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A novel adaptive model-based motion control method for multi-UAV communication relay is proposed, 
which aims at improving the networks connectivity and the communications performance among a 
fleet of ground unmanned vehicles. The method addresses the challenge of relay UAVs motion control 
through joint consideration with unknown multi-user mobility, environmental effects on channel 
characteristics, unavailable angle-of-arrival data of received signals, and coordination among multiple 
UAVs. The method consists of two parts: (1) Network connectivity is constructed and communication 
performance index is defined using the minimum spanning tree in graph theory, which considers both 
the communication link between ground node and UAV, and the communication link between ground 
nodes. (2) A multi-UAV motion control strategy is proposed that combines Improved Particle Swarm 
Optimization (IPSO) and Distributed Nonlinear Model Predictive Control (DNMPC), where the Kalman 
filter is utilised to estimate future positions of the mobile nodes. Simulation results in both single 
and complex environments show that the presented method can drive the UAVs to reach or track 
the optimal relay positions and improve network performance, while demonstrating the benefits of 
considering the impact of environments on channel characteristics.

Keywords Relay, Cooperative motion control, Multiple unmanned aerial vehicles, Global message 
connectivity, Wireless networks, Intelligent optimization

Over the past few decades, utilizing collaborative multi-agent to achieve a goal has proven huge advantages 
in a variety of missions, including disaster response and rescue1, environmental perception and monitoring2, 
reconnaissance and surveillance3, forest fire prevention4, and more scientific research. A key requirement of 
multi-agents system is to implement and optimize the of quality communication for information exchange. 
However, the increasing distance and obstacles such as surrounding terrain and buildings can seriously affect the 
quality of wireless communication, making it difficult for users to achieve this requirement5.

To resolve this issue, communications relay can be deployed to enhance the transfer of information in the 
system6. Unmanned Aerial Vehicles (UAVs) which are equipped with wireless communication devices have 
been considered ideal for achieving this purpose, and the advantages of using UAVs as communication relays 
include: (1) better relay performance compared with terrestrial or satellite relays7. For example, in contrast with 
ground-to-ground communication affected by obstacles such as buildings, trees or terrain, power attenuation of 
the signal in ground-to-air channel can be much smaller; (2) using UAVs as communication relays requires no 
human intervention and has the advantages of excellent adaptation and robust survivability, particularly in severe 
conditions8; (3) UAVs can be quickly deployed on demand due to its fast speed and flexible maneuverability.

However, the problem of relay UAVs motion control is closely related to the properties of wireless signal 
transmission, which is influenced by the environment, and the UAVs themselves have motion constraints, 
making controlling the motion of multiple UAVs acting as relays very challenging.

There are growing interests in utilising UAVs as relays, and various methods have been proposed to optimize 
the communication quality of UAVs relay network. Pasandideh et al.9 proposed an improved particle swarm 
optimization algorithm for the deployment of UAV base stations under natural disasters, aiming to find the 
minimum number and optimal location for UAV deployment, and achieved good results. Ono et al.10 proposed 
a changeable-rate relay method so as to establish communication links among multiple ground users when 
a disaster happened, in which the flight atitude and minimum turning radius of the UAV were analyzed and 
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provided. Oriented to efficiently collecting data from the ground sensors, Mozaffari et al.7developed a framework 
to optimize the deployments and motion control of relay UAVs. Krijestorac and Hanna11 utilised an approach 
of deep reinforcement learning to study the deployment problem of connecting the relay UAV to users with 
unknown locations.

Other researchers have concentrated on utilising UAVs as mobile users’ relays. Zeng et al.12 proposed an 
iterative algorithm which jointly optimizes transmission power and trajectories of the relay UAVs to maximize 
throughput in mobile relay systems. Chamseddine et al.13 developed a guidance law for mobile ground units, 
which uses angle of arrival(AoA) data and received signal strength(RSS) to drive the relay UAVs to the optimal 
positions without knowing the location of the ground units. Wu et al.14 proposed an adaptive model-based motion 
control approach for UAV communication relay, aiming at enhancing the communication quality of aerial multi-
user systems. Seungkeun and Lun et al.15,16 proposed a relay UAVs motion control method for mobile nodes, 
aiming at improving the networks connectivity and communications performance among multiple naval vessels. 
Bor-Yaliniz et al.17 presented a mixed integer nonlinear optimization method for solving three-dimensional 
positioning problem of relay UAV oriented to ground cellular nodes, and provided a computationally efficient 
numerical solution to this issue. Ladosz et al.18presented a mixed channel prediction method based on models 
and learning for trajectory planning of relay UAV under dynamic urban conditions and achieved better 
performance. Wu and Gao19 proposed a relay UAV motion control framework combining gradient method 
and least squares estimation, aiming to improve the communication quality of ground multi-user system. El-
Emary et al.20 proposed a task scheduling and allocation algorithm for UAV-based MEC systems, which reduced 
the energy consumption of user equipment during task offloading. Ranjha et al.21 proposed an altered genetic 
algorithm for UAV-enabled relays in MEC Systems, which can minimize the task completion time and empower 
ultrareliable and low latency communications. In order to implement URLLC in UAV-enabled MEC Systems, 
Ranjha et al.22 proposed a fair and efficient trajectory design problem and used an iterative sub-optimal joint 
fairness and trajectory design algorithm to solve it, reducing the energy consumption of ground IoT devices.

