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Machine learning interatomic potentials, as a modern generation of classical force fields, take atomic 
environments as input and predict the corresponding atomic energies and forces. We challenge the 
commonly accepted assumption that the contribution of an atom can be learned from the short-range 
local environment of that atom. We employ density functional theory calculations to quantify the 
decay of the induced electron density and electrostatic potential in response to local perturbations 
throughout insulating, semiconducting and metallic samples of different dimensionalities. Molecules 
and thin layers are shown to fail keeping such disturbances localized. Therefore, the learnability of 
local atomic contributions, which guarantees scalability and transferability of a machine learning 
interatomic potential, is questionable in the case of molecules and low-dimensional samples. Similarly, 
the induced electrostatic effects due to substituted impurities or vacancy sites in a crystalline bulk are 
weakly damped and remain significant beyond several interatomic distances. However, geometric 
deformations in bulks are practically local within the first neighbors and induce a Yukawa-type 
electrostatic potential that exponentially vanishes. The practical importance of this finding is that 
it limits the application of the machine learning interatomic potentials to conformational search 
or thermal properties of bulk materials and so on, where only purely geometrical deformations are 
involved. Once chemically impactful defects like aliovalent impurities or vacancies are present, the 
interatomic potentials trained on local environments need to be corrected for long-range effects.
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Numerically solving the Schrödinger equation to determine the electronic structure of materials has already 
reached a prediction accuracy comparable to modern experimental methods1. As a major breakthrough in this 
field of research, machine learning (ML) has successfully proven as an economic alternative to the traditional 
paradigm in computational condensed matter physics and quantum chemistry2–13. For example, an artificial 
neural network (ANN) provides a highly efficient representation of the (ground state) wavefunction of many-
particle systems3,4. An ANN is also flexible enough to learn from the samples the complicated structure-
energy relations in atomic structures: once trained on a rich and diverse set of structure-energy pairs, the 
ANN can accurately regenerate the high-dimensional potential energy surface of large atomic structures at 
low computational cost14,15. The strategy that leads to such greatly reduction of computational cost of the ML 
structure-property mapping is the partitioning of the property in question into additive atomic contributions. 
Assuming that each atomic contribution can be learned locally and independently of the system size, the 
computational cost of evaluating the total property remains O(N) with respect to the number of atoms N in 
the system. This resembles the advantageousness of the so-called linear scaling methods16. A second advantage 
of using the divide-and-conquer strategy is transferability of the locally learned atomic properties from one 
composition to a different composition.

Locality is generally accepted as a natural principle in chemistry which explains why, e.g., the chemical 
reactivity of a functional group is transferable between different molecules. This intuition is based on a physical 
concept known as “nearsightedness of electronic matter”, refereeing to the pioneering work by Kohn and 
Prodan17–19 who showed that the electron density at a given point for a many-electron system is practically 
insensitive to the perturbation of the external potential at distant points. Nearsightedness is different from 
classical screening of long-range electrostatic effects but it is a quantum mechanics effect due to Fermi-
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Dirac distribution and applies also to electrically neutral fermions at constant chemical potential. Generally, 
nearsightedness applies to electrons subject to a periodic external potential with a nearsightedness range of the 
lattice constant order18. On the other hand, nearsightedness, does not apply to few-electron systems while long-
range electrostatic interactions are also long ranged and cause, e.g., the atomic charges in covalent molecules be 
affected beyond a few bond lengths15,20. The competition between nearsightedness and electrostatics determines 
the validity of locality in an atomic system and thus machine-learnability of an interatomic potential model 
for it. However, to the best of our knowledge, the locality radius is unknown in general. In essence, the aim of 
this study is to explore quantitatively the locality in different materials in response to three important types 
of perturbations. The change in the atomic charge, electron density and electrostatic potential as a function 
of the distance to the distortion position is obtained from a series of DFT calculations and compared across a 
variety of different types of samples with different dimensions. In this way, we are able to investigate the locality 
dependence on the type and dimensionality of the materials. We show that nearsightedness is questionable for 
samples with reduced bulkiness, i.e. small molecules or layered samples. In bulk samples, on the other hand, 
geometric deformations are nearsighted in contrast to chemical modifications like vacancies or aliovalent 
substitution. In particular, as long as ML interatomic potentials are employed for performing lattice vibrations 
(e.g. for thermal properties calculations) or molecular dynamics simulations without chemical reactions, the 
locality assumption is safely applicable. These results can be interpreted as evidence for certain limitations and 
applicability of ML interatomic potential models that are based on the local atomic contributions.

