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Human alveolar echinococcosis (HAE), which is caused by the larval stage of the Echinococcus 
multilocularis tapeworm, is an increasing healthcare issue in Hungary. Among the 40 known cases 
in the country, 25 were detected in the last five years. Our study aimed to reveal the geographically 
underlying risk factors associated potentially with these cases. We investigated the spatial pattern 
and the impact of potential risk factors of HAE by cluster analysis, and local and global regression 
models. Also, a questionnaire survey on the patients’ lifestyle was implemented. We found two HAE 
hyperendemic foci in the country with very dissimilar biotic and climatic features, and controversial 
impact of different environmental factors. Four factors, viz. forest cover (β = 0.291, p < 0.0001), surface 
soil wetness (β = − 0.157, p = 0.033), fox infection rate (β = 0.369, p < 0.0001) and socio-economic 
development (β = − 0.216, p = 0.009), proved important countrywide. The most forested and the least 
developed districts showed the highest HAE risk. Among the patients, kitchen gardening (67.86%) 
and dog ownership (67.86%) seemed the riskiest activities. Our models detected an anomaly in one 
of the poorest regions of Hungary where all risk factors behaved contrary to that of the neighboring 
areas. This phenomenon was supposed to be the result of under-detection of the disease, and it 
called attention to the urgent priority of knowledge dissemination to the public and the healthcare 
professionals.
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Human alveolar echinococcosis (HAE) is a zoonotic disease caused by the larval stage of the Echinococcus 
multilocularis, an indirectly developing cestode. Its natural definitive host is the red fox (Vulpes vulpes) while 
its intermediate hosts are rodents1. Humans can acquire infection by accidental ingestion of parasite eggs with 
contaminated food or water, or during contact with infected animals2,3. Although the distribution area of HAE 
extensively grows in the Holarctic realm1, it does not get enough attention from either the researchers or the 
health care systems. Therefore, HAE is considered as a neglected disease, which affects the most vulnerable 
communities4.

In Europe, outside its Alpine historic distribution area, HAE is hypothesized to be under-detected because of 
low disease awareness of both the public and the healthcare system3,4. Therefore, determination of risk factors 
of HAE and its potentially high-risk areas contribute to better disease awareness, which can enhance diagnostic 
and treatment success, and also preventive measures5. In Hungary, HAE was first described in 20086. A later 
retrospective study, which analyzed country-wide HAE cases between 2003 and 2018, ascertained that the 
disease has low incidence but high case-fatality rate due to diagnostic delay and inappropriate treatment7.

Epidemiological analyses based on conventional, non-spatial analysis often do not provide satisfactory 
answers during the investigation of disease occurrence, spread and root causes. This is especially true for rare 
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diseases such as infections caused by E. multilocularis. In this case, the occurrence and transmission of the 
parasite in the final hosts or human populations could vary conspicuously on a wide spatial scale. The variations 
in trends of the disease may occur even globally and regionally, but it could also be characteristic locally8–10. The 
advancement of geographic information technology, sophisticated statistics and geospatial analytical software 
can improve the knowledge and understanding of diseases. This complex approach could contribute to the 
foundation of competent integrated preventive control programs against epidemics11.

For investigation of spatial heterogeneity, geographically weighted regression (GWR) and multiscale 
geographically weighted regression (MGWR) models were introduced12. In contrast to traditional linear 
regression models (e.g. ordinary least squares - OLS), these methods can borrow data from neighboring locations 
over spatial weights. Thus, they can manipulate spatially heterogeneous associations between the dependent and 
explanatory variables11.

Our study aimed to analyze the spatial epidemiological background of 40 HAE cases that were detected 
between April of 2003 and April of 2024, in Hungary. Therefore, we compared the cases by their geographical 
location in a district-based geospatial analysis, and by the patients’ life-style features. Besides natural biotic 
and climatic factors, a socio-economic variable was also involved to estimate the potential additional risk of 
vulnerable regions.

Results
Descriptive findings
At the beginning of the investigation period, the number of cases was low but increased sharply after 2020 
(Fig. 1).

The countrywide overall period prevalence (PP) in humans was 0.4025/period/105 with a broad range of 
0.0/period/105 and 23.07period/105 (Fig. 2). During the study period, 4 out of 40 patients died directly from 
alveolar echinococcosis. Thus, the case fatality rate proved 10%. The two districts (indicated red in Fig. 2) with 
the highest PP had six and three human patients each. Of these nine patients, six were detected during the last 
five years. Due to Budapest’s exclusion, 38 out of 40 confirmed cases were included in the spatial analysis which 

Fig. 1.  Bar chart demonstrating the annual number of human alveolar cases during the study period: from 
2003 April to 2024 April (Note: The year 2024 represents only four months, using the Software for creation: 
Scimago Graphica version 1.0.42).
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were aggregated in 29 districts. Based on the raw data, the most infected districts were mainly observed in the 
country’s northern, northeastern, and southwest regions.

After smoothing, we obtained an extended risk area, which covered 87 districts. On the other hand, owing to 
smoothing, the areas between the affected local endemics (northeast and southwest) were also estimated to be 
at higher risk. After smoothing the raw data, it was found that the areas most affected by HAE were the North 
Hungarian Mountains (north-northeast), a part of South Transdanubia (southwest), and the Little Hungarian 
Plain (northwest) region. The least endangered area is the southcentral and southeastern parts of the country, 
thus the Great Hungarian Plain (Fig. 3, Supplementary Information 1).

Fig. 3.  Map of the smoothed rate of HAE risk (note: The black color with BP indicates the excluded districts of 
Budapest.) (Software used for creation: GeoDA version 1.22. and PhotoScape version 3.7).

