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Many conditions, such as pulmonary edema, bleeding, atelectasis or collapse, lung cancer, and shadow 
formation after radiotherapy or surgical changes, cause Lung Opacity. An unsupervised cross-domain 
Lung Opacity detection method is proposed to help surgeons quickly locate Lung Opacity without 
additional manual annotations. This study proposes a novel method based on adversarial learning to 
detect Lung Opacity on chest X-rays. Focal loss, GIoU loss, and WBF (weighted boxes fusion) were used 
in training. We conducted extensive experiments on Chest X-rays from RSNA (Radiological Society of 
North America) and Vingroup Big Data Institute to verify the performance of cross-domain detection. 
The results indicate that our method has superior performance. The AP reached 34.30% and 36.55%, 
while the AR10 reached 74.11% and 75.91% in two cross-domain detection tasks. The visualization 
results show that the randomly selected samples were more accurately detected for Lung Opacity after 
applying our method. Compared with other excellent detection frameworks, our method achieved 
competitive results without additional annotations, making it suitable for assisting in Lung Opacity 
detection.
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Lung diseases are one of the main causes of human death, severely impacting human health and well-being1. 
Despite being a widespread condition, it remains difficult to diagnose them quickly and accurately. Firstly, 
the diagnosis of lung disease requires a professional radiologist to perform a chest X-ray (CXR) examination, 
combined with clinical history, vital signs, and laboratory testing2. Secondly, lung diseases typically manifest in 
one or more opaque areas. However, many factors can cause opaque areas, such as pulmonary edema, bleeding, 
collapse, pneumonia, and changes in cancer after radiotherapy or surgery. In addition, the patient’s shooting 
position and respiratory intensity can also alter the appearance of CXR and make diagnosis more difficult3.

With the development of deep learning and computer vision, the performance of object detection tasks 
has been greatly improved4–9. Meanwhile, using object detection technology to quickly and accurately locate 
lesions also plays an increasingly important role in liver, lung, and bone diagnosis10–14. The performance and 
robustness of traditional detectors heavily rely on labeled training data, often collected in devices with different 
characteristics. However, deploying one detector to different tasks trained on a certain dataset poses significant 
challenges due to the domain shift caused by different characteristics between the source and target domains. For 
instance, domains can differ in lighting conditions, electrical characteristics, and radiation dose, which further 
complicate the accurate detection of diseases15,16.

Unsupervised domain adaptation (UDA) has emerged as a promising approach to address the domain-shift 
problem in Lung Opacity detection. Unlike traditional approaches that require manually annotated data from 
the target domain, UDA methods aim to learn domain-invariant representations by leveraging the information 
from both the source and unlabeled target domains. By aligning the feature distributions across domains, UDA 
methods facilitate better generalization and adaptability of Lung Opacity detectors in many scenarios. Numerous 
UDA methods for object detection applied in various fields17–19 have achieved exciting results.

In this paper, we aim to align the distribution between the source domain and the target domain through 
an adversarial learning network20, this network trains labeled data from the source domain and unlabeled data 
from the target domain. As the training progresses, this method promotes the emergence of deep features that 
differentiate the main learning tasks on the source domain and maintain the same transformation between 
domains.

We used various techniques to improve AP (Average Precision) and AR (Average Recall). Focal loss21 is 
introduced to reduce the imbalance between positive and negative categories, GIoU loss22 is used to improve the 
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accuracy of box prediction, and WBF (Weighted Boxes Fusion)23 is used to construct the final prediction box 
using the confidence of all detection boxes to achieve more accurate results.

We evaluated our method in two scenarios using VinBigData chest X-rays24 and RSNA pneumonia detection 
dataset25. With the proposed domain adaptive Lung Opacity detection method, our method effectively improves 
performance in unsupervised domains obtaining the AP of 34.30% and 36.55%, the AR10 of 74.11% and 75.91%.

The main contributions of this work are summarized as follows: (1) we introduce adversarial learning to 
achieve cross-domain Lung Opacity detection, enabling better application of the model across institutions and 
devices; (2) due to the use of unsupervised learning, our proposed method can perform detection tasks in target 
domains without additional annotations; (3) our proposed method exhibits competitive performance compared 
to state-of-the-art methods.

Related work
Lung disease detection
Lung disease detection has been extensively studied in the computer vision community. Traditional methods 
typically employ handcrafted features and classifiers to detect lung disease. Dwivedi et al.26 proposed a 
grayscale co-occurrence matrix (GLCM) feature extraction method, which extracted a total of 12 different 
statistical features. They achieved a breakthrough in Lung Cancer detection and classification with a polynomial 
multivariate Bayesian classifier. Kohad and Ahire27 proposed an ant colony optimization as a feature selection 
technique to classify the abnormal or normal lung image and achieved accuracy of 93.2% and 98.4% with SVM 
and ANN classifier. Makaju et al.28 implemented a Median filter and Gaussian filter to pre-process images and 
watershed segmentation to mark the image with cancer nodules. The cancer detector achieved an accuracy 
of 92%. However, these methods heavily rely on manually extracted features and often suffer from limited 
generalization to different domains due to the lack of adaptability.

