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Mitochondria are pivotal in cellular energy metabolism and have garnered significant attention 
for their roles in cancer progression and therapy resistance. Despite this, the functional diversity 
of mitochondria across various cancer types remains inadequately characterized. This study seeks 
to fill this knowledge gap by introducing and validating MitoScore—a novel metric designed to 
quantitatively assess mitochondrial function across a wide array of cancers. Our investigation evaluates 
the capacity of MitoScore not only to distinguish between tumor and adjacent normal tissues but 
also to serve as a predictive marker for clinical outcomes. We analyzed gene expression data from 24 
cancer types and corresponding normal tissues using the TCGA database. MitoScore was calculated 
by summing the normalized expression levels of six mitochondrial genes known to be consistently 
altered across multiple cancers. Differential gene expression was assessed using DESeq2, with a focus 
on identifying significant changes in mitochondrial function. MitoScore’s associations with tumor 
proliferation, hypoxia, aneuploidy, and clinical outcomes were evaluated using Spearman’s correlation, 
linear regression, and Kaplan–Meier survival analyses. MitoScore was significantly higher in tumor 
tissues compared to normal tissues across most cancer types (p < 0.001). It positively correlated with 
tumor proliferation rates (r = 0.46), hypoxia scores (r = 0.61), and aneuploidy (r = 0.44), indicating its 
potential as a marker of aggressive tumor behavior. High MitoScore was also associated with poorer 
prognosis in several cancer types, suggesting its utility as a predictive biomarker for clinical outcomes. 
This study introduces MitoScore, a metric for mitochondrial activity often elevated in tumors and 
linked to poor prognosis. It correlates positively with hypoxia and negatively with stromal and immune 
infiltration, highlighting mitochondria’s role in the tumor microenvironment. MitoScore’s association 
with genomic instability, such as aneuploidy, suggests mitochondrial dysfunction contributes to cancer 
progression. Despite challenges in mitochondrial-targeted therapies, MitoScore may identify tumors 
responsive to such treatments, warranting further research for clinical application.

Mitochondria play a complex and crucial role in cellular biology and cancer development1. Beyond their well-
known function as the cell’s powerhouse, generating ATP through oxidative phosphorylation, mitochondria are 
involved in various critical cellular processes, including apoptosis and metabolic regulation2–4. In the context of 
cancer, mitochondrial dysfunction has been widely recognized as a key factor contributing to tumorigenesis5,6, 
progression7, and the development of drug resistance8–10.

Alterations in mitochondrial function are often associated with the metabolic reprogramming of tumor 
cells. Cancer cells tend to rely on glycolysis for energy production, even in the presence of sufficient oxygen—a 
phenomenon known as the “Warburg effect”11,12. Moreover, mitochondria play a vital role in maintaining cellular 
redox balance and producing reactive oxygen species (ROS), which are critical mediators of cell signaling and 
regulation of cell death13–15. Mitochondrial dysfunction can lead to abnormal ROS levels, resulting in DNA 
damage, altered gene expression, and ultimately, cancer development16,17.
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Pancancer studies offer a unique opportunity to identify both common features and heterogeneity among 
different cancer types18–20. The role of mitochondria in pan-cancer contexts has garnered increasing attention, 
as whole-genome analyses of mitochondria reveal both shared and distinct alterations across various cancer 
types21. By comparing mitochondrial dysfunction across different cancers, researchers can gain a deeper 
understanding of the common mechanisms underlying cancer and identify potential therapeutic targets22. 
Furthermore, the potential of mitochondrial biomarkers is being explored for early cancer diagnosis, treatment, 
prognosis, and monitoring treatment responses23,24.MitoCarta3.0 offers a comprehensive, updated catalog 
of mitochondrial proteins, detailing their sub-organelle locations and associated pathways. It supports the 
application of high-throughput datasets in molecular biology and human genetics, aiding in the exploration 
of the roles of lesser-known or novel mitochondrial function25. Furthermore, it has been widely utilized in 
mitochondrial research26–28.

Given the diverse roles of mitochondria in cancer development—from energy metabolism to the regulation of 
cell death—they represent a critical area of research in cancer biology and the development of novel therapeutic 
strategies. Our study builds on this foundation, offering insights into the heterogeneity of mitochondrial 
function across cancers and proposing MitoScore as a novel metric for assessing mitochondrial dysfunction in 
the pan-cancer setting.