 

Fig. 2.  Map of the raw period prevalence of human alveolar echinococcosis (2003–2024) over the 174 
Hungarian districts. (Note: The black color with BP indicates the excluded districts of Budapest.) (Software 
used for creation: GeoDA version 1.22. and PhotoScape version 3.7).
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Spatial clustering
In the case of HAE, the high-rated cluster (log likelihood ratio = 12.42; p = 0.001) involved 16 districts, of which 
11 had human cases. The relative risk was 6.03, representing that the probability of HAE occurring within this 
window was more than six times higher than in areas outside the cluster. The low-rated cluster (log likelihood 
ratio = 9.40; p = 0.012) consisted of 44 districts, in which no human cases were confirmed (relative risk = 0). 
Three significant clusters were confirmed for foxes, of which two highly overlapped with human clusters (Fig. 4). 
The low-rated cluster characterized by 17.68 log likelihood ratio (p < 0.001), while the high-rated clusters had 
12.28 (p = 0.001) and 9.60 (p = 0.026) log likelihood ratio, respectively.

The most conspicuous difference in the clustering of human and fox cases was observed in the Transdanubian 
region, which was proved to be a high-risk area for fox infection contrary to the lower number of human cases 
(Table 1).

Global (OLS) and local (GWR and MGWR) regression models
During the multicollinearity checking, we excluded one variable (proportion of agricultural areas - AGRO) 
because its variance inflation factor (VIF) exceeded the threshold level (5 < VIF). The final result of our OLS 
model was relatively poor (R2 = 0.237). Based on the standard t-value threshold (± 1.96), four independent 
variables (the surface soil wetness - GWTOP, the mean earth skin temperature - TSMEAN, the proportion of 
forests - FOR, the district development index - DDI and the smoothed yield of fox infection - FOXRISK) had a 
stationary statistically verifiable effect on the smoothed yield of human infection (HUMRISK). When the t-value 
was greater than 1.96, we accepted it as a positive significant relationship. At the same time, the t-test generated 
a lesser number than − 1.96, and the association was evaluated as negatively significant. The examination of the 
residuals suggested a strong autocorrelation (Moran’s I = 0.496, p = 0.0002).

The GWR and MGWR models showed considerable improvement in residual sum of squares (RSS), the 
Akaike Information Criterion (AIC), and the adjusted coefficient of the model (adj. R2), and revealed the spatial 
relationships between the variables (Table 2). The results made it possible to conclude that the best model was 
MGWR. This statement was reinforced by the fact that spatial autocorrelation could no longer be detected in the 
case of the residuals of the model (Moran’s I = 0.042, p = 0.134).

When the OLS and MGWR models were compared, it was found that the effect of certain variables varied 
significantly from model to model. The OLS model indicated that the forest cover (FOR) and the smoothed fox 
infection rate (FOXRISK) had a positive correlation with the smoothed HAE risk. The district development (DDI) 
and, interestingly, the wetness of the ground surface (GWTOP) were negatively associated with HUMRISK. 
The MGWR results confirmed that two of the four above-mentioned variables were not considered stationary 
(GWTOP and FOXRISK), as their significant local effects were also confirmed. The soil surface temperature 
(TSMEAN) estimation also showed a non-stationary effect. The p-value of DDI and the FOR in the MGWR 
proved that these variables had a universal relationship with HAE risk across Hungary (Table 3). The bandwidth 
in the MGWR model denoted the side effect of the influencing determinants. The smaller the bandwidth, the 
larger the spatial heterogeneity over the study area and vice versa. When bandwidth is higher, the impact of a 
particular variable may not be local but regional or global13.

Spatial non-stationarity in HAE patterns
The local R2 map indicated that the total variance of the MGWR model ranged between 0.459 and 0.866. The 
best-fitting values were observed in Hungary’s central, northern and southwestern parts (Fig. 5). The local model 
did not fit as firmly with data from the southernmost part of the Great Plain, so the local R2 value in these areas 
was only moderate.

Figure 6 demonstrates the spatial fluctuation between the significant non-stationary explanatory variables 
and HUMRISK. The regression coefficient of TSMEAN varied widely (from − 0.611 to 0.511). Significant 
relationships were detected in the north-south direction in the central zone of the country and the western 
region. The local standard t-value thresholds indicated that both lower and higher mean ground surface 
temperatures influenced human infection rates. The TSMEAN estimation in the OLS was very weak and non-
significant (see Table 4).

GWTOP showed a homogeneous impact on the districts. The ground surface wetness had a negative non-
stationary association with HUMRISK on a large portion of the country (mainly the total Transdanubian region). 
This variable’s effect was insignificant in the dryer regions (e.g. Great Hungarian Plain).

The effect of the smoothed fox infection rate (FOXRISK) showed a similar spatial aggregation pattern to 
GWTOP. However, in this case, the positive, significant spatial relationship was confirmed in Hungary’s central, 
northern and eastern regions. On the other hand, two districts in the South Transdanubia showed a provable 
negative correlation (in both cases β = − 0.225).

Questionnaire
During the study period (2003–2024), 40 patients were diagnosed with HAE in Hungary (female, n = 22; male, 
n = 18), thus the sex ratio (male/female = 0.8) differed slightly, but this difference was not statistically significant 
(p = 0.530). The median age of patients was 56.6 years (CI 95% 51–67), with the youngest and the oldest patients 
being 12 and 80 years old, respectively. The median age of the two sexes was statistically not different, p = 0.341 
(female: 60.5 years, CI 95% 51–71; male: 53 years, CI 95% 32–62).