In the rest of this manuscript, we will first present the results of our first-principles calculations. We then 
compare the numerical values with analytic expressions for Green’s functions for screening. We finally draw our 
conclusions.

Results
Atomic charge
Inspired by previous work, we first consider the distribution of atomic charges in molecules with either a whole15 
or partially20 chain-like structure. The results presented in the first three rows of Fig. 1 are meant to show how 
the type of a functional group X = OH, O− or SH which is positioned at one end of the linear molecule XC7 H7
O changes the partial charge on the terminal oxygen atoms (marked with a circle) at the other end. Similarly, the 
effect of protonation of one end of the carbon chain C10 H2 is shown in the next two rows. Finally, in the third 
set depicted in the two bottommost rows of Fig. 1, two energetically stable C60 configurations with chain-cage 

Figure 1. Comparison of charge nonlocality with five different partial charge assignment schemes, for the 
molecule XC7H7O with X = OH, O−, SH (top, three rows), C10H2 and C10H+

3  (middle, two rows) and two 
C60 cage-tail structures (bottom, two rows). The color bars denote the net electric charge in units e.
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structure are compared to verify that the charge distribution on the atomic chain depends on the geometry of 
the attached cage. (The atomic energy and density of states was also previously shown to be different for the C60 
configurations20).

Noting that atomic charge is not a physical observable and there is no unique and unambiguous definition 
for it, we generalize the results of previous studies and present in five columns of Fig.  1 the atomic charge 
from five different charge assignment schemes: real-space electron density decomposition via the smooth 
Voronoi20, Hirshfeld21 and Bader22 schemes, minimizing the electronic band energy with respect to the atomic 
charges within the DFTB framework23,24 and finally population analysis of the wavefunction to get the so-called 
Mulliken charge25 (see Methods). Not surprisingly, these schemes lead to scattered values of atomic charges. 
Nevertheless, in all test cases there exist occasions which show that the structural detail at one end of a linear 
conformation affects the atomic charge on the other end despite similar local environments. For example, the 
Hirshfeld and Mulliken charges detect a slight sensitivity of the charge of the terminal oxygen atom of the XC7 
H7O molecule on the functional group X at the other end of the molecule. More notably, the charge of the 
terminal atom in the 10-carbon chain (indicated by a circle) changes by ∼ 0.2 e upon protonation the opposite 
end of the chain according to the DFTB calculations in agreement with previously reported values from more 
accurate calculations15. Similarly, the DFTB, Hirshfeld and Voronoi methods indicate a clear dependence of the 
charges on the terminal atom of the tail of the two C60 conformations on its cage structure.

The observed inconsistency between the charge values predicted by different atomic charge assignment 
schemes highlights the deficiency of atomic charge for an appropriate investigation of the issue of locality. We will 
exploit a rigorous method to quantify the nonlocality based on the electron density and electrostatic potential. 
Moreover, chemical modifications may hinder a quantitatively comparing of different atomic structures. Instead, 
one may consider randomly displacing a single atom by a given small amplitude or removing it to left a vacancy, 
which is identically applicable to any kind of samples.

Electron density and potential
In contrast to atomic charge, electron density is a smooth and continuous function of position and varies slowly 
in space. Moreover, this experimentally measurable field quantity, e.g. by X-ray or neutron diffraction, has a 
unique definition in all computational schemes in terms of the squared modulus of the N-electron wavefunction

 
n(r) = N

∑
s1

· · ·
∑
sN

∫
dr2 · · ·

∫
drN |Ψ(r, s1, r2, s2, . . . , rN , sN )|2, (1)

where ri and si denote spatial and spin coordinates of electron i, respectively. In the spin-unpolarized Kohn-
Sham version of the density functional theory (DFT)26, the electron density is approximated by the single-
electron wavefunctions Ψi(r). The corresponding Hartree potential satisfies the Poisson’s equation

 
∇2VH(r) = e

ϵ0

N∑
i

|Ψi(r)|2, (2)

where ϵ0 denotes the permittivity of vacuum while e = 1.602 × 10−19 C is the elementary charge. The latter 
equation lacks any quantum mechanical contribution from the Pauli exclusion principle and other correlations 
between the electrons, which are all lumped as the so-called exchange-correlation (XC) potential VXC(r) term 
in the DFT framework. The total electrostatic potential is then V (r) = Vext(r) + VH(r) + VXC(r). For a system 
of Nα atoms of atomic numbers Zα located at positions Rα, the external potential felt by the electrons reads 
Vext(r) = e

∑
α

Zαδ(r − Rα).