Methods
TCGA dataset
Clinical data for 9,721 tumor and 725 matched-normal samples were obtained from The Cancer Genome Atlas 
(TCGA; https://cancergenome.nih.gov/). Gene expression data, provided as read counts, were ​q​u​a​n​t​i​l​e​-​n​o​r​m​a​
l​i​z​e​d using the voom method. 1136 genes encoding the human mitochondrial proteome from MitoCarta3.025 
(http://www.broadinstitute.org/mitocarta). The MitoScore for each sample was calculated by summing the 
normalized (log2 median-centered) expression levels of these signature genes across both tumors and matched-
normal tissues. Additional clinical data for TCGA-BRCA samples were sourced from reference29. To identify 
differentially expressed genes across various TCGA tumor types, we utilized the DESeq2 package (Version 1.38.1) 
in R (Version 4.2.2). Tumor types lacking normal samples were excluded from the analysis. For each tumor 
type, a DESeqDataSet object was created using the corresponding count data and sample group information. 
Differential expression analysis was performed using the DESeq() function. We filtered the results to identify 
genes with an absolute log2 fold change greater than 1 and an adjusted p below 0.05.

METABRIC dataset
Normalized gene expression data for 1,992 primary breast tumors and 144 normal breast tissue samples were 
obtained from the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) through the 
European Genome-Phenome Archive (EGAC00001000484)30. The MitoScore for each sample was calculated 
using the same method as applied to the TCGA dataset. Clinical data corresponding to these samples were 
retrieved from cBioPortal (http://www.cbioportal.org/)31.

Proliferation rates
Proliferation rates (a measure of how quickly cells are dividing) for 9,568 tumor samples were retrieved from a 
study referenced as32.

Genomic data
Whole Genome Doubling: This refers to the number of times the entire genome of a cell has doubled during 
the evolution of cancer. The study categorizes samples into three groups: no doubling, one doubling, and two 
or more doublings. Aneuploidy: Aneuploidy involves abnormalities in the number of chromosomes. The study 
examines both the aneuploidy score and the specific alterations per chromosome arm. These data were retrieved 
from another study33, encompassing 9,166 samples. (corresponding to 0, 1 and ≥ 2 genome doubling events in 
the clonal evolution of the cancer).

Mutation data
Mutation data were obtained from Firebrowse (http://firebrowse.org/), which provides pre-processed TCGA 
datasets. A total of 7120 samples were analyzed, with mutations categorized into silent, missense, splice site, or 
nonsense variants. Further classification was performed using the ClinVar database, labeling mutations as “likely 
pathogenic” or “pathogenic”. Additionally, 5601 likely driver mutations, contributing to cancer progression, were 
identified from the Cancer Genome Interpreter database.

Cancer driver genes
A list of 299 genes, considered to be cancer drivers (genes whose mutations contribute to cancer), was retrieved 
from another referenced study34.

Intra-tumor heterogeneity
This refers to the diversity of cancer cells within a single tumor. The number of clones (distinct populations of 
cancer cells) per sample was retrieved from study35, covering 1,080 samples.

Stromal and immune cell fractions
Predicted fractions of stromal and immune cells in TCGA tumor samples (n = 2,463) were obtained from a 
previous study36. These scores were derived from RNASeqV2 expression data. Notably, the calculation of these 
cell proportions did not involve any genes associated with the MitoScore36.
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Hypoxia analysis
Tumor samples were assessed for hypoxic status by analyzing the hypoxia 99-metagene signature37. The hypoxia 
score was calculated using a similar approach to the MitoScore, providing a method to evaluate hypoxia in 
cancer cells.

Spearman’s correlation analysis
Spearman’s correlation analyses were conducted using the cor.test function in R with the method specified as 
“spearman”. To compare differences between two Spearman’s correlations, the paired.r function from the R 
package psych was utilized. Unpaired two-sample statistical analyses. Wilcoxon rank-sum tests were performed 
using the wilcox.test R function.

Linear regression analyses
Multiple linear regression models were constructed using the lm function from the R package limma38. Covariate 
collinearity was evaluated using the corvif function, ensuring that all covariates had a variance inflation factor 
below 2. Genomic instability covariates were normalized with z-scores to account for variations.