After 2016, deep learning has made great progress29 and achieved remarkable success in Lung disease 
detection by leveraging the power of convolutional neural networks (CNNs) and Vision in Transformer (VIT). 
Ozdemir et al.30 coupled detection and diagnosis components to develop an end-to-end system and achieved 
a sensitivity of 96.5% on the LUNA16 benchmark. Kieu et al.31 performed nodule detections through Faster 
R-CNN on efficiently learned features from CMixNet and U-Net encoder-decoder architecture and evaluated 
on LIDC-IDRI datasets with a sensitivity of 94% and a specificity of 91%. La Salvia et al.32 used Radiation-free 
lung ultrasound (LUS) imaging from 450 hospitalized patients under 12 LUS examinations in different chest 
parts to produce state-of-the-art results meeting F1 score levels. Jiang et al.33 detected and measured nodules 
with a deep learning system and recognized malignancy-related imaging features. Using Bland-Altman analysis 
and repeated-measures analysis of variance to reduce image noise, increase nodule detection rate, and improve 
measurement accuracy on ultra–low–dose chest CT images. At the same time, weakly supervised and semi-
supervised learning have also made breakthrough progress in using medical images for disease diagnosis. Ren et 
al.34 introduced an underlying knowledge-based semi-supervised framework called UKSSL, which can effectively 
extract basic knowledge from unlabeled datasets and perform better when using limited labeled medical images. 
Ren et al.35 provided an overview of the latest advances in weakly supervised learning in medical image analysis, 
including incomplete, imprecise, and inaccurate supervision, and discussed the challenges and future work of 
weakly supervised learning in medical image analysis.

Although these methods learn discriminative features directly from the data, leading to improved performance. 
However, it depends on a large amount of labeled training data and the annotation of medical images requires a 
lot of time and effort. Our solution adopts cross-domain detection by unsupervised learning, which can directly 
perform detection tasks on the target domain, saving the time consumption caused by additional annotations 
and accelerating the diagnostic process.

Domain adaptation
In recent years, domain adaptation technology has improved the generalization ability of lung disease detection 
models by eliminating domain offsets between labeled data in the source domain and unlabeled data in the 
target domain. Liu et al.36 proposed a novel and effective two-step sparse unidirectional domain adaptation 
(SUDA) algorithm and demonstrated superior performance on a public E-nose instrumental variation dataset. 
Sherwani et al.37 proposed unsupervised adversarial learning to generate healthy lung images based on the 
infected lung image and attention masks to improve the quality of the segmentation further. The mean Absolute 
Error of 0.695, 0.694, 0.961, 0.791, 0.875, and 0.082 were achieved on 2D axial CT lung slices of COVID-19 
lesions. Thorat et al.38 introduced an EfficientNet + AlexNet model with different weight initialization at the start 
of x-ray image training and gave an accuracy of 97.4%. Li et al.39 adopted Network-in-Network and Instance 
Normalization to build a new NI module and extract discriminative representations from both source and target 
domains and achieved the highest diagnostic accuracy compared with existing SOTA methods. Huang et al.40 
developed a self-supervised transfer learning based on domain adaptation (SSTL-DA) 3D CNN framework for 
benign-malignant lung nodule classification. They obtained an accuracy of 91.07% and an AUC of 95.84% on 
the LIDC-IDRI benchmark dataset.

These above works have achieved great success, but they are mostly applied to classification and segmentation 
problems, and cross-domain Lung Opacity detection remains a challenge. We propose a Lung Opacity detection 
framework based on adversarial learning, which can effectively align the feature spaces of the source and target 
domains, accurately detect the location of Lung Opacity obtaining the AP of 34.30% and 36.55%, the AR10 of 
74.11% and 75.91%, respectively.
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Methodology
Our approach comprises three main components, illustrated in Fig.  1. Encoder and Feature Extractor are 
responsible for receiving image data from both the source and target domains. Encoder first encodes the image 
and extracts preliminary feature representations. Subsequently, Feature Extractor further processes these features 
to obtain higher-level abstract features, which are crucial for subsequent domain classification and detection 
tasks. L.Aug and H.Aug are applied here to increase the robustness of the model to different image variations. 
Domain Discriminator distinguish whether features come from the source or the target. It uses features obtained 
from Feature Extractor and trains through domain classification loss Ldis to minimize the difference between the 
feature distributions of the source and target domains. This component is crucial for reducing domain shift as 
it helps the model learn transferable feature representations between different domains. Detector is responsible 
for using extracted features to detect Lung Opacity. It updates the network through Lung Opacity detection loss 
Ldet, which may include Focal and GIoU loss, to improve detection accuracy and recall. The output of Detector is 
the bounding boxes, which are then processed through WBF for post-processing to optimize the final detection 
results.