Our questionnaire consisted of 13 decidable questions, mainly related to pet keeping, outdoor activity, and 
some hygiene habits related to fruit and vegetable consumption (Supplementary Information 2). Education 
levels were sorted into four categories. Among 18 of the 28 respondents who gave education level, two thirds of 
them reached at least secondary level (Supplementary Information 2). Based on the responses, it was possible 
to conclude that the proportion of the four most frequently chosen answers among the respondents exceeded 
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50%. Owning and playing with dogs occurred in 67.86% (CI 95% 48.2–82.5) and 57.14% (CI 95% 38.06–74.24) 
of respondents, respectively. The other two factors were related to outdoor activities (kitchen garden and regular 
forest walk), accounting for more than 60%. One of the factors next in the ranking (agricultural activity) was 
also related to outdoor activities. At the same time, the consumption of unwashed fruits, vegetables, and forest 

Fig. 4.  The confirmed human (A) and fox (B) spatial clusters. (Note: Red indicates the significant high-risk 
areas with higher relative risk, while blue marks the significant low-risk areas where the relative risk is low. 
The order of numbering was given by SaTScan Software.) (Software used for creation: SaTScan version 10.1, 
Google Earth Pro version 7.3.6.9345 and PhotoScape version 3.7).
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products was higher than 46% of respondents. Direct contact with foxes had the lowest proportion of responses 
(Fig. 7).

Discussion
Human alveolar echinococcosis is an increasing health problem in Hungary. Between 2003 April and 2024 April, 
40 cases were detected, of which 25 entered the health care system during the last 5 years. Two hyperendemic 
foci are supposed to form in the country, one in the Northern Hungarian Mountains, and another in the 
southwestern part of the country, the South Transdanubia. The period prevalences for these focus areas, 9.46/105 
and 23.07/105, are similar to those, which were detected in the previously identified highly endemic regions close 
to the historical Alpine focus area2.

Cluster analysis by SaTScan software could detect a high-risk and a low-risk HAE cluster in the eastern part 
of the country while the South Transdanubian case accumulation remained non-detected by this method. The 
Bernoulli-based approach uses the presence of cases in a district as a quality regardless of the prevalence in the 
district concerned. The South Transdanubian case accumulation involved only four districts as a contiguous 
area, and three districts further with plenty of negative districts around these spots, therefore the software 
identified this phenomenon as a coincidence.

The spatial rate smoothing could highlight the potential risk of HAE in the South Transdanubia, which 
remained undetected by cluster analysis. In the case of foxes, the smoothing process displayed a pattern that agrees 
with the strong hypothesis that E. multilocularis spread to Hungary from the northwest direction14. Smoothed 
risks of both HAE and fox echinococcosis removed the least risky classification from the Great Plain districts. 
This procedure can provide a more appropriate estimation of risk than use of crude proportions, especially when 

Variable  (OLS) Mean  (MGWR) SD of  (MGWR) Min  (MGWR)
Median  
(MGWR) Max  (MGWR)

Monte Carlo p-
value (MGWR)

Bandwidth 
(CI 95%)# 
MGWR

TSMEAN 0.035 − 0.121 ± 0.314 –0.545 0.175 0.619 0.040 43 (43–49)

GWTOP − 0.157* − 0.248 ± 0.138 − 0.452 − 0.198 − 0.089 0.033 114 (92–143)

URB 0.099 0.086 ± 0.005 0.075 0.088 0.093 0.855 173 (124–173)

FOR 0.291*** 0.142 ± 0.221 − 0.204 0.070 0.939 0.108 43 (43, 47)

WETHABIT − 0.068 − 0.056 ± 0.015 − 0.081 − 0.052 − 0.036 0.544 173 (124–173)

DDI − 0.216** − 0.172 ± 0.130 − 0.491 − 0.184 0.078 0.318 43 (43–49)

FOXRISK 0.369*** 0.294 ± 0.322 − 0.225 0.261 1.049 0.000 43 (43–47)

Table 3.  Comparison of the standardized regression coefficients in OLS and MGWR models. *p < 0.05, 
**p < 0.01, ***p < 0.0001, #confidence interval 95%.

 

OLS GWR MGWR

Adj. R2 0.237 0.519 0.751

AIC 455.546 397.242 289.085

RSS 127.396 68.056 32.966

Table 2.  The goodness of fit statistics of ordinary least regression (OLS), geographically weighted regression 
(GWR) and multiscale geographically weighted regression (MGWR) models. adj. R2 adjusted coefficient of the 
model, AIC akaike information criterion, RSS residual sum of squares.

 

Cluster type Central coordinates Number of districts Radius (km) Relative risk p-value

Human clusters

 High-rated 1* 47.929150 N 19.137118 E 16 53.28 6.03 0.001

 Low-rated 2** 47.024704 N 21.172044 E 44 109.72 0 0.012

Fox clusters

 High-rated 2*** 48.102382 N 19.805404 E 15 59.72 2.41 0.001

 High-rated 3**** 47.235514 N 16.622270 E 63 178.04 1.99 0.024

 Low-rated 1***** 46.709441 N 20.143731 E 39 94.16 0.13 < 0.001

Table 1.  Spatial clusters of E. multilocularis infection were detected in the human and fox populations in 
Hungary. *Indicated in Fig. 4A this cluster signed with 1. **Indicated in Fig. 4A this cluster signed with 
2. ***Indicated in Fig. 4B this cluster signed with 2. ****Indicated in Fig. 4B this cluster signed with 3. 
*****Indicated in Fig. 4B this cluster signed with 1.
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the sample is not optimal to represent the whole population at risk15. Therefore, increased smoothed risk within 
the apparently free area reflected the possibility of disease occurrence.

For analyzing those variables that could influence the smoothed risk of HAE in a district, we applied the 
MGWR model, which could handle the heterogeneity of the candidate explanatory variables. The model provided 
a high R2 values (0.459–0.866) for almost the whole territory of the country, except for the southernmost areas 
of the Great Plain where the fitness of the model was moderate. The model detected two factors which affect 
HUMRISK globally. The socio-economic factor (DDI) showed negative influence on HUMRISK, thus less 
developed districts represented higher risk for HAE. Forest cover proportion of the district (FOR) also prevailed 
globally but with a positive influence, whereas the more the forest cover caused the higher the risk of HAE.

Those variables, which were involved as previously proven drivers of E. multilocularis endemics, such as earth 
skin temperature, ground surface wetness, and infection prevalence in red foxes2,16, showed various impacts on 
HAE by regions. In the northern part of the country, which was reached by the parasite for the first time14, both 
the soil temperature (TSMEAN) and the smoothed prevalence in foxes (FOXRISK) behave very similar as it was 
detected within the historical focus of E. mutilocularis16. On the other hand, the moisture content of the ground 
did not show a significant impact on the smoothed period prevalence of HAE (HUMRISK) here.