Other analyses
The Fligner-Killeen test for homogeneity of variances was conducted using the fligner.test function in R. 
Proportion tests were performed with the prop.test function, and two-way ANOVA was executed using the aov 
function in R. Wilcoxon rank-sum tests were conducted using the wilcox.test function in R for unpaired two-
sample statistical analyses.

Gene ontology (GO) analysis
We performed Gene Ontology (GO) enrichment analysis on genes associated with MitoScore using the 
clusterProfiler package in R. All three GO categories—biological process (BP), cellular component (CC), and 
molecular function (MF)—were included by setting the ont parameter to “ALL”39. The analysis was conducted 
using the enrichGO function, with significance thresholds set at an adjusted p cutoff of 0.01 and a q-value 
cutoff of 0.05. The results were log-transformed to compute the LogP. The enriched GO terms were visualized 
using a bar plot, displaying the top 10 terms.The data were saved as CSV files for further analysis. To explore 
the upregulated and downregulated GO terms, we sorted the results by LogP and extracted the top 10 most 
significant terms in both directions.

Survival analyses
Patients were divided into two subgroups based on the median MitoScore value. Prognostic differences were 
analyzed with Kaplan–Meier plots and log-rank tests, performed for each cancer type using the R package 
survival.

Results
Pan-cancer landscape of mitochondrial-related gene expression
The overall workflow of the study (Fig. 1A). We analyzed the differential gene expression levels of 24 cancer 
types and their matched adjacent normal samples obtained from the TCGA database (log2FC > 1, p < 0.05) 
(Fig. 1B). Among them, Kidney Renal Clear Cell Carcinoma (KIRC) exhibited the most differentially expressed 
genes. We then selected 1134 mitochondrial-related genes from the MitoCarta3.0 database to assess alterations 
in mitochondrial function across human cancer samples. By intersecting these genes with the differentially 
expressed genes from various cancers (Fig.  1C), we identified mitochondrial differentially expressed genes 
(Mito-DEGs). We found that cancers such as cholangiocarcinoma (CHOL), glioblastoma (GBM), kidney 
chromophobe (KICH), lung squamous cell carcinoma (LUSC), and paraganglioma (PCPG) exhibited higher 
variability in Mito-DEGs (over 200 Mito-DEGs) compared to other tumors, while prostate adenocarcinoma 
(PRAD) and thyroid carcinoma (THCA) showed lower variability (Fig. 1D). Although CHOL had the highest 
number of Mito-DEGs, only 16.19% of these genes were significantly upregulated. In contrast, more than 60% of 
Mito-DEGs were upregulated in rectal adenocarcinoma (READ), lung squamous cell carcinoma (LUSC), lung 
adenocarcinoma (LUAD), breast carcinoma (BRCA), cervical squamous cell carcinoma (CESC), and uterine 
corpus endometrial carcinoma (UCEC). These findings suggest that mitochondrial function varies widely 
among different tumors. Notably, female-related tumors such as BRCA (60.78%), CESC (75.88%), and UCEC 
(79.71%) had a much higher proportion of upregulated Mito-DEGs compared to male-related PRAD (42.30%), 
indicating a significant sex-specific difference in mitochondrial contributions to tumor biology (Number of 
MitoDEGs/Number of Up-MitoDEGs, Fig. 1E).