The induced electron density ∆n(r) = n(r) − n0(r) and electrostatic potential ∆V (r) = V (r) − V0(r) are 
calculated in every point r in the space as the deviation from the unperturbed values, n0 and V0, respectively, in 
response to applying a local modification (displacement, substitution or vacancy) into an atom in the structure. 
We map the three-dimensional fields into scalar functions of the radial distance x to the distortion center by 
averaging over successive thin shells. For linear molecules (one-dimensional systems) the shells are planar and 
perpendicular to the molecular axis at distance x from the displaced atom while for bulks (three-dimensional 
systems) the average is calculated on thin spherical shells of radius x centered at the original position of the 
displaced atom. For a sheet of atoms (a two-dimensional system), the shells are cylinders normal to the sheet with 
an axes passing through the displaced atom so that x is the cylinder radius. We calculate the induced electron 
density or electrostatic potential without relaxing the position of other atoms surrounding the perturbation 
center. This prevents too high peaks of induced electron density in the vicinity of the initial and final positions of 
the point-like atomic cores and thus allows for investigation of the perturbation applied to an individual atomic 
core.

Linear molecules
We first investigate the response of the electron density to random displacements of the terminal atoms. We 
illustrate in Fig. 2a the planar average of the induced electron density ∆n along the linear molecules HOC7 
H7O and C10 H+

3  as a function of distance x to the reference terminal atom which is displaced in a random 
direction by 0.1 Å. For both molecules an initial bump, extended to x ∼ 2 Å, exists due to the displacement 
of the high-density electron cloud peaked over the displaced atom. Beyond the initial bump, ∆n(x) decays as 
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∼ x−2 within the molecule body but then develops as ∼ x−1 into the vacuum region beyond ∼ 11 Å. On the 
other hand, Fig. 2b shows that the decay of the induced potential is similar to the decay of the induced electron 
density within the linear molecule body. The planar average of the induced Hartree potential ∆V H(x) decays 
as ∼ x−2 throughout the molecules but tends to ∼ x−1 in the vacuum. The dominant contribution to the total 
potential is the XC potential which exhibits x−1 decay within the molecular body. Surprisingly, ∆V XC tends 
to a constant in the vacuum while it, in principle, must vanish wherever the electron density is absent within 
the local density approximation (LDA) used in our calculations. It seems that the small induced XC potential in 
vacuum is related to the non-vanishing electron density in the void region between the periodic images of the 
molecule in the supercell method.

Bulk samples
We now look at the locality of the induced electron density and electrostatic potential in extended materials. 
We consider three types of crystalline bulks as test cases: silicon in the diamond structure which is a covalent 
semiconductor, NaCl crystal as an ionic insulator and copper as a metallic crystal. Note that the model systems 
are periodic in three directions so that, in contrast to the molecules, all atomic sites are equivalent. For silicon 
and NaCl crystals, we construct 3 × 3 cubic supercells containing 216 atoms with lattice constant 16.3 and 
17.0 Å, respectively. For copper, a cubic 4 × 4 supercell of lattice constant 14.5 Å is used which contains 256 Cu 
atoms. Although the supercells are not large enough to avoid finite-size effects as discussed later on, we are able 
to capture at least one order of magnitude reduction of the induced averageelectron density within one supercell 
in response to displacing a single atom by 0.1 Å.

As seen in Fig. 3, the decay of the shell-averaged induced electron density for bulk samples is not as smooth 
as for the molecules. For silicon, for example, the initial bump of the shift of the valence electrons of the 
displaced atomic core is followed by a few minor bumps that resemble the peaks of the radial distribution of 
atomic centers. Apart from the bumps, however, ∆n ∼ x−3 so that it is reduced by two orders of magnitude 
already at a distance ∼ 4  Å   form the displaced atom. Similar inspection reveals a slower power-law decay, 
namely ∆n ∼ x−2 and ∼ x−1 away from the distortion center for the ionic and metallic crystalline test cases, 
respectively. When a Cl ion is displaced, the first bump of width ∼ 2.5 Å  is followed by a shallow one extended 
to 5 Å  after which the decay is monotonic. However, the central bump around a displaced Na+ ion is narrow 
because the Na+ ion lacks a flexible electronic cloud. A few shallow and narrower bumps are present within one 
Na-Na distance (5.6 Å) which can be assigned to polarization of the eight electron-rich Cl− ions that surround 
the displaced Na core. Finally, the induced electron density in the metallic test case decays as ∼ x−1 after a wide 
initial bump but it starts oscillating at distance ∼ 9 Å. The latter can be assigned to the periodic images of the 
displaced atom. In fact, the finite-size effect is clearly visible in the metallic sample because the decay of electron 
density perturbation is slow. This implies that locality is less fulfilled in a metallic bulk in comparison to covalent 
and ionic crystals.