The Northern Hungarian Mountains are under a strong influence of continental climate, which is modified 
by the microclimatic effect of the relief. This complex climatic impact causes harsh winters but less hot and dry 
summers in the mountains than in the surrounding plain areas.

Although the North Hungarian Mountains have a more humid climate than of the Great Plain, both showed 
the same pattern in correlation between ground surface wetness and HAE risk. The bandwidth for the humidity 
of the soil surface (GWTOP) proved large, thus this variable prevails in large areas. Besides the direct linkage 
between the two regions, a remarkable west-to-east change to a more continental climate can explain the similar 
GWTOP effect of the North Hungarian Mountains and the Great Plain. The controversial relationship between 
soil surface humidity and HAE prevalence apparently questioned the previously proven impact of humidity on 
HAE risk. Nevertheless, it is worth noting that our study investigated district level values of different variables, 
therefore it was not suitable to detect microfoci within the concerned district. However, these small habitat spots 
can be the keys in the transmission of E. multilocularis17.

The South Transdanubian Region of Hungary is affected by sub-Mediterranean climatic impact18. Hot 
summers and mild winters are very different from the climatic features of the historic focus of E. multilocularis19. 
In spite of this difference, a remarkable case accumulation could be observed in this area, especially during the 
last five years. Moreover, neither the comprehensive surveillance that was carried out in the red fox population 
of the region could provide an explanation for the phenomenon20. In the western part of this area both the skin 
surface temperature and soil humidity showed a negative effect on smoothed period prevalence of HAE, thus the 
warmer the temperature and the lower the humidity resulted in the higher the risk of HAE. Moreover, on a spot 
inside this area, a HAE case accumulation in humans accompanied by a low prevalence in red foxes.

It is less probable that the E. multilocularis population in the southern part of Hungary differs this rate in its 
environmental demands from the northern populations. Though, genetic studies proved that the Hungarian E. 
multilocularis population has a higher genetic diversity than of Slovakian or Czech populations, the origin of all 
Central Eastern European populations are proved to be the historical focus in the Alps21,22.

Fig. 5.  Spatial distribution of the local regression coefficient (Local R2) for MGWR. (note: the black color 
with BP indicates the excluded districts of Budapest) (software used for creation: GeoDA version 1.22. and 
PhotoScape version 3.7).
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A possible explanation for the parasite’s apparent preference for unsuitable district level environmental 
conditions could be a compensatory mechanism by other factors. These factors can also prevail in microfoci, 
in which the optimal conditions of survival and transmission exist in spite of the generally existing suboptimal 
climatic conditions. These factors can be detected by micro-epidemiological investigations, which can disclose 
local risk factors10,17. Another reason for the parasite’s success in less appropriate conditions is the presence of 
regionally prevailing factors, which compensate for the risk mitigation effect of the suboptimal climate.

In South Transdanubia, this risk raising factor can be the composition of the predator community in this 
region, which is characterized by a large density of golden jackal (Canis aureus) populations. This wild canine can 
carry E. multilocularis and can significantly increase the risk of HAE in smaller geographical habitats. In South 
Transdanubia, the stable presence of golden jackals modifies the risk caused by foxes. These two mesocarnivores 
strongly compete for sources, thus resulting in increased occurrence of foxes around human settlements because 

Fig. 6.  Local effects of TSMEAN, GWTOP and FOXRISK on HUMRISK, (A) β-TSMEAN = regression 
coefficient of TSMEAN, (B) t-TSMEAN = t-value of TSMEAN, (C) β-GWTOP = regression coefficient of 
GWTOP, (D) t-GWTOP = t-value of GWTOP, (E) β-FOXRISK = regression coefficient of FOXRISK, (F) 
t-FOXRISK = t-value of FOXRISK (note: the black color with BP indicates the excluded districts of Budapest) 
(software used for creation: GeoDA version 1.22. and PhotoScape version 3.7).
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they can tolerate humans better than golden jackals do23,24. Besides competition and spatial distribution of these 
two canids, dissimilar host suitability might enhance each other’s role in disease transmission1,25.

The other, district level, factors that could affect the prevalence of HAE are DDI and FOR, which have the 
same impact in both hyperendemic focuses of HAE. It is curious that both the socio-economic factor (DDI) and 
forest coverage (FOR) level had homologous effects in each investigated district, though with opposite signs. 
Between DDI and FOR variables, the statistical analysis could not identify multicollinearity, therefore both 
factors have their own impact on HAE risk in humans.

In the case of forest coverage, other research resulted in various conclusions. Most studies concluded 
that mature forest stands with high biodiversity provide less suitable habitat for E. multilocularis spread than 

Fig. 7.  Bar chart on risk factors of HAE in Hungary in the period 2003–2024 (note CI95% indicates 95% 
confidence interval of the counted frequency) using the software Scimago Graphica version 1.0.42.

 

Source Data (applied factor) Period References

Humanitarian data exchange Shapefile of Hungarian districts (N/A*) 2015–2022 51

Hungarian central statistical office Census (human population size) 2011 52

Copernicus land monitoring service

Land cover categories
URB = urban, industrial areas and transport infrastructures
AGRO = arable lands, permanent crops, grasslands, and heterogenous agricultural areas
FOR = forests
WETHABIT = wetlands and water bodies

2018 53

NASA prediction of worldwide energy 
resources

Meteorological data
TSMEAN = mean earth skin temperature
GWTOP = surface soil wetness

1992–2022 54

Institute for economic and enterprise research 
Hungarian chamber of commerce and industry DDI = district development index (calculated from 22 socio-economic indicators) 2017 50

National food chain safety office, Budapest, 
Hungary E. multilocularis infection in fox (sample size, number of infected foxes)

Hunting seasons 
of 2008 and 2012 
years

20

Table 4.  The involved data sources utilized in the retrospective analysis of Hungarian HAE (2003–2024). *Not 
applicable.
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meadows or shrublands, which are generally agreed as the most hazardous habitats for maintenance of E. 
multilocularis2,5,26. In our research, the applied data source did not distinguish between different types of forests, 
e.g. shrublands or woody pastures, thus the exact risk of different sylvatic environments could not be identified.