Among the three subnetworks, Encoder and Feature Extractor provide shared feature representations 
for Domain Discriminator and Detector. This sharing mechanism allows the model to simultaneously learn 
domain adaptation and object detection tasks within a unified framework. Domain Discriminator drives Feature 
Extractor to learn more domain invariant features through adversarial training, which are then used by Detector 
to improve cross-domain detection performance. The output of the Detector is fed back to the entire network to 
help adjust the Encoder and Feature Extractor for better detection of Lung Opacity in the target domain.

Data augmentation via light or heavy tactic
To address the challenge of limited data in deep learning models, we utilize data augmentation, a set of techniques 
aimed at augmenting the size and quality of training datasets, to enhance the performance of our deep learning 
models41. In our data augmentation approach, we employ both light denoted as L and heavy denoted as H data 
augmentation strategies to achieve improved outcomes.

The light tactic L involves RandomFlip, RandomGamma, and RandomBrightnessContrast. RandomFlip 
randomly flips each training image from horizontal or vertical with a 50% probability, adhering to general 
engineering practice.

RandomGamma transforms the images with a 50% chance through a random-gamma transformation with a 
limit of 80–120. RandomBrightnessContrast, with a 50% chance, randomly adjusts the brightness and contrast 
within a factor range of − 0.1 to 0.1 for both brightness and contrast.

The heavy tactic H includes contrast limited adaptive histogram equalization (CLAHE)42, ShiftScaleRotate, 
RandomCrop, and CutOut, in addition to the data augmentations present in L. CLAHE, a proficient denoising 
and contrast enhancement algorithm, is applied to each input image with a 50% probability, exhibiting superior 
performance compared to similar techniques42. ShiftScaleRotate applies random affine transforms such as 
translation, scaling, and rotation to the input image, with a shift factor range of 0.0625 for height and width, a 

Fig. 1.  The main steps of our proposed detection framework. The detection pipeline encompasses three 
essential processes: (1) The encoder and feature extractor receive data, perform data augmentation, and extract 
features; (2) The detector outputs detection boxes and updates the network using Focal loss and GIoU loss; 
(3) Perform post-processing of the prediction boxes through WBF to output the detection results, as detailed 
further in “Domain adaptation via adversarial learning”.
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scaling factor range of 0.15, and a rotation range of 15, implemented with a 40% chance. RandomCrop involves 
a 98% crop relative to the input image size.

CutOut masks a randomly selected square area in the image with a zero value, contributing to improved 
robustness and overall performance of convolutional neural networks43. The number of zero-out regions is 
randomly chosen from 5 to 10, and the size of the masked region ranges from 4 to 8% relative to the input image 
size.

Given the diverse array of data augmentation methods we employ, we summarize the data augmentation 
strategies in Table 1 for clarity and comprehensive illustration.

Domain adaptation via adversarial learning
We use a CNN-based deep learning model to detect and align distributions in the feature space which consists 
of a feature extractor, a detector, and a discriminator. We adopt the Cascade R-CNN44 network composed of a 
sequence of detectors trained with increasing IoU thresholds for pedestrian detection tasks. Cascade R-CNN 
achieves state-of-the-art performance on the COCO dataset and significantly improves high-quality detection 
on generic and specific object detection datasets. It has a base encoder E and a feature extractor F through 
where the image features denoted feature map E(I) were extracted and fed into two branches: Region Proposal 
Network (RPN) and Region of Interest (ROI) classifier. As shown in Fig. 1, the two branches output categories 
and detection boxes to be the detector. The loss function of the detector Ldet is defined as Eq. (1):

	 Ldet = Lrpn + Lcls + Lreg � (1)

 where Lrpn, Lcls, and Lreg are the loss of the RPN, classifier, and bbox regression, respectively.

In our specific task, IoU quantifies the area ratio of the intersection and union of two shapes. Nevertheless, 
the IoU loss exhibits a plateau, rendering optimization infeasible in scenarios with non-overlapping bounding 
boxes. To overcome this limitation, we opt to use the GIoU loss. When two bounding boxes completely overlap, 
GIOU equals IoU, which means the value is 1; When the area of the smallest convex hull C is much larger than 
the combined area of two bounding boxes, GIOU tends to be -1. When GIOU is used as a loss function, it can 
ensure the existence of gradients even when the bounding boxes do not overlap, thereby improving training 
performance. Focal Loss is designed to mitigate the extreme training imbalance between foreground and 
background categories encountered in detection tasks21. When γ = 0, Focal Loss is equivalent to the standard 
CrossEntropy loss. As the value of γ increases, the loss of easily classified samples (i.e. samples with pt close to 
1) will decrease faster, while the loss of difficult-to-classify samples remains relatively large, making the model 
training more focused on difficult-to-classify samples.