To verify the independence of the observed decay from the magnitude of the random displacements, we 
repeated selected tests by amplitudes 0.05, 0.1, 0.5 and 1 Å. The induced electron density increases by increasing 
the displacement amplitude but the x-dependence of ∆n remains always the same. We also looked at the 
maximum value of the induced density within a shell which shows the same pattern as the shell-average value. 
Additionally, we verified the effect of the XC functional used in our DFT calculations. Note that locality of 
electron density is somehow an underlying assumption of the local density approximation (LDA) while the 
PBE27 functional is semi-local compared to the essentially non-local hybrid functional PBE0. Interestingly, our 
complementary tests indicate no appreciable difference between the monotonically-decaying induced electron 
densities calculated by the three different types of XC functionals for bulk silicon. For C10 H2 molecule and Cu 

Figure 2. Induced electron density (a) and Hartree and XC potentials (b) in the two linear molecule test cases 
in response to small atomic displacements. The terminal oxygen atom of HOC7H7O or the terminal carbon 
atom in C10H+

3  is moved in a random direction by 0.1 Å. The average of the induced electron density or 
potential is calculated over thin planar shells at distance x from the displaced atom along the molecular axis. 
The trends x−1 and x−2 are indicated by thin lines to help the eye.
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bulk, however, the PBE and PBE0 calculations predict a slightly faster decay and a smaller asymptotic induced 
density.

The distance-dependence of the induced potential for the same three bulk test cases, shown in Fig. 3b, is 
much smoother than the density. We do not represent the XC and Hartree terms separately because the XC 
contribution is still dominant and practically identical to the total electrostatic potential. The potential decay 
fits fairly well with ∼ x−1 exp(−x/rs). In other words, instead of the power-law x−2 in the one-dimensional 
molecules or x−1 in vacuum, the induced potential drops exponentially in bulks. With such a fast decay, the 
total induced potential reaches 1 mV already at distance x ∼ 10 Å  in the bulk silicon or x ∼ 14 Å  in the ionic 
and metallic samples. It will be shown in the following that distance-dependence of the electrostatic potential 
around a perturbation center in bulks follows a general and simple picture resembling charge screening and 
polarization.

Impurity and vacancy
Atomic displacement is the most frequent circumstance in molecular dynamics simulations. However, it is 
instructive to investigate the locality of bulks also in response to local chemical modifications. To this aim, we 
performed two additional sets of experiments by introducing an atom vacancy or an impurity substitution into 
the three bulk test cases. Shown on the left column of Fig. 4 is the spherically averaged induced electron density 
as a function of the radial distance to the position of the local disturbances. The significant oscillatory density 
which damps slowly away the vacancy or the substituted atom, is clearly visible even on the non-logarithmic scale 
(cf. Figs. 3 and 4). The corresponding distance-dependent induced potential, illustrated on the right column of 
Fig. 4, varies smoothly in contrast to the electron density and decays monotonically with radial distance. Note 
that when the type or the number of atoms is not the same in perturbed and unperturbed systems, apparent 
finite asymptotic value of the induced electrostatic potential is assigned to the arbitrary reference value of the 
electrostatic potential in DFT calculations. We set this asymptotic value to zero in order to align the potential 
between the perturbed and unperturbed systems.