In Hungary, extended grasslands are characteristic exclusively for the Great Plain27, which proved quite the 
less risky area of the country. On the other hand, smaller patches of grasslands are very important natural habitats 
in both the Northern Mountains and in Transdanubia28. In Hungary, the proportion of true grassland area 
decreased for two reasons. On the one hand, human demands for area, such as urbanization and intensification 
of agriculture, reduced the area of grasslands. On the other hand, the end of extensive animal farming resulted 
in reduced pasturing and mowing activity, which led to afforestation of pastures and meadows27. For this reason, 
we presumed that a high proportion of forests at a district level meant a higher proportion of natural habitats 
compared to urban areas and large-scale arable lands. Our finding that forest coverage was identified as a general 
risk of HAE agreed with the early findings within the historical focus, thus mainly rural environments carried 
high infection risk2.

For infection with HAE, a higher risk of low-income regions and low education level was investigated in 
China3,29 and Kyrgyzstan4. All studies emphasize the importance of individual knowledge on prevention. In our 
study, the education level groups of the patients were exactly equal, whereas one third of the patients had low, 
intermediate, and higher education levels, respectively. Therefore, the individual’s educational level apparently 
did not affect the chance of infection. However, the socio-economic environment seemed to have a strong impact 
on the patients’ risk for HAE acquisition. A district’s development index depends on a list of factors, which 
determine access to information, healthcare, and services. The central role of an appropriately functioning and 
achievable healthcare system in prevention and early diagnosis could be well illustrated in Kyrgyzstan studies. 
After the end of the Soviet Union, the collapse of the local healthcare system led to the dramatic increase of both 
cystic echinococcosis, which is caused by E. granulosus, and HAE cases4.

The questionnaire survey was based solely on the interrogation of diseased people. Therefore, in the lack of 
a control group, it was not suitable to determine relative risk of different potential risk factors but frequency 
of occurrence of these factors in cases. The questions involved in the survey were adapted from a previously 
performed study30. Our survey revealed that 66.67% of HAE patients engaged in kitchen gardening. Thus, 
this lifestyle element was the most frequently chosen one among the respondents. This finding agrees with the 
experiences of a case-control study completed in Germany31.

A European large-scale study on food self-provisioning revealed that the central motivation for gardening 
is financial as the poorest social groups produced a part of their food demand32. The questionnaire did not ask 
directly about the financial background of the respondents, therefore gardening as a socio-economic indicator 
of limited income could not be proven by this study. Moreover, less developed districts are characterized by 
countryside abandonment all over Europe33. This phenomenon creates plenty of appropriate, undisturbed 
shelters and feeding sites for mesocarnivores, such as red foxes and golden jackals, in the surroundings and inside 
the human settlements. Less sufficient waste management, which is also common in poor regions, provides a 
huge number of anthropogenic sources for survival and successful breeding of wildlife34. In densely populated 
fox habitats, even lower prevalence of E. multilocularis can generate a higher risk as it could be observed in 
Switzerland between urbanised foxes2.

The presence of golden jackals in the less developed districts in South Transdanubia highlights an anomaly, 
which could be experienced in the relationship between the soil surface temperature and HAE prevalence of 
a district in the eastern part of the region. In spite of very similar characteristics to the western part of the 
region, the eastern half seemed free from HAE. Therefore, only spatial rate smoothing suggested suspicion of 
risk eastward in South Transdanubia. However, the complete lack of cases in the southernmost districts of the 
east reversed the positive association between soil temperature and HAE risk, which was identified in the west.

The anomalous districts are part of Ormánság (Supplementary Information 1), one of the poorest regions 
in Hungary. The average inhabitants are characterised by low education and consequential low income, without 
vision and ability of self-care35. Considering these facts and the biotic and climatic similarity of this region with 
the neighboring HAE focus, it cannot be excluded that the apparent freedom of this area is due to the locals’ 
inattention. During the disease course, initially, the clinical signs of HAE are lacking or less severe36,37, therefore 
most patients do not suspect a life-threatening disease. In addition, disease prevention and health screening tests 
do not fit the culture of poverty, which characterize the small villages of Ormánság35. Our lack of confidence in 
the disease-free status of Ormánság was supported by the study of Balen Topic et al.38, which detected a HAE 
case accumulation in Croatia, not far from the southern border of Ormánság. The contradictory finding about 
the southeastern part of Transdanubia highlighted the paramount importance of knowledge dissemination not 
only in known hyperendemic focuses but areas with uncertain status.

In this study, we investigated the interdependence of potential influencing factors and E. multilocularis 
infection in humans and foxes. For statistical analysis, we applied geospatial methods to determine the risk of 
HAE and its background at a district level. As a result, we revealed that two, very different HAE foci have been 
localized in the country, yet. However, the driving forces of HAE in the two foci proved remarkably different. 
The Northern Hungarian Mountain focus was found to be similar to the historic focus of E. multilocularis in the 
Alps19,26. This observation agrees with the studies implemented in Czechia and Slovakia where E. multilocularis 
prevalences in foxes39,40 and in humans16,41 are proved to be high. In the northern focus, cool soil temperature 
and higher parasite prevalence in red foxes seemed to increase the risk of human infection at district level. 
Curiously, humidity as a risk factor could not be justified, which contradicted the previous study results that 
confirmed the humidity dependence of E. multilocularis40,42.