Development of MitoScore based on mitochondrial biomarkers
To identify mitochondrial-related genes with consistent differential expression across cancers, we intersected 
Mito-DEGs with the MitoCarta3.0 mitochondrial gene set. We identified genes such as “CYP27B1”, “DNA2”, 
“MTFR2(FAM54A)”, “PIF1”, “POLQ”, and “RECQL4” that were significantly upregulated in tumors like UCEC, 
BLCA, BRCA, CHOL, COAD, ESCA, HNSC, LIHC, LUSC, and STAD, while genes such as “ACACB”, “ACSM5”, 
“PDE2A”, and “PDK4” were significantly downregulated. GO analysis revealed that upregulated genes were 
enriched in metabolism-related GO terms, including DNA helicase activity, ATP-dependent activity, and catalytic 
activity, while downregulated genes were enriched in fatty acid biosynthetic process and acyl-CoA metabolic 
process (Fig. 1F). We hypothesized that these genes might represent pan-cancer mitochondrial signature genes 
driving tumor progression. Based on these commonly upregulated genes, we developed MitoScore, a novel 
metric to evaluate mitochondrial function across cancers.
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Pan-cancer analysis of MitoScore
Mitochondria, as key organelles in cellular energy metabolism, play an essential role in supporting cellular 
biological activities. To explore the relationship between MitoScore and tumors in the TCGA cohort, we found 
that MitoScore was significantly higher in tumors compared to paired adjacent normal tissues (at least 10 
samples per sample type; False Discovery Rate (FDR) < 0.0001, Wilcoxon rank-sum test, Fig. 2A), indicating 
its potential as a pan-cancer mitochondrial signature. Further analysis revealed high variability in MitoScore 
among tumors such as esophageal carcinoma (ESCA), bladder carcinoma (BLCA), head and neck squamous cell 
carcinoma (HNSC), and lung squamous cell carcinoma (LUSC), whereas KIRC, PRAD, THCA, KIRP, and KICH 
had lower scores (Fig. 2B). Since malignant proliferation of tumor cells is accompanied by increased energy 
metabolism, with mitochondria playing a crucial role, we assessed the correlation between MitoScore and 
tumor proliferation. MitoScore was positively correlated with tumor proliferation rates (Spearman’s correlation 
coefficient, r = 0.455, p < 2.2e−16; Fig. 2C). As proliferation is a hallmark of cancer and often associated with poor 
prognosis, we further analyzed the relationship between MitoScore and tumor prognosis. We found that patients 
with high MitoScore exhibited poorer outcomes in cancers(except for BLCA), a negative correlation between 
MitoScore and survival was evident in cancers including ACC, KIRP, KIRC, MESO, UVM, LGG, PAAD, SARC, 
BRCA, PCPG, OV, LUAD, LIHC, KICH, COADREAD, SKCM, HNSC and UCEC. However, survival curves 
for high and low MitoScore groups began to intersect in cancers such as BRCA, OV, LUAD,ESCA, and LIHC, 
suggesting a dynamic shift in survival trends over time(Fig. 2D & Fig. S1). Thus, MitoScore effectively reflects 
mitochondrial function in cancer patients, and its scores are significantly higher in tumors than in adjacent 
normal tissues (P < 0.01). Furthermore, MitoScore is associated with tumor proliferation and poor prognosis in 
most cancers, making it a valuable prognostic marker across cancers.

MitoScore and its association with cancer hypoxia and stromal infiltration
Hypoxic microenvironments are a common and prominent feature of most solid tumors, significantly affecting 
cancer cell behavior and malignant phenotypes40. Hypoxia influences the efficacy of chemotherapy, radiotherapy, 
and immunotherapy through complex mechanisms and is strongly associated with poor prognosis in various 
cancers. Building on previously established gene expression profiles, we examined the correlation between 
MitoScore and relative hypoxia levels in TCGA tumor samples. Our analysis revealed a positive correlation 
between MitoScore and hypoxia scores (r = 0.61, p < 2.2e−16; Fig.  3A). Linear regression analysis across 12 

Fig. 1.  (A) This figure illustrates the overall workflow of the study; (B) shows the differential gene expression 
between solid tumors and adjacent normal tissues in TCGA; (C) displays the intersection of differentially 
expressed genes from various tumors with the 1,134 mitochondrial function genes from the MitoCarta3.0 
database; (D) presents the mitochondrial function-related differentially expressed genes identified after 
intersecting solid tumors with adjacent normal tissues in TCGA, highlighting the significance of mitochondrial 
function differences across various tumor types; (E) illustrates the upregulated and downregulated 
differentially expressed genes across different tumor sites, revealing the expression patterns of mitochondrial-
related genes in various cancers; (F) shows the GO analysis of commonly upregulated and downregulated 
genes.
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TCGA-cohorts, considering all covariates, identified four cancer types (GBM, LUAD, BLCA, and HNSC) where 
hypoxia showed a significant positive correlation with MitoScore (FDR < 0.05; Fig. 3B).