When considering the background bounding box (Bg) and predicted bounding box (Bp), and seeking the 
smallest enclosing convex object C where C ⊆ S ∈ Rn, the GIoU, and Focal, are defined as Eqs. (2) and (3), and 
Ldet is redefined as Eq. (4):

	
GIoU = |Bg ∩ Bp|

|Bg ∪ Bp| − |C\(Bg ∪ Bp)|
|C| � (2)

	 F ocal = −(1 − pt)γ log(pt)� (3)

	 Ldet = Lrpn + F coal + (1 − GIoU)� (4)

 where γ of Eq. (3) presents a tunable focusing parameter with a range [0, 5]. The term pt ∈ [0, 1] represents the 
model’s estimated probability for the class with the label y = 1.

To align the distributions, we append a domain discriminator D after the feature extractor F. This branch is to 
discriminate which domain the feature E(I) is from. Through this discriminator, we get the probability of each 
image belonging to the target domain P = D(E(I)). Then a binary cross entropy loss based on the domain label d 
is applied to P. The discriminator loss function Ldis is defined as Eq. (5):

	
Ldis = −

∑
dlogp + (1 − d)log(1 − p)� (5)

The main method of adversarial learning is to use gradient reverse layers (GRL)20 to learn domain invariant 
features E(I). GRL performs positive gradient updates for the detector and negative gradient updates for the 

Data 
augmentation Flip B.&C. Gamma CLAHE Crop CutOut S.&S.&R.

Tactic
L.Aug. √ √ √ × × × ×

H.Aug. √ √ √ √ √ √ √

Table 1.  Data augmentation includes light and heavy tactic. The B.&C. denotes RandomBrightnessContrast 
and the S.&S.&R. denotes ShiftScaleRotate.
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discriminator. As a result, the feature extractor F receives gradients that force it to update in an opposite direction 
which maximizes the discriminator loss, thereby confusing the discriminator to distinguish which domain the 
image comes from. For the domain adaptation task, given source images IS and target images IT, the overall loss 
Lall is defined as Eq. (6):

	 Lall = Ldet(E(Is)) + λ(Ldis(E(Is)) + Ldis(E(IT )))� (6)

 where λ is a weight applied to balance the loss of the discriminator. λ can adjust the intensity of adversarial 
learning to extract more robust common features from both the source and target domains. In GRL, the gradient 
of the domain discriminator is reversed during backpropagation, which means that the loss is used to update 
the parameters of the feature extractor, but in the opposite direction. Then the feature extractor learns a feature 
representation that is difficult to distinguish between the source and the target, thereby reducing the differences 
between domains and improving the performance of the model in the target domain.

We selected the datasets in VinBigData24 and RSNA pneumonia25 that present Lung Opacity as the source and 
target domains. Figure 2 shows the changes in feature distribution between the source and target domains after 
0, 10, and 40 epochs of adversarial learning with t-SNE visualization technology45.

Post-processing of lung opacity detection via WBF
Object detection models often use NMS46 or Soft-NMS47 as post-processing, which essentially filter out low 
confidence overlap boxes from all prediction results, but cannot fully utilize the information of all boxes. WBF 
(Weighted Boxes Fusion)23 uses the confidence of all detection boxes to construct the final prediction box, which 
can obtain more accurate results. The process of WBF fusion boxes is shown in Eqs. (7), (8), and (9):

	
(X, Y )upper =

∑T

i=1 ci ∗ (x, y)i
upper∑T

i=1 ci
� (7)

	
(X, Y )lower =

∑T

i=1 ci ∗ (x, y)i
lower∑T

i=1 ci
� (8)

	
C =

∑T

i=1 ci

T
� (9)

 where (X, Y)upper, (X, Y)lower, and C represent the coordinates of the upper left and lower right points and the 
confidence of the fused detection box, respectively. The superscript i represents the i-th prediction box, and the 
right side of the equation takes into account the coordinates and confidence of all T prediction boxes.

Figure 3 shows the comparison between NMS post-processing and WBF post-processing, In most of the results, 
the WBF post-processing scheme is closer to the ground truth.

Fig. 2.  t-SNE45 visualized the feature space distribution of E(I) extracted from the feature extractor. (a) Shows 
the initial feature distribution, with a large domain gap between the source and target domains. (b) After epoch 
10 of adversarial learning, the domain gap gradually decreases. (c) After epoch 40 of adversarial learning, the 
domain gap is small enough to confuse the domain discriminator.
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Experimental results
In this section, We conducted experiments on two typical chest X-ray datasets VinBigData and RSNA pneumonia 
detection. Due to device parameters, lighting, patient shooting location, and respiratory intensity, there is a 
significant domain gap between the two datasets.

We compare with a Faster R-CNN baseline model (trained on source domain dataset), a fully supervised 
model (trained on target domain dataset) denoted Oracle, and a model using our domain adaptation method 
denoted Ours, to show the effectiveness of unsupervised domain adaptation for cross-domain Lung Opacity 
detection.