The South Transdanubian focus showed a very different risk pattern. Warm and dry soil surfaces appeared 
to have higher HAE risk than a humid and cool environment. Based on this apparent contradiction to known 
environmental demand of E. multilocularis19,26, we concluded that other, not investigated factors enhanced 
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the disease transmission within this area, in spite of the suboptimal climatic features. This observation draws 
attention to the significance of micro-epidemiological investigations, which can identify microfoci and their risk 
factors contributing to HAE transmission even in seemingly less appropriate conditions10,17,42.

Our study recognized an area in the country, which behaved in the model as an anomaly. This area is one of 
the poorest zones of Hungary. The climatic and biotic characteristics of this area is very similar to the neighboring 
South Transdanubian focus and a Croatian area with HAE accumulation10,38,42. In spite of that, HAE has never 
been detected here. We concluded that without comprehensive knowledge dissemination and health screening 
of the inhabitants, this anomaly cannot be evaluated correctly, and the status of this area remains uncertain.

Our study possesses limitations, which mostly originated from the spatially aggregated distribution of the 
few confirmed HAE cases. However, the geospatial analysis of the known cases denoted two hyperendemic foci 
of the disease with apparently free areas around them. Based on this finding and the data of the surrounding 
countries, we deem that the recently seen data are incomplete and cannot describe the true situation. In 
Slovakia16 and in Croatia38, 137 and 6 HAE cases were detected, resulting in an annual incidence of 0.187/105 
and a prevalence of 4.91/105, respectively. Both recently determined hyperendemic foci are located adjacent 
to similar HAE hot spots of the neighboring countries. This geographical vicinity suggests a cross-border 
connectivity of the endemic areas. Therefore, the diagnostic sensitivity of the healthcare service of Hungary 
needs improvement. The apparently increasing annual incidence, especially in the last five years, may also 
indicate that the early inefficiency of the diagnostic system is in a slow transition towards enhancement. The 
rapidly changing diagnostic efficiency cannot make sense of calculating annual incidence of HAE, which could 
suggest an intensively worsening epidemiological situation. Though we cannot exclude even this possibility, in 
this stage of the research, we hypothesize that raising disease awareness of healthcare professionals caused the 
apparent increase of annual incidence of HAE.

Another shortcoming of the study was that only 28 patients could take part in the questionnaire survey. 
Moreover, a control group was not interrogated parallelly with the case group. For this reason, the results of the 
survey could highlight potential risk factors without determination of relative risk. However, the factors that 
were chosen most frequently by the respondents of our study, such as gardening and dog ownership, are those 
which were determined by a previous case control study as the most important risk factors31.

Conclusion
This study highlighted the weight of multidisciplinary approach to E. multilocularis. Our investigation revealed 
some biological, climatic and socio-economic factors of HAE. On the other hand, the analysis resulted in 
contradictory findings, which need micro-epidemiological research to clarify. This study aimed to determine the 
most important district level risk factors for human infection with E. multilocularis, therefore it concentrated on 
districts and could not analyze microfoci. These small natural spots are very important in disease transmission10,17 
but are too small for large-scale analysis. However, the results of large-scale risk analysis could point at those 
areas, which need more detailed investigation to determine true risk of HAE.

Though the number of confirmed HAE cases in Hungary is very low, district level socio-economic 
development and the proportion of forested areas could be determined as risk factors by spatial analysis. Due to 
the rarity of the disease, the questionnaire survey of the cases was not suitable for statistical analysis. However, the 
survey results could call attention to the potential individual risk factors, like kitchen gardening, dog ownership, 
and outdoor activity in the forest areas. Based on the findings of this study, we concluded that determination 
of district level risk factors could be a very important element for decision makers in mapping out an efficient 
disease control strategy, which should rest on extensive knowledge dissemination for both the public and the 
health care professionals of the high-risk areas.

Methods
Data sources
This retrospective study enrolled 40 patients who were diagnosed with alveolar echinococcosis between 9 April 
2003 and 12 April 2024. The Hungarian patients included in this study were those who had positive serology for 
Echinococcus multilocularis infection with one highly sensitive (ELISA or IHA) and one highly specific (Western 
blot) test and fulfilled the clinical and laboratory diagnostic criteria for probable or confirmed AE patient as 
proposed by the WHO-IWGE. The patients were diagnosed with AE in the framework of the healthcare system. 
The researchers evaluated all suspect cases based on the available diagnostic findings. A probable case was defined 
as any patient with typical organ lesions detected by imaging methods (CT/MRI/ultrasound), and positive 
serology for AE with two positive tests. A confirmed case was defined as the above, plus (1) histopathology 
compatible with AE and/ or (2) detection of E. multilocularis genetic material in a clinical specimen. Patients 
who were serologically negative or non-specific positive but E. multilocularis infection was unequivocally 
confirmed by histopathological methods were also included7,36,37.

As an indicator of the probability of acquiring E. multilocularis infection during a given period43, we 
calculated the period prevalence (PP) of both HAE and fox echinococcosis at the country and district levels. 
Regarding human infections, the index was expressed to 100,000 citizens and covered the interval between 
2003 and 2024, and the case fatality rate was also counted. For calculation of the human population at risk, 
the population size was obtained from the 2011 census data. This census was the first that provided district 
level data. The district (‘járás’ in Hungarian) system was introduced into the Hungarian administration in 2012. 
Since the year 2011 is in the middle of the studied period, and its result on population size is close to both the 
average and the median of other two censuses on the boundaries of this period, we used 2011 census data. The 
calculation of PP in the fox populations was based on the results of a previously shown study20, in which 1612 
animals were investigated during the hunting seasons of 2008–2009 and 2012–2013. The foxes were hunted in 
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the framework of the approved hunting management plans. The carcasses were submitted to the Veterinary 
Diagnostic Directorate, National Food-chain Safety Office to survey the E. multilocularis spatial distribution in 
Hungary20.