Although tumors also consist of stromal and immune cells, the role of mitochondria in the tumor 
microenvironment remains unclear. We evaluated the relationship between MitoScore and stromal and immune 
cell infiltration. MitoScore was negatively correlated with stromal cells (Spearman’s correlation coefficient, 
r = −0.51, p < 3.7e−129; Fig.  3C) and showed a weaker but statistically significant negative correlation with 
immune cell infiltration (Spearman’s correlation coefficient, r = −0.26, p < 1.9e−31; Fig. 3E). Further analysis 
across five TCGA cohorts showed a significant association between MitoScore and reduced stromal infiltration 
in LUAD, HNSC, KIRC and BLCA (FDR < 0.05; Fig. 3D). Additionally, GBM showed lower immune infiltration, 
while KIRC BLCA and HNSC exhibited higher immune infiltration (FDR < 0.05; Fig. 3F).

MitoScore correlates with breast cancer malignancy
Previous analyses suggest that female tumors have a higher proportion of upregulated Mito-DEGs compared to 
male tumors (This may be due to the predominance of P53 and BRCA mutations in female-associated cancers41), 
with MitoScore in BRCA and UCEC being higher than in PRAD. This indicates that mitochondrial function 
may differ more significantly in female tumors. Given that BRCA is the second most common cancer among 
women and has a large number of samples available in TCGA, we conducted an in-depth analysis of MitoScore 
in BRCA to assess mitochondrial function.

Results showed that MitoScore was significantly higher in tumor samples compared to normal breast tissue 
(p < 0.0001, Wilcoxon rank-sum test, Fig. 3G). Among the histological subtypes, ductal carcinoma (the most 
common, accounting for 90%) had a significantly higher score than lobular carcinoma (p < 0.0001, Wilcoxon 
rank-sum test, Fig.  3H), and in PAM50 subtypes, basal-like subtype had the highest MitoScore (P < 0.0001, 
Wilcoxon rank-sum test, Fig.  3J). MitoScore increased with tumor stage, although no significant differences 
were observed between stages II, III, and IV (“***”p < 0.001, “****”p < 0.0001, Wilcoxon rank-sum test, Fig. 3L). 
Subsequently, we validated these findings using 1,992 samples from the METABRIC breast cancer cohort, where 
ductal carcinoma had a significantly higher MitoScore than lobular carcinoma (p < 0.0001, Wilcoxon rank-
sum test, Fig. 3I), and the basal-like subtype in PAM50 had a significantly higher score than other subtypes 
(p < 0.0001, Wilcoxon rank-sum test, Fig.  3K). For tumor stages, stage II has a higher Mitoscore than stage 
I, but there is no significant difference between stage II and stage III, as well as between stage IV and stage 

Fig. 2.  (A) displays the MitoScore in tumors versus adjacent normal tissues, with red representing tumor 
tissues and blue representing adjacent normal tissues. The figure shows that the MitoScore is significantly 
higher in most tumors compared to adjacent normal tissues, indicating notable changes in mitochondrial 
function within tumor tissues.; (B) shows the variation in MitoScore across different tumor types in the TCGA 
dataset. The results indicate significant variability in MitoScore among different tumor types, with some 
tumors like ESCA, BLCA, HNSC, and LUSC having higher MitoScore, while tumors such as KIRC, PRAD, and 
THCA have lower scores.; (C) depicts the correlation between MitoScore and tumor proliferation rates; (D) 
illustrates the prognostic implications of MitoScore across different tumor types.
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III. (“***”p < 0.001, “****”p < 0.0001, Wilcoxon rank-sum test, Fig. 3M). These findings suggest that MitoScore 
increases with tumor malignancy and were validated in the METABRIC cohort.

MitoScore and its association with cancer genomic instability
In our analysis of aneuploidy features from TCGA, we observed that MitoScore was significantly higher in 
samples with whole-genome doubling (p < 0.0001, Wilcoxon rank-sum test, Fig. 4A) and positively correlated 
with aneuploidy scores, measured by the number of altered chromosome arms—either gained or lost 
(Spearman’s correlation coefficient , r = 0.44, p < 2.2e−16; Fig.  4B). We further explored whether aneuploidy 
levels associated with MitoScore varied across different chromosomes and found that 21 chromosome arms were 
enriched in tumors with high MitoScore (FDR < 0.05; Fig. 4C). Notably, losses of chromosomes 5, 16p, and 16 
were most closely associated. Beyond aneuploidy, MitoScore also showed positive correlations with mutation 
burden, somatic copy number alterations (CNA), and the number of clones per tumor (Spearman’s correlation 
coefficient, r = 0.48/0.47/0.43, respectively, p < 2.2e−16 for all; Fig. 4D,E,F) Importantly, these correlations were 
independent of cell proliferation (Fig. 4G,H,I,J).