Implementation details
In the experiments, we adopt Cascade R-CNN29 for the detection network as shown in Fig.  4. After conv1 
(Encoder) and conv2 (Feature Extractor), obtain a feature map E(I); Proposals generate sub-networks (H0, B0, 
RPN) that act on the entire feature map to generate initial hypotheses, also known as proposals; Input the RoI 
detection sub-network (H1, also known as detection head) for each hypothesis, and then predict the classification 

Fig. 4.  The experimental network with a feature extraction network in the upper left corner, a domain 
classification network in the lower left corner, and a detection network on the right using Cascade R-CNN 
utilize cascaded regression to enhance the confidence of the detection boxes.

 

Fig. 3.  Comparison of NMS and WBF. NMS simply keeps the box with the best confidence, while WBF 
integrates information from all prediction boxes.
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score (C1) and bbox regression (B1) for each hypothesis, then gradually improve the classification and regression 
scores through H2 and H3 in sequence. Cascade RCNN focuses on multi-stage detection subnetworks, with 
proposals generated based on RPN.

In the lower-left corner of Fig. 4, the domain discriminator D connects to a fully connected layer FC using 
feature map E (I) and then outputs the domain categories. In Eq. (3), we set the weight λ to 0.01 to balance the 
discriminator loss with the detection loss.

Our proposed method is implemented on the PC with one GTX2080Ti GPU, 16 GB memory, and one I7-
6700 CPU using the PyTorch framework running on the Ubuntu18.04 Operate System.

Datasets
VinBigData
 The VinBigData chest X-ray datasets24 consist of 18,000 scans used to automatically locate and classify 14 types 
of chest abnormalities from chest radiographs. These scans were annotated by experienced radiologists. There 
are a total of 31,818 normal annotations and 36,096 abnormal annotations. These annotations were collected 
through VinBigData’s online platform, VinLab. We merged different studies of the same patient and screened 
out images related to Lung Opacity (ILD, Lung Opacity, Nodule/Mass, Pulmonary fibrosis), resulting in training 
and validation images of 4394 and 1098.

RSNA pneumonia detection
 The RSNA pneumonia detection datasets25 is a collection of 30,000 chest X-ray images jointly collected by the 
North American Society of Radiology (RSNA) and the Thoracic Society of Radiology (STR), including 16,248 pa 
views and 13,752 ap views. There are a total of 20,672 normal annotations and 9555 abnormal annotations. All 
the Portable Network Graphics images were converted into DICOM formats, and patient sex, patient age, and 
projection were added to the DICOM tags. After merging different medical studies of patients, 4509 training and 
1503 validation images were obtained.

In summary, we present the details of all the datasets used in Table 2. To achieve a unified detection task, we 
only retained annotations related to Lung Opacity in each dataset.

Evaluation metrics
We use AP (Average Precision) and AR (Average Recall) to measure the performance of Lung Opacity detection 
results. If one Lung Opacity is repeatedly detected, the highest confidence is in the positive sample and the other 
is in the negative sample. On the smoothed PR curve, take the precision value of 10 equal points (r1to r10) on the 
horizontal axis 0–1, and calculate the average value as the final AP value, as shown in Eq. (10):

	
AP =

n−1∑
i=1

(ri+1 − ri)pint erp(ri+1)� (10)

 where the value of Pinterp here is taken as the maximum precision value on the right side of each point on the 
PR curve. The AP here is generally used as the average AP for calculating IoU thresholds from 0.5 to 0.95 (in 
steps of 0.05), while we use AP50 and AP75 (IoU thresholds of 0.5 and 0.75) as the other two important metrics.

Like AP, AR is also a numerical indicator that can compare detector performance. AR is the average of all recalls 
on IoU at [0.5, 1.0]. Essentially, AR can be calculated as twice the area under the Recall-IoU curve as Eq. (11):

	
AR = 2

∫ 1

0.5
recall(o)do� (11)

Merge
A: 
VinBigData

B: RSNA 
pneumonia

Lung opacity

ILD –

Lung 
opacity

Lung 
Opacity

Nodule/
mass –

Pulmonary 
fibrosis –

Train Val Train Val

4394 1098 4509 1503

Total 5492 6012

Normal 31,818 20,672

Annotations 36,096 9555

Per image 6.6 1.6

Table 2.  The partition of the dataset used in the experiments.
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To distinguish the detection performance of detectors on Lung Opacity of different scales and different numbers 
of boxes, we also used APm, APL, ARm, ARL, and AR10 (AR given 10 detections per image) as evaluation metrics. 
Here, m and L respectively represent the medium and large-scale objects in Lung Opacity detection.