We examined two types of impurity substitution. In one case, the impurity is an element in the same column 
of the periodic table as the original atom so that the number of valence electrons is preserved. In the second 
case, the substituted impurity is next to the original atom on the same row of the periodic table and thus has 
one less or one more valence electron than it. The latter leads to a significant local chemical structure change. 
As shown in the first row of Fig. 4, a germanium impurity introduced into the silicon crystal induces a rather 
localized electron density, fairly similar to the effect of an atomic displacement. In clear contrast, the phosphorus 
impurity with one more valence electron than silicon or a silicon atom vacancy both lead to a slowly damping 
and significant oscillations in the electron density. The right panel shows the same behavior for the induced 
potential: a silicon vacancy or a phosphorus substitution induces much larger electrostatic potential compared to 
geometric deformation or germanium substitution. The second and third rows of Fig. 4 correspond to the NaCl 
crystal with local disturbances introduced into a Cl or Na atomic site, respectively. Both isovalent substitution 
(Cl by Br, Na by K) and aliovalent substitution (Cl by S, Na by Mg) are examined. Interestingly, the behavior 
of NaCl bulk, as an ionic dielectric, looks similar to that of the silicon semiconducting bulk: In contrast to a 
pure geometric deformation or isovalent substitution, the Cl-vacancy or an S-substitution induce non-localized 
electron density and electric potential. Similarly, the electron density induced by randomly displacing a sodium 
atom or substituting it by potassium is much more localized than that by a sodium vacancy or substituting by 
magnesium (with different number of valence electrons). Note that S has one less electron than Cl while, e.g., 
P has one more valence electron than Si, hence the opposite sign of the corresponding induced electrostatic 

Figure 3. Induced electron density (a) and the total electrostatic potential (b) in response to small atomic 
displacements in the three crystalline bulk test cases: diamond silicon, NaCl and copper perfect crystals. A 
single Si, Na, Cl or Si is displaced in a random direction by 0.1 Å. The average of the induced electron density 
or potential is calculated over thin spherical shells of radius x centered at the original position of the displaced 
atom. Note that all atoms are equivalent thanks to the translational symmetry of the crystal. The trends x−1 
and x−3 and x−1 exp(−x/rs) are indicated by thin lines to help the eye. In (b), the screening length is 
arbitrarily set to rs = 4 Å.
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potential. A qualitatively similar behavior is observed for the metallic sample shown in the fourth row of Fig. 4. 
The pure geometric deformation by displacing a Cu atom induces a highly localized change in electron density 
which drops by three orders of magnitude within 3 Å. The corresponding electrostatic potential exponentially 
approaches zero. Dissimilarly, an impactful chemical modification by removing a Cu atom or substituting it by a 
Zn atom (which has one more valence electron than Cu) induces electron density fluctuations of large amplitude 
up to a distance a few Ångström. The induced electron density and electrostatic potential vanish faster if the 
Cu atom is replaced by a Ag atom which has the same number of valence electrons as Cu. Overall, chemically 
significant defects are not well screened in all the examined bulk crystals. This delimits the learnability of 
the interatomic interactions which are based on the locality assumption to purely geometric deformation or 
isovalent impurity substitution.

Discussion
Screened Green’s function
The induced electrostatic potential from our first-principles calculations for all cases presented in Figs. 2, 3 and 
4, is an essentially monotonic and smooth function of distance x to the disturbance center. In particular, the 
data points for bulk samples in Fig. 3 fit well with the exponentially decaying function, x−1 exp(−x/rs), which 

Figure 4. Same as Fig. 3 but in non-logarithmic scale for comparison of two kinds of local perturbations, i.e. 
geometric (displacement by 0.1 Å, repeated from Fig. 3) and chemical (vacancy or impurity substitution). The 
impurity has the same number of valence electrons as the original atom when substituting Si by Ge, Cl by Br, 
Na by K, Cu by Ag while the number of valence electrons differ by one when substituting Si by P, Cl by S, Na by 
Mg, Cu by Zn.
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implies that a geometry deformation is electrically shielded over a distance ∼ rs. This type of exponentially 
decaying electrostatic potential resemble the well-known screened Coulomb potential. In fact, the same form 
of this potential can be derived from different approaches with different physical assumptions, e.g. the Debye-
Hückel model28 for classical plasmas or electrolyte liquids and the Thomas-Fermi model29 for metals. Both 
approaches share the assumption of proportionality of the induced charge density to the electrostatic potential 
at the same point in space ∆ρ(r) ∝ ρ(r)V (r), where ρ(r) denotes the free charge density (not including the 
induced one ∆ρ). This converts the Poisson’s equation ∇2V (r) = −(ρ + ∆ρ)/ϵ0, where ϵ0 is the permittivity 
of vacuum, into the screened Poisson’s equation

 

(
∇2 − κ2

s

)
V (r) = −ρ(r)

ϵ0
, (3)

The corresponding Green’s function in three dimensional space reads

 
G(r, r′) = e−κs|r−r′|

|r − r′|
 (4)

which implies that the electrostatic potential developed by a point charge embedded in an electron gas or 
electrolyte liquid falls off faster than as |r − r′|−1 in vacuum. The potential V (r) = 1

4πϵ0

∫
dr′ρ(r′)G(r, r′) 

solves the screened Poisson’s Eq.  (3). But as the screening length κ−1
s  becomes very large, the unscreened 

Coulomb potential V (r) = Q/4πϵ0|r − r′| is recovered with ρ(r) = Qδ(r − r′) for a point charge Q at 
position r′.