Discussion
Our study provides a comprehensive analysis of mitochondrial-related gene expression across various cancer 
types, revealing significant heterogeneity in mitochondrial function. We observed that certain cancer types, such 
as cholangiocarcinoma (CHOL) and glioblastoma (GBM), exhibit high variability in Mito-DEGs, suggesting 
that mitochondrial dysfunction may play a critical role in the pathogenesis of these cancers. Conversely, the 
lower variability of Mito-DEGs in cancers such as prostate adenocarcinoma (PRAD) and thyroid carcinoma 
(THCA) may indicate a lesser dependency on mitochondrial alterations during tumor progression. These 
findings underscore the importance of considering mitochondrial function in the context of specific cancer 
types, which could form the basis for more targeted therapeutic approaches.

Fig. 3.  (A) illustrates the correlation between MitoScore and relative hypoxia levels in TCGA tumor samples; 
(B) shows the linear regression analysis across TCGA cohorts; (C) illustrates the correlation between 
MitoScore and stromal cell infiltration; (D) highlights the significant association between MitoScore and 
reduced stromal infiltration across 4 TCGA cohorts; (E) shows the correlation between MitoScore and immune 
cell infiltration; (F) highlights the significant association between MitoScore and immune cell infiltration 
across 3 TCGA cohorts; (G) shows the MitoScore in breast cancer tumor samples compared to normal 
breast tissue; (H&I) illustrates the MitoScore in different histological subtypes (ductal carcinoma and lobular 
carcinoma). The results demonstrate that ductal carcinoma has a significantly higher MitoScore than lobular 
carcinoma; (J&K) shows the MitoScore across different PAM50 subtypes of breast cancer. The results show 
that Basal-like subtype has the highest MitoScore, indicating that this subtype may be associated with more 
significant mitochondrial function alterations; (L&M) shows the variation of MitoScore across different stages 
of breast cancer. While no significant differences were observed between stages II, III, and IV, the MitoScore 
increased with tumor stage (H,J&L: TCGA database; I,K&M: METABRIC database).
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The development of MitoScore as a novel metric for assessing mitochondrial function across cancers highlights 
the central role of mitochondria in tumor biology. The consistent elevation of MitoScore in tumor samples 
compared to adjacent normal tissues across multiple cancer types indicates that mitochondrial dysfunction is a 
common feature of cancer. We observed a positive association between MitoScore and tumor proliferation. While 
the Warburg effect suggests that cancer cells primarily rely on glycolysis rather than mitochondrial respiration 
to meet their energy demands for proliferation11,12. This may be due to increased mitochondrial activity, which 
supports the biosynthetic and signaling needs of rapid cell growth. Additionally, some tumors exhibit metabolic 
heterogeneity, utilizing both glycolysis and enhanced mitochondrial function to meet the demands of accelerated 
proliferation, highlighting the critical role of mitochondria in tumor progression42. Studies by Meng et al.43 and 
Watson et al.44 have also found that mitochondrial dysfunction can promote tumor metastasis. The relationship 
between high MitoScore and poor prognosis in several cancers further emphasizes its potential as a prognostic 
biomarker, especially in cancers where mitochondrial metabolism is significantly altered.

Our study also suggests a complex interplay between mitochondrial function, hypoxia, and the tumor 
microenvironment. The positive correlation between MitoScore and hypoxia scores across various cancer 
types is consistent with previous studies that highlight the role of mitochondria in the cellular response to 
hypoxia45–47. This association suggests that mitochondrial activity may be crucial in supporting the survival 
and proliferation of cancer cells under hypoxic conditions. Additionally, numerous studies have reported that 
mitochondria can participate in the regulation of the tumor microenvironment across various cancers48,49. Our 
study provides evidence on a pan-cancer level, showing that the negative correlation between MitoScore and 
stromal or immune cell infiltration indicates that mitochondrial function may influence the composition of 
the tumor microenvironment, thereby affecting tumor progression and therapeutic response. These findings 
warrant further investigation into the role of mitochondria in modulating the tumor microenvironment and 
their potential as targets for therapeutic intervention.

