The remaining energy 
ANOVA test results are shown in Tables 5 and 6. According to Table 5, p-values of 0.000 to 0.05 are less than 0.05 
in the ANOVA test results. Consequently, the efficiency of the algorithm is different.

Fig. 4. Comparative analysis of dead node of AVOACS with existing protocols.
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Conclusion and future scope
This paper proposed the AVOACS method for Wireless Sensor Networks that aims to solve an essential problem 
of energy efficiency and prolonging network life in environments with limited resources. The strategies are 
designed to elect dynamic cluster heads and communication properties based on residual energy, the intravalley 
of intra-cluster distance between nodes as well and node-to-sink-distance. The superior results of AVOACS 
using different evaluation metrics demonstrate that the proposed algorithm considerably enhances WSNs with 
respect to other state-of-the-art methods (PSO-ECSM, HWSHO, OE2-LB and ABC-DE). It has been found that 
AVOACS elongates the stability period by 127.19%, 72.9%, 21.5%, and 14.2%, and network lifetime by 164.6%, 
77.2%, 31.4%, and 16.9% as compared to PSO-ECSM, HWSHO, OE2-LB, and ABC-DE, respectively. The 
analysis of the remaining energy of network shows that AVOACS always maintains high residual energy over its 
network, because it properly selects cluster heads and discharges balanced distributed even close nodes along 
with their different low radii in proportion to their distance from base station. Several key benefits of AVOACS 
are derived from the enhanced power conservation technique, which includes energy efficiency improvements 
in WSNs as well as network life and performance. This makes it a promising solution for energy-constrained and 
mission-critical applications in future WSN deployments, as the protocol is capable of serving heterogeneous 
network environments; dynamic balancing of power consumption if needed further extend the operational life. 
In future work, we plan to continue the investigation of our algorithm with respect to mobile nodes and more 
challenging network conditions.

Fig. 5. Comparative analysis of throughput of AVOACS with existing protocols.
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Percentage (%) improvement by AVOACS Protocol

Algorithms FND Half node dead Last node dead Throughput

PSO-ECSM 127.19 136.8 164.6 164.7

HWSHO 72.9 86.5 77.2 67.1

OE2-LB 21.5 43.3 31.4 16.9

ABC-DE 14.2 16.5 16.09 13.7

Table 4. Percentage improvement by AVOACS to existing algorithms.

 

Algorithms Total energy of network (Joules) FND HND LND Throughput (packets)

PSO-ECSM7 50 2096 3011 3716 80,284

HWSHO20 50 2754 3823 5548 127,164

OE2-LB21 50 3919 4976 7480 181,726

ABC-DE22 50 4168 6112 8470 186,841

AVOACS 50 4762 7133 9833 212,572

Table 3. Comparison of AVOACS with existing algorithms for different results. Significant values are given in 
bold.

 

Fig. 6. Performance analysis of AVOACS with existing protocols.
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