Note that Eq. (4) is identical to the function x−1 exp(−x/rs) used for fitting with rs = κ−1
s  being the screening 

length while x = |r − r′| is the radial distance to the displaced atom position rather than to an external point 
charge. Interestingly, the screened Green’s function (4) fits well to the data points of the Si sample in Fig. 3b with 
a screening length 3.1 Å. Displacing a Na or Cl core in the NaCl crystal leads to practically the same screening 
effect and the damping electrostatic potential obeys Eq. (4). The screening lengths fitted to the data points in 
Fig. 3b corresponding to displacing a Na or Cl core are 3.5 or 3.7 Å, respectively. Finally, for Cu, k−1

s = 2.8 Å. 
Therefore, it seems that the first atomic layer surrounding a displaced atom shields it from the next atomic layers 
in all cases. It is surprising that metallic, ionic and covalent samples all show the same damping behavior despite 
the underlying mechanism should be very different in different materials.

Spatial distribution of the induced electron density and electrostatic potential around an impurity, vacancy or 
displaced atom in materials is an old problem. In the simplest picture, consider a positive point charge embedded 
in an initially homogeneous electron gas. From a classical electrodynamics viewpoint, electron concentration 
around the charge increases in response to the electrostatic attraction with the positive charge. The charge is 
thus screened by the accumulated electrons. Similarly, a point charge embedded in plasma or electrolyte liquid 
is screened by the attracted ions of opposite charge. Moreover, the point charge in a dielectric medium polarizes 
the surrounding atoms and the static dielectric constant (also known as relative permittivity) in enhanced. All 
these tend to render the electrostatic interactions short range.

From a quantum mechanical perspective, on the other hand, a local disturbance is a scatterer of the unlocalized 
electrons in the medium. The Linhard approach predicts the so-called Friedel oscillations of the electron density 
around an external point charge which damp as the inverse cube of distance ∆n(r) ∝ |r − r′|−3 cos(2kF |r − r′|)
29. With the Fermi wavevectors of metallic elements, kF ∼ 0.6 − 1.8 Å−1, the expected spatial period of the 
oscillations accounts to ∼ 2 − 5 Å, which is slightly longer than that of damped oscillations around vacancies 
and impurities in Fig. 4a. Note that the oscillatory electron density originates from the fermion character of 
electron and fundamentally independent of its electric charge and thus of the electric polarization.

In contrast, geometric deformations always lead to exponentially damping potential, Eq. (4), as discussed 
earlier. Such a static screening with exponential damping is predicted within the Thomas-Fermi approximation 
in the limit of very small wavevectors ≪ kF ∼ 1 Å−1. In that case, the Thomas-Fermi screening length 
decreases very slowly when the electron concentration increases as κ−1

s ≃ 1
2

√
a0n−1/3, where the Bohr radius 

a0 = 4πϵ0ℏ2/me2 ≃ 0.529 Å. Let us exemplify two simple and naïve cases. In vacuum, i.e. as n approaches 
zero, κ−1

s → ∞ and screening vanishes. In this limit, Eq.  (4) reduces to the Green’s function of vacuum 
G(r, r′) = |r − r′|−1. On the other hand, for a homogeneous electron gas with density n = 8.45 × 1022 cm−3 
of copper30 the screening length is κ−1

s = 0.55 Å. It is obvious that this value is unrealistically short noting that 
for an ordinary metal a local disturbance is expected to be screened on distances comparable to interatomic 
distances29. Once the homogeneous gas is replaced by a realistic one is in our DFT computations, we get 
rs = 2.8 Å  from fitting Eq. (4) to the data points of our first-principles for bulk copper, presented in Fig. 3b.