By application of period prevalence instead of disease incidence, we followed the recommendations of 
Bhopal, Thrusfield, and Spronk et al.43–45. We determined the number of human cases as the sum of the cases 
at the beginning of the period and new cases that occurred during the period independently of the outcome of 
the disease. The human population at risk was determined as the average population size that can characterize 
the period as Bhopal44 suggests. Since the population of Hungary decreased linearly between the 2001 and 2022 
censuses, we deemed that the population size measured in 2011 represented well the average population size for 
the study period.

In foxes, similarly proper population data cannot be achieved. For this reason, we used the sample size of the 
2012–2013 national E. multilocularis screening programme to determine the population at risk. The number of 
cases were established by counting all carcasses, in which the presence of E. multilocularis was confirmed in the 
laboratory. We calculated the PP index by the following equations.

In the case of human population:

	
P P =

(
NIP

P R

)

where PP = period prevalence between 2003 and 2024, NIP = number of infected persons during the study period 
(2003–2024), PR = size of population at risk based on 2011 census data in particular spatial units (country or 
district).

In the fox population:

	
P P =

(
NIF

NP

)

where PP = period prevalence for 2008–2009 and 2012–2013 winter months, NIF = number of infected foxes in 
the sample, NP = number of population (sample size in the E. multilocularis screening campaign during 2008–
2009 and 2012–2013 winter) in particular spatial units (country or district).

Land cover categories were obtained from the CLC2018 database with a minimum mapping unit of 25 hectares 
(https://land​.copernicus.​eu/en/produc​ts/corine-l​and-cover). We classified the surface characteristics into 
six variables: URB (including urban and industrial areas and transport infrastructures), AGRO (including 
arable lands, permanent crops, grasslands, and heterogenous agricultural areas), FOR (including forests), and 
WETHABIT (including wetlands and water bodies) (Supplementary Information 4). Two climatic variables were 
chosen in our analysis. The mean earth skin temperature (TSMEAN) and the surface soil wetness (GWTOP) 
were adopted. These climatic components are well-known and substantial drivers in the viability of the infective 
E. multilocularis eggs in the environment19,42,46,47.

Not only abiotic and biotic environmental factors may play a role in the spread of zoonotic diseases, but 
also the socio-economic status of the affected human population. Strong evidence supported that some socio-
economic drivers (e.g. economic disparity, higher unemployment rate, poor living conditions) could also 
potentially provide a higher risk of infectious diseases, including HAE3,48,49. For this reason, we implicated a 
socio-economic level variable (district development index = DDI). The data obtained from the Institute for 
Economic and Enterprise Research Hungarian Chamber of Commerce and Industry50 and calculated from 21 
different indicators (Supplementary Information 5). All the datasets that were applied in this study are shown 
in Table 4.

In the lack of district level data, we could not count with the population size of the concurrent golden jackal. 
However, the effect of golden jackal on the maintenance of E. multilocularis in the Hungarian ecosystems has 
already arisen55. Nowadays, the presence of golden jackals can be detected all over Hungary but the southwestern 
part of the country was the place where this mesopredator entered the country during the 1990s. Based on the 
hunting bag data, South Transdanubia still possesses the densest golden jackal population of Hungary (Fig. 8).

Data preparation and selection
The Hungarian districts (Local Administrative Units level 1) were chosen as the units of analysis ​(​​​h​t​t​p​​s​:​/​/​e​c​​.​e​u​r​
o​p​​a​.​e​u​/​e​​u​r​o​s​t​a​t​/​w​e​b​/​n​u​t​s​/​l​o​c​a​l​-​a​d​m​i​n​i​s​t​r​a​t​i​v​e​-​u​n​i​t​s​​​​​)​.​​

There are currently 197 district-level administrative units in Hungary, of which 23 represent Budapest 
districts. Although two cases of HAE were reported in the Budapest area, the 23 city districts were excluded from 
the analysis. Fox data were available in only seven districts (14 animals in total); accordingly, the proportion of 
the missing data was not tolerable. The urban ecosystem, which characterizes the vast majority of Budapest has a 
very homogenous pattern as huge continuous areas belong to URB land cover category. Thus, the analysis could 
have given distorted results for the city. Six of the remaining 174 countryside districts had neither fox data. Since 
sufficient data were available on these districts’ neighbors, we used the neighbors’ mean imputation method56, 
applying the generally accepted 5% replacement limit57.
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We assigned each case to the administrative district of the patient’s residence if the patient had lived there for 
at least ten years. If the patient had been living in their current residence for less than ten years, he or she had 
been assigned to the district, in which he or she had lived for ten years previously31.

As a first step, we determined the period prevalence of the infection using the total number of cases and the 
number of inhabitants in each district. For mapping the results, the calculated ratio was expressed to 100,000 
people. In the case of foxes, the prevalence in each district was given as the proportion of infected individuals 
among all animals tested for E. multilocularis. These crude proportions, calculated from small areas (districts) 
and small populations (humans and foxes) of different sizes, provide unstable and imprecise estimations. The 
estimation accuracy is linked to the size of the population at risk, which can cause a high variance in results 
(i.e. districts with a larger population size have lower variance than districts with a smaller population size). 
For this reason, adjusting the crude rates could improve the precision of the estimates. This stabilization can be 
achieved by spatial rate smoothing, which was implemented by the GeoDa software (v1.22). The fundamental 
principle of smoothing is that the precision of the crude rate can be improved by borrowing strength from other 
observations. In this study, the software completed the calculated PP data of a concerned district with the data 
of its neighborhood by spatial rate smoothing. This method estimated the smoothed risk by locally weighing 
the number of cases (numerator) and the population at risk (denominator) separately, rather than applying a 
weighted average for the rate itself. This method could eliminate the shortcomings that originated from the high 
variance of both case numbers and population sizes by districts15. The estimation of locally weighted rate by 
partial rate smoothing proved to be appropriate to define high-risk areas for a rare disease58. The calculated rate 
smoothing yield of human cases (HUMRISK) was used as a dependent variable, while the spatial rate smoothing 
yield of fox infection (FOXRISK) applied as independent variables (Supplementary Information 5).