The achieved results
To compare the performance of various detectors with (Ours) or without (Faster R-CNN, RetinaNet, FCOS) 
domain adaptation methods or using target domain annotations for training (Oracle), we conduct a series of 
experiments in different scenarios. This section proposes domain adaptation from multiple conditions and uses 
AP and AR to measure the performance of detectors from VinBigData (denoted as V) to RSNA pneumonia 
(denoted as R) dataset as source to target domain, and then exchange the source and target.

Our experimental results for cross-domain detection task R to V and a comparison of three representative 
detectors are presented in Table 3. When employing the Cascade_RCNN_x101_32 × 4D_FPN as the backbone, 
in terms of AP and AR, our method surpasses the Faster R-CNN, RetinaNet, and FCOS by 10.95%, and 15.24%, 
13.28% and 9.53%, 5.94% and 7.59%, respectively. A comparable trend is observed in terms of AP50, AP75, 
APm, APL, ARm, and ARL as well. We hold the belief that domain adaptation and data augmentation methods 
prove advantageous for Lung Opacity detection and yield the highest performance in terms of AP and AR. 
Additionally, we note that RetinaNet exhibits specific advantages in terms of APm. This phenomenon may be 
related to the number of samples at a medium scale, and further statistical testing is needed.

Correspondingly, Table  4 shows the results for cross-domain detection task V to R and a comparison of 
high-performance detectors. We found that various AP and AR metrics of all detectors increased to varying 
degrees, including the detector trained directly in the target domain R. With a common intuition, the R dataset 
has only 1.6 annotations per image, and the opacities of the lungs are only caused by pneumonia, making it 
easier to detect targets in the foreground. Similarly, we see that FCOS has certain advantages in APm and APL. 
If the medium and large-scale training samples between the source and target domains are severely imbalanced, 
aligning features in adversarial learning will be affected.

The last two columns in Tables 3 and 4 compare the FLOPs (FLoating point Operations) and FPS (Frames per 
Second) of all models. FLOPS is a measure of model computational complexity, the smaller the better; FPS is the 
speed of model inference, the higher the better. The FLOPs and FPS of different models are affected by network 
structure, training settings, input size, and other factors.

Faster RCNN and Cascade RCNN are two-stage detectors, which first generate region proposals for detection, 
having the highest computational complexity and the lowest inference efficiency but the better detection 
performance. RetinaNet is a single-stage detector that uses Focal loss to solve the problem of imbalanced positive 
and negative samples. Compared to two-stage detectors, it has lower FLOPs and faster inference speed. FCOS 
is an anchor-free detection network with the lowest FLOPs and the best FPS compared to the anchor-based 
methods above. Finally, our framework uses the Cascade RCNN as the backbone, making improvements by 
adding a branch of adversarial learning, which further enhances FLOPS while reducing FPS.

Moreover, data augmentation significantly contributes to the performance enhancement of our detector. To 
discern the impact of various data augmentation tactics on performance, we employ three approaches: without 
augmentation (N.Aug.), with light augmentation (L.Aug.), and with heavy augmentation (H.Aug.). Through this 
comparison, we firmly assert that suitable data augmentation can substantially elevate the performance of Lung 
Opacity detection41.

Method AP AP50 AP75 APm APL AR10 ARm ARL FLOPs (G) FPS

Faster RCNN 14.12 27.31 19.35 12.60 20.90 55.57 39.43 66.98 180.21 15.6

Cascade RCNN 30.98 41.03 36.52 18.07 36.66 67.10 69.17 68.00 210.17 10.9

RetinaNet 23.31 36.62 22.59 17.16 24.37 62.78 64.90 69.91 150.03 22.9

FCOS 29.55 38.19 21.67 20.51 38.71 68.23 63.77 70.03 120.65 31.6

Ours 36.55 45.15 33.73 18.99 36.89 75.91 71.50 82.62 269.64 10.5

Oracle 52.90 58.52 43.93 25.80 61.71 97.50 92.80 98.33 269.64 10.5

Table 4.  Cross-domain detection results from V to R.

 

Method AP AP50 AP75 APm APL AR10 ARm ARL FLOPs (G) FPS

Faster RCNN 13.35 26.17 19.22 11.87 18.87 58.87 36.87 65.87 239.66 12.5

Cascade RCNN 31.63 39.10 34.25 15.50 30.69 69.22 63.25 67.46 276.30 10.3

RetinaNet 21.02 35.22 23.19 17.23 25.16 64.58 63.37 67.03 167.00 20.3

FCOS 28.36 36.10 20.05 12.32 27.87 66.52 62.41 69.64 155.32 29.1

Ours 34.30 42.66 31.08 16.63 33.72 74.11 71.60 80.09 290.06 9.8

Oracle 48.88 57.62 41.55 25.62 60.13 93.58 90.18 95.69 290.06 9.8

Table 3.  Cross-domain detection results from R to V.
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In Table 5, we also incorporated the WBF, Focal, and GIoU methods into the ablation study to verify the 
effectiveness of all protocols.