Dimensionality
We have shown that locality, quantified as the declining behavior of induced electron density and electrostatic 
potential, is not satisfied in linear molecules in contrast to extended covalent, ionic and metallic crystalline 
samples. It is thus interesting to investigate the role of dimensionality on the locality. In the following, we present 
the result of our tests for the two-dimensional variants of the same bulk test cases, namely: (i) buckled silicene 
(silicon monolayer), (ii) NaCl (001) bilayer film, and (iii) copper monolayer and bilayer. In contrast to silicene 
and NaCl films, a single or two layers of Cu(111) planes might be structurally unstable which has no importance 
for the present test. The averages of the induced electrostatic potential is calculated on cylindrical shells around 
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the perturbation center. The axis of the cylinder is normal to the plane of the two-dimensional sample. The 
shell-average of the total electrostatic potential calculated as a function of the radial distance to the position 
of the displaced atom,  (cylinder radius)  is shown in Fig.  5. It is clearly seen that upon reducing the sample 
dimension from three to two, the decay of the electrostatic potential slows down. While the bulk samples all 
obey x−1 exp(−x/rs), the two-dimensional variants of the same samples show a x−1/2 exp(−x/rs) decaying 
regime up to about 10 Å which is then followed by a x−1/2 regime. The case of silicene is different within the first 
neighbours of the displaced atom. The difference is seemingly due to the very sparse structure of this buckled 
hexagonal sheet.

The Green’s function corresponding to the two-dimensional screened Poisson’s Eq. (3) is

 
G(r, r′) = 1

2π
K0(κs|r − r′|) ∼ e−κs|r−r′|

√
|r − r′|

, (5)

where K0(x) denotes the zeroth order modified Bessel function of the second kind. The approximate 
Green’s function on the right hand side is obtained using the large-x asymptotic approximation of 
K0(x) →

√
π
2x

e−x
[
1 + 0

(
1
x

)]
31. Neglecting the odd case of silicene, Eq.  (5) fits fairly well with the data-

points of the induced electrostatic potential in thin layers illustrated in Fig. 5 within the range x ≲ 10 Å. For 
larger distances that are comparable to the supercell box size, however, the electrostatic potential deviates from 
Eq. (5) and the decay is no longer exponential but becomes power-law (∼ x−1/2). Similar to linear molecules 
shown in Fig. 2b, the magnitude of the induced electrostatic potential due to displacing an atom by 0.1 Å remains 
within a few mV at such distances. We conclude that the electrostatic potential does not vanish even beyond 
a few interatomic distances away the geometric deformation center in one- and two-dimensional samples. We 
consider the latter as an obvious manifestation of nonlocality in low-dimensional materials. Moreover, the static 
screening in (quasi-) two-dimensional samples is weak32,33 consistent with our first-principles calculations 
presented in Fig.  5. Finally, screening of impurities in a semiconductor nanocrystal has also been shown to 
depend on its size34.

Concluding remarks
“Nearsightedness in electronic matter” was introduced by Kohn in 199617 to refer to the limited dependence of the 
electron density at a given point on the variation of external potential at large distances. The other way round, 
screening is also known to greatly suppress the sensitivity of the electrostatic potential at a given point to the 
change of electron density at large distances. The mechanism behind the two phenomena is not necessarily the 
same. Our first principles calculations reveal that the electron density around a vacancy or impurity in a bulk 
sample shows Friedel-like oscillations. The corresponding electrostatic potential decays slowly. We consider this 
as a nonlocal effect (see Fig. 4).

On the other hand, if an atom is displaced from its equilibrium position in bulk even by an Å, the deformation 
remains localized and is screened so that the electrostatic potential change drops exponentially away the 
disturbance center. the underlying assumption of almost all interatomic potentials developed for large-scale 
materials simulations is locality, based on the concepts like nearsightedness and screening. We verified in this 
study how factors like bulkiness and structure of the sample or the type of the local disturbance determines the 

Figure 5. Decay of total electrostatic potential (VXC + VH) in two-dimensional samples in response to local 
geometric deformation i.e. displacement of a single atom, averaged on thin cylindrical shells of radius x 
centered at the position of the displaced atom. Thin lines show the decay trends, including Eq. (4) repeated 
from Fig. 3b, for comparison with the declining exponential behavior in corresponding bulks. The screening 
length is arbitrarily set to rs = 4 Å.
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locality range in practice. Our generally applicable technique makes it possible to compare locality in different 
kinds of samples by quantifying the decay of the induced shell-averaged electrostatic potential away the local 
disturbance. The disturbance might be an impurity substitution, vacancy or atom displacement with an arbitrary 
amplitude and direction. One of advantage over using the induced atomic charges previously suggested for such 
tests is that the induced density or potential is a continuous and smoothly varying function of distance.