Spatial cluster analysis
During the spatial cluster analysis, we used the original raw data. Districts where PP > 0 was observed in 
either humans or foxes were considered infected units. However, we evaluated them as non-infected when the 
calculation gave PP = 0 as a result.

The scan statistic was performed using SaTScan software (v9.6.1)59. The null hypothesis of spatial scan 
statistics was that observed HAE cases are randomly distributed across the districts. A log-likelihood ratio (LLR) 
statistics were calculated using the numbers of observed and expected HAE cases within and outside the clusters. 
The null hypothesis was rejected if the LLR statistics differed significantly between the clusters and the outside 
areas.

We applied in both cases a Bernoulli-based model with Gini coefficient to assess the true human and fox 
clusters’ pattern. The maximum size of the clusters was determined to be a maximum 50% of the population. 
We did not allow the geographical overlap between the clusters and boosted the statistical power of our analysis 
with Monte Carlo iterations (n = 999).

Clusters with a p-value < 0.05 were considered statistically significant.

Fig. 8.  Trend of the golden jackal’s hunting bag for Hungary as a whole and the South Transdanubian region. 
(Data accepted from the National Game Management Database: http://www.ova.info.hu/index-en.html).
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Global and local regression models
The strong correlation between some predictors can weaken the power of coefficients and make the p-value 
vague. To avoid this problem, before the model building, we checked the multicollinearity between the 
explanatory variables, and only explanatory variables with a variance inflation factor (VIF) value of less than 
five were accepted60.

In the first step of the spatial regression analysis, we used the conventionally accepted ordinary least squares 
(OLS) approach to evaluate the global (stationary) distribution of HUMRISK. This model evaluates the effects of 
explanatory variables in a global sense using the following equation:

Yi = β0 +
∑

βkXik + εiwhere Yi = the dependent variable at the ith sample point, β0 = the estimated 
parameter (coefficient) of the linear regression equation, βk = the estimated parameter (coefficient) of the kth 
independent variable, Xik = the kth independent variable at the ith sample point,

εi = the random error.
The global effect through space may be unrealistic61. Some explanatory variables do not fluctuate from 

sample point to sample point, but many are space-dependent (e.g. mean temperature, land cover categories). 
If stationary and non-stationary relationships can be observed, the assumptions of OLS may misestimate the 
coefficients. This problem could be eliminated by local regression models, such as geographically weighted 
regression or multiscale geographically weighted regression since these models are capable of solving the 
problem of spatial heterogeneity62. The GWR model is an ameliorated traditional linear regression model with 
the power to apply a spatial weight matrix. The model determines a fixed bandwidth (neighborhood range) 
because it is supposed that the independent variables alter in the same spatial scale. The regression coefficients 
of spatial units are analyzed separately and could give a finer explanation of spatial effects. The GWR model is 
based on the following equation:

	
Yi = β 0 (ui, vi) +

∑
β k(ui, vi) Xik + ϵ i

where Yi = the dependent variable, β0 (ui, vi) = the estimated parameter (regression coefficient) of the linear 
regression equation at (ui, vi), βk (ui, vi) = the estimated parameter (regression coefficient) of the kth independent 
variable at (ui, vi), Xik = the kth independent variable at the ith sample point, εi = the random error.

The MGWR model is an extended GWR model. In this model, the different explanatory variables have diverse 
bandwidths, so each independent variable has its own bandwidth in the MGWR models compared to the GWR. 
This scheme could interpret the non-stationary action of different independent variables better, giving an 
improved model estimation62. The model is given as follows:

	
Yi = β 0 (ui, vi) +

∑
β bw· k(ui, vi) Xik + ϵ i

where Yi= the dependent variable, β0 (ui, vi) = the estimated parameter (regression coefficient) of the linear 
regression equation at (ui, vi), βbw×k (ui, vi) = the differential bandwidth of the kth independent variable at (ui, vi), 
Xik = the kth independent variable at the ith sample point, εi = the random error.

Four indices were used to evaluate the different models. In the first instance, we compared the residual sum of 
squares (RSS), the Akaike Information Criterion (AIC), and the adjusted coefficient of the model (adj. R2). The 
lower value of RSS and AIC, while a higher adj. R2 points out a better model fit. The calculation was performed 
using MGWR (v2.2) software with the following settings: projected coordinate type, adaptive spatial kernel, 
golden selection bandwidth search and Monte Carlo test with 1000 iterations.

In the case of RSS, we used Moran’s I Z-value to estimate the spatial autocorrelation. If the RSS has significant 
positive autocorrelation, the standard errors of the parameter estimates are not accurate enough61. GeoDa 
software (v1.22) was used to map the results and detect spatial autocorrelation.

Questionnaire
To discover the potential personal risk factors, an interview was conducted with 28 of the 40 patients. The 
interrogation was performed when the case was involved in the recent study. Therefore, patients of the earliest 
cases were questioned years after the confirmation. We could not reach the total number of patients to complete 
the questionnaire because several went unnoticed by the health care system. The patients were interviewed 
concerning their gender, age, residence, education level, pet ownership, outdoor activity regarding the potential 
environmental exposure, and travel history in the historical E. multilocularis countries (Supplementary 
Information 2). The majority of the potential risk factors to analyze were chosen from a previously conducted 
large scale European study supported by EFSA30. The proportion of answers to the questions was determined 
during the evaluation. Sterne’s exact method was used to calculate the frequencies and their 95% confidence 
interval. The computation was carried out using the online version of the Quantitative Parasitology software63. 
If the percentage of answers to a question exceeded 50%, it was considered to be a potential primary risk factor. 
Patients participating in the questionnaire analysis were asked for informed consent and obtained informed 
consent before completing it.
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Data availability
The personal questionnaire data are not public. The datasets and supplementary information generated and 
analysed during the current study are available from the following link: https://zenodo.org/records/13763482. 
Balázs Dezsényi and Gábor Nagy should be contacted if other questions arise.
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