Compared to not implementing any solutions, each solution has substantial performance improvements. The 
optimal results were achieved by simultaneously implementing heavy augmentation, WBF, and GIoU methods 
as indicated in Table 5. With L.Aug, the AP of R to V increased from 29.66 to 31.77%, and AR10 increased from 
68.7 to 70.68%; The AP of V to R increased from 30.79 to 34.81%, and AR10 increased from 71.07 to 73.50%. 
With H.Aug, the AP of R to V increased from 29.66 to 32.06%, and AR10 increased from 68.70 to 72.34%; The 
AP of V to R increased from 30.79 to 35.67%, and AR10 increased from 71.07 to 74.92%. This indicates that 
H.Aug has a more significant improvement in model performance. After introducing Focal, the AP of R to V 
slightly decreased from 31.77 to 31.80%, but AR10 increased from 70.68 to 71.51%; The AP of V to R increased 
from 34.81 to 35.82%, and AR10 increased from 73.50 to 75.10%. This indicates that Focal has a positive impact 
on AR10, but has a relatively small impact on AP. After introducing GIoU and WBF, the AP of R to V increased 
from 31.80 to 33.15%, and AR10 increased from 71.51 to 72.13%; The AP of V to R increased from 34.68 to 
35.90%, and AR10 increased from 74.13 to 75.52%. This indicates that GIoU and WBF have a positive impact 
on model performance. It can be seen that Focal loss has little effect on the AP and AR10 of task R to V but has 
a slight improvement on the AP of task V to R. When all methods are used, the model achieved 34.30% AP 
and 74.11% AR10 on the task R to V, and 36.55% AP and 75.91% AR10 on the task V to R, indicating that the 
combination of these methods can maximize model performance.

To provide a clearer insight into the effectiveness of our detector for task R to V, we randomly selected two 
images from the validation set of VinBigData for testing purposes. As depicted in Fig. 5, across the two groups, 
the lung opacity locations were more accurately determined after our proposed domain adaptation method. 
Before implementing domain adaptation, more than one occurrence of results with IoU less than 0.5, while after 
adaptation, multiple occurrences of results with IoU greater than 0.75. Therefore, we confidently assert that our 
method can effectively improve the performance of cross-domain Lung Opacity detection.

Similarly, for task V to R, we randomly selected 2 images from the validation set of RSNA pneumonia and 
plotted the IoU ratio of the prediction box with ground truth. As shown in Fig. 6, before domain adaptation, 
multiple detection results had the IoU ratio less than 0.5 with ground truth, and one detection was missed.

Comparison with state-of-the-art
In this section, we compare our work with state-of-the-art works on multiple datasets. To conduct a more 
comprehensive analysis, we continued to perform domain adaptation tasks on three Lung Nodule detection 
datasets: NODE2148, CXR249, and B-Nodule50. Moreover, we extract the Lung Nodule category from the best 
Lung Opacity detection works for comparison. Table 6 summarizes these comparison results.

We use AP, AP50, AP75, APm, and APL as an evaluation metric to compare with other best cross-domain 
detection works such as EPM51, SCAN52, PT53, AT54, CMT55, and NDL50. SCAN leveraged domain classifiers and 
adversarial networks to obtain domain-invariant features and achieved the best APm in task CXR to B-Nodule. 
CMT addressed the challenge of domain adaptation for detection by mean teacher self-training and brought 
the best APL in task CXR to NODE21. NDL tackles the challenge of low-quality pseudo-labels by employing 
a distinct hierarchical contrastive learning strategy and achieved the best AP, AP50, AP75, and APm in 5 tasks, 
showing unique advantages in cross-domain detection tasks.

Compared with the state-of-the-art method NDL, AP of Ours leads by 2.18 points in task CXR to B-Nodule 
and lags by 1.38 points in task CXR to NODE21. Meanwhile, due to the advantages of frameworks and methods, 
AP50 and APL of Ours have achieved significant leading performance compared to NDL in task CXR to 
B-Nodule. Task CXR to B-Nodule involves cross-domain detection from a small dataset to a large one, requiring 
a more complex network to extract domain invariant features. Therefore, using adversarial learning in a two-
stage Cascade RCNN framework is more advantageous.

To sum up, our proposed method achieved competitive results in multiple cross-domain tasks using AP, 
AP50, AP75, APm, and APL as evaluation metrics. In the specific task of CXR to B-Nodule, the best AP, AP75, and 
APL were achieved compared to other state-of-the-art works.