Comprehensive studies by Árnadóttir et al. and Yuan et al. on the mutations50 and molecular51 characteristics 
of the human mitochondrial genome have laid the groundwork for assessing the relationship between 
mitochondrial function and pan-cancer. Our analysis found a significant correlation between MitoScore and 
indicators of genomic instability, such as aneuploidy and mutation burden, suggesting that mitochondrial 
dysfunction may contribute to the genomic chaos commonly observed in cancers. This relationship highlights 

Fig. 4.  (A) MitoScore is significantly higher in samples with whole-genome doubling (p < 0.0001); (B) 
illustrates the correlation between MitoScore and aneuploidy scores, which are measured by the number of 
altered chromosome arms (either gained or lost); (C) presents the relationship between aneuploidy levels 
across different chromosome arms and MitoScore; (D): MitoScore positively correlates with mutation burden; 
(E): MitoScore positively correlates with the number of CNAs; (F): MitoScore positively correlates with the 
number of tumor clones; (G–J): display the correlations between MitoScore and mutation burden, somatic 
copy number alterations (CNA), and the number of tumor clones, independent of cell proliferation. The 
results suggest that the positive correlations between MitoScore and these genomic instability markers are 
independent of cell proliferation.
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the potential of MitoScore as a biomarker for identifying tumors with high genomic instability, which are often 
associated with poor prognosis and therapy resistance. Understanding the mechanisms by which mitochondrial 
dysfunction drives genomic instability could open new avenues for therapeutic strategies aimed at stabilizing the 
genome by targeting mitochondrial pathways.

In breast cancer, most studies have focused on individual molecules52,53, with a lack of extensive research on 
mitochondrial function across different subtypes. Our analysis of various breast cancer subtypes underscores the 
importance of mitochondrial function in determining tumor aggressiveness. We observed higher MitoScore in 
more aggressive subtypes, particularly in triple-negative breast cancer, suggesting that mitochondrial dysfunction 
may be a key driver of increased malignancy. The consistency of these findings across different datasets further 
supports the reliability of MitoScore as a prognostic tool and its potential utility in guiding treatment decisions in 
breast cancer. As mitochondrial dysfunction appears to play a central role in cancer progression, further research 
into mitochondrial-targeted therapies could provide significant benefits in managing aggressive cancers.

Many early therapeutic strategies targeting mitochondrial complex proteins faced significant challenges in 
clinical trials, including issues with toxicity and limited efficacy54,55. For example, inhibitors targeting complexes 
I and III showed some effects on tumor cells but also impacted mitochondrial function in normal cells, leading 
to adverse effects56. These challenges highlight the limitations of using mitochondrial-targeted drugs without a 
clear understanding of a patient’s mitochondrial profile. MitoScore could serve as a screening tool to identify 
tumors with heightened mitochondrial activity that may respond better to such therapies, thus informing more 
targeted strategies for mitochondrial-based treatments.

The limitation of our study is that MitoScore, based on mitochondrial RNA expression levels, may not fully 
capture mitochondrial functional capacity. Mitochondrial function is influenced by various factors, including 
post-translational modifications, enzyme activity, and interactions with other cellular pathways. Future research 
integrating mitochondrial proteomics and functional assays could offer a more complete understanding of 
mitochondrial roles in tumor progression and the tumor microenvironment.

Conclusion
This study provides a comprehensive analysis of mitochondrial-related gene expression across various cancer 
types, revealing significant heterogeneity in mitochondrial function. The development of MitoScore as a novel 
metric for assessing mitochondrial activity, its widespread elevation in tumors, and its association with tumor 
proliferation and poor prognosis underscore its importance in tumor biology. The positive correlation between 
MitoScore and hypoxia, along with its inverse relationship with stromal and immune cell infiltration, emphasizes 
the role of mitochondria in shaping the tumor microenvironment. Additionally, the association between 
MitoScore and genomic instability markers, such as aneuploidy, suggests that mitochondrial dysfunction may 
be linked to genomic chaos in cancer. While mitochondrial-targeted therapies have faced significant challenges, 
such as toxicity and limited efficacy, MitoScore could help identify tumors with heightened mitochondrial 
activity that may be more responsive to such treatments. We emphasize the need for further research to fully 
understand the clinical implications of MitoScore in therapeutic contexts.

Data availability
The datasets used in this study are publicly available, and the codes are available from the corresponding author 
on reasonable request.
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