For a geometric deformation in bulk materials, the potential mimics the behavior predicted by the screened 
Poisson’s Eq. (3). In other words, the electric consequences of geometric deformations are screened in materials 
extended in three dimensions, just as a point charge is screened in an electrolyte liquid or fermion gas. In 
contrast, chemically impactful defects like aliovalent substation or vacancies show significant long-range effects. 
Moreover, structures composed of sheets or chains of atoms, also fail to screen chemical modifications or 
geometric deformations. In such cases, long-range electrostatic interactions must be taken into account when 
atomic contributions to interatomic potentials are trained. An effective solution to this issue is to enforce the 
atomic system to satisfy the charge equilibration requirement throughout the system. It can be realized, e.g., via 
training atomic electronegativity35,36. The resultant atomic ML atomic contributions to the interatomic potentials 
are equipped with non-local electrostatic interactions throughout the whole structure in addition to the local 
chemical environment of the corresponding atom. For liquid water, it has been shown that adding the long-
range electrostatics, from fixed point charges37 or trained directly by an ANN38, outperforms the ML atomistic 
models. Grisafi and Ceriotti39 proposed a long distance equivarient representation to incorporate long-range 
electrostatics into the ML potentials which can generally capture any nonlocal physics. Finally, it should be noted 
that the DFT calculations data set used in this work is known to suffer from missing long-range electrostatics. It 
would be interesting to see whether the same shortcoming is present if the interatomic potentials are trained on 
more accurate ab initio reference data.

Nevertheless, we showed that the induced electrostatic potential of a geometric distortion is very localized 
inside a dense piece of material. The physics of the localization in different types of materials remains to be 
explored in future work. Our numeric results showed that bulk samples, in particular the covalent crystals, screen 
out the geometric disturbances beyond the first atomic neighbours. The impact of this finding is that lattice 
dynamics computations and molecular dynamics simulations can be safely performed using the ML interatomic 
potentials that split the energy and forces into atomic contributions. In fact, transferability and scalability of a ML 
interatomic potential critically depends on how accurate is the training of an atomic contribution from a limited 
local environment. This requirement is not satisfied in low dimensional systems, namely two-dimensional sheets 
or clusters and molecules.

Methods
The optimized atomic structures are determined with DFT calculations using the Quantum ESPRESSO code 
package40–42. A cutoff of 30 Ry is used to expand the wavefunction of the valence electrons in terms of plane 
waves. The PBE27 scheme of the generalized gradient approximation is used to describe the XC functional. For 
selected cases, the electron density is reported also from the calculations with the LDA and PBE0 XC functionals. 
The DFTB self-consistent atomic charges are calculated by the DFTB+ code23,24. The number density of electrons 
in real space n(r) is integrated over the whole space to assign to an atom α a (real) number of electrons

 
Nα =

∫
dr n(r)wα(r), (6)

according to associated weight functions wα(r). The weights are usually maximized at the position of the 
corresponding atomic centers Rα. For example, in the Hirshfeld method21

 
wα(r) = n0

α(r)∑
β

n0
β(r)

, (7)

where n0
α(r) is the electron density of isolated neutral atoms. Moreover, the space might be partitioned into 

the non-overlapping atomic basins with the condition wα(r) = 1 if r is within the basin α and wα(r) = 0 
elsewhere. The Bader analysis22 of the electron density determines the zero-flux surfaces of the electron 
density as the dividing border between the atomic basins while the strictly geometric Voronoi decomposition 
exploits the Wigner-Seitz cells. We also consider the smooth Voronoi decomposition scheme20 by replacing 
n0

α(r) → exp
(
−|r − Rα|2/σ2

α ) in Eq. (7). This intuitive approach combines the geometric information of the 
atomic configuration with the atomic radius σα. The strictly geometric Voronoi decomposition is recovered in 
the limit of σα → 0, but we set σα to the atomic covalent radius to mimic a simplified Hirshfeld scheme with 
a single Gaussian-type orbital. Note that, in contrast to Mulliken and DFTB atomic charges, 

∑
α

wα(r) = 1 at 
every point r of the real space so that Eq. (6) leads to atomic charges that preserve the total number of electrons 
in the system 

∑
α

Nα = N .

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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