Method L.Aug. H.Aug. WBF Focal GIoU

R to V V to R

AP AR10 AP AR10

Ours & N.Aug. 29.66 68.70 30.79 71.07

Ours & L.Aug. √ 31.77 70.68 34.81 73.50

Ours & H.Aug. √ 32.06 72.34 35.67 74.92

Ours & L.Aug. & Focal √ √ 31.80 71.51 34.68 74.13

Ours & H.Aug. & 
WBF √ √ 32.19 72.96 35.82 75.10

Ours & L.Aug. & WBF
& GIoU & Focal √ √ √ √ 33.15 72.13 35.90 75.52

Ours & H.Aug. & 
WBF
& GIoU & Focal

√ √ √ √ 34.30 74.11 36.55 75.91

Table 5.  Ablation study of cross-domain detection.
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More discussion
Visualizing specific regions of the radiograph through CAM (Class Activation Mapping)56 proves valuable in 
identifying and understanding the focal areas in X-ray images that the model considers important for detecting 
Lung Opacity. To achieve this, we aim to extract the feature maps generated by the final convolutional layer and 
compute a weighted average of these feature maps using the weights from the final fully connected layer.

As shown in Fig.  7, the focal areas displayed by CAM in X-ray images appear red or even black. When 
implementing domain adaptation methods, these areas highly overlap with our prediction box, proving that our 
proposed methods can efficiently perform feature distribution alignment and learning.

Conclusion and future work
Nowadays, computer vision based on deep learning has been widely applied in medical imaging. Lung Opacity 
detection in different scenarios poses significant challenges. To this end, we proposed a novel method based 
on adversarial learning for cross-domain Lung Opacity detection. Our experimental results indicate that our 
detector achieved the surpass AP of 34.30% and 36.55%, the AR10 of 74.11% and 75.91% in two cross-domain 
detection tasks compared to popular primary detectors such as RetinaNet, Faster R-CNN, and FCOS.

Meanwhile, we continued to improve the performance by utilizing Heavy data augmentation, WBF, 
GIoU loss, and Focal loss. WBF integrates information from all prediction boxes; GIoU loss overcomes the 
disadvantage of IoU not being able to optimize overlapping boxes, and Focal loss eliminates the impact of sample 
imbalance between foreground and background. The contribution of these strategies lays a solid foundation for 
the outcome.

Furthermore, our ongoing research will encompass performance analyses of lung detectors on other datasets, 
such as COVID-19 abnormalities detection, broadening the scope and applicability of our methods.

Our proposed method cannot be applied to cross-domain detection of different diseases. There are 
significant differences in spatial features among different types of diseases, and adversarial learning cannot be 
used to extract common characteristics. The current research hotspot MedSAM57 is addressing this challenge 
by achieving unsupervised learning to segment targets of any category. Combined with CLIP58, it is possible to 
train a universal model in the medical field through a language-supervised open vocabulary detection model.

Fig. 5.  The results in cross-domain detection task R to V. The 3 columns represent the origin image of the 
target domain, detection results before adaptation, and after adaptation, respectively.
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Methods

CXR to B-Nodule/CXR to NODE21

AP AP50 AP75 APm APL

EPM51 18.07/17.53 50.87/50.25 4.69/4.74 12.95/18.57 19.53/26.34

SCAN52 19.96/16.79 49.38/50.44 9.44/5.51 22.39/18.00 20.56/16.51

PT53 20.88/17.78 53.79/48.16 8.83/8.45 17.94/18.39 21.94/26.42

AT54 14.54/18.14 43.76/45.48 4.03/9.92 7.71/18.31 16.01/27.08

CMT55 20.59/19.51 52.68/49.87 9.20/10.24 12.70/19.92 22.00/30.81

NDL50 21.93/19.95 56.34/50.67 9.73/10.36 14.37/20.89 23.66/28.49

Ours 24.11/18.57 47.55/46.33 9.87/9.96 16.52/20.64 23.72/29.15

Table 6.  Comparison with state-of-the-art works.

 

Fig. 6.  The results in cross-domain detection task V to R. One detection was missed before domain adaptation 
while good IoU ratios were obtained after domain adaptation.
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Data availability
Data and code needed to reproduce the research and figures presented in this study are fully documented and 
accessible in the software repository https://github.com/haoqiu111/Lung-Opacity/. Any additional information 
required to reanalyze the data reported in this paper is available from the lead contact upon request. The data-
sets used in the current study are available through the provided link: ​h​t​t​p​s​:​/​/​w​w​w​.​p​h​y​s​i​o​n​e​t​.​o​r​g​/​c​o​n​t​e​n​t​/​v​i​n​d​
r​-​c​x​r​/​1​.​0​.​0​/​​​​​. https://pubs​.rsna.org/do​i/full/10.11​48/ryai.201​9180041/. ​h​t​t​p​s​:​/​/​n​o​d​e​2​1​.​g​r​a​n​d​-​c​h​a​l​l​e​n​g​e​.​o​r​g​/​D​a​t​a​
/​​​​​. https://univ​erse.roboflo​w.com/xray-c​hest-nodule​/cxr-dcjlk/. ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​y​f​p​e​o​p​l​e​/​B​-​n​o​d​u​l​e​-​D​a​t​a​s​e​t​/​​​​​.​​
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