However, the above work either assumes that the user is static, which is unable to be met in majority of 
UAV-assisted relay applications, as the movement of the agents are usually determined by their tasks; or the 
channel model is too simplified, which will result in poor network performance after optimization; or the impact 
of complex environmental areas on wireless channels, such as building density in urban environments, is not 
considered; or only the communications link between relay UAVs and ground nodes is considered, without 
considering the communication link between ground nodes.

Particle Swarm Optimization (PSO) algorithm is a swarm intelligence algorithm that simulates the predation 
behavior of bird flocks. Each particle in the algorithm is a potential solution to the problem, and the optimal 
solution to the problem is obtained by sharing individual information in the population and iterative search of 
the particle swarm. However, traditional particle swarm optimization algorithm has the disadvantages of slow 
overall convergence speed and susceptibility to falling into local optima. To address this issue, Ye et al.23 proposed 
an improved multi-objective constrained particle swarm optimization algorithm, which improved the fitness 
function to include multiple constraints and penalty terms, and accelerated the convergence by optimizing the 
fitness function. Before updating the particle position in each iteration, the Levy flight strategy was integrated, 
which significantly reduces the risk of falling into local optima without increasing the computational complexity. 
Prakash et al.24 introduced the sigmoid function to convert the position vector of particles into binary variables, 
and made corresponding modifications to the update formula for particle positions. They also combined the 
improved PSO algorithm with the Ant Colony Optimization Algorithm to form a Hybrid Heuristic algorithm, 
which is used to solve the optimal relay nodes in wireless sensor networks, further accelerating the efficiency of 
the solution. Bhardwaj et al.25 proposed an improved integer particle swarm optimization algorithm by rounding 
the position and velocity values of particles, and used this algorithm to iteratively search for the optimal allocation 
of power values between D2D source node and relay node to maximize the transmission rate of the D2D link.

With this background, this paper proposes a novel relay UAVs motion control method, which drives 
multiple UAVs to their expected relay positions while considering the motion constraints of the UAVs, in order 
to maintain network connectivity and achieve optimal communication performance. The main innovations of 
this article are: (1) Jointly considering unknown multiple users’ mobility, environmental complexity, and the 
unavailable angle-of-arrival data of received signals. Moreover, simultaneously considering the communication 
link between relay UAV and ground unmanned vehicle as well as the communication link between ground 
unmanned vehicles when optimizing the network performance. (2)A novel motion control strategy for multiple 
relay UAVs serving a fleet of ground unmanned vehicles communication is proposed that combines minimum 
spanning tree(MST), improved particle swarm optimization (IPSO), and decentralised nonlinear model 
predictive control(DNMPC). By utilizing the motion estimation of ground unmanned vehicles, the current 
states of UAVs, and the environmental channel states, the algorithm finds control input sequences within a 
specific time range, thereby optimizing network connectivity.

This article uses a motion control strategy that combines IPSO and DMNPC to plan relay trajectories for 
multiple UAVs to enhance the communication connectivity between ground unmanned vehicles in urban 
environments. DMNPC mainly predicts the states of each UAV in the next few steps under the current control 
input based on the UAV’s motion equation and the channel model, so as to decide the optimal MST communication 
topology based on the predicted UAV states, ground node states, and environmental channel states in the next 
few steps, and it is carried out in a distributed rather than centralized manner; IPSO is responsible for quickly 
searching for the optimal relay position for the next step near its current position based on the states of each UAV 
predicted by DMNPC and other information. IPSO is responsible for determining the optimal relay position, 
while DMNPC provides real-time path tracking control in a dynamic environments, and the combination of the 
two can quickly adjust the path when the environment changes. The advantage of this combination is that it can 
not only take advantage of the NMPC algorithm in dealing with complex models and constrained multivariable 
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nonlinear optimization problems, but also take advantage of the parallel processing and fast optimization speed 
of the IPSO algorithm, and the entire system is optimized and controlled in a distributed manner, which further 
reduces the calculation time of the overall optimization control of the system, and has strong survivability.

The rest of this article is structured as follows: Sect. 2 explains UAV and ground node model used in this 
study, as well as some assumptions. Section 3 introduces the realistic channel model and the modeling of global 
message connectivity(GMC) based on the concept of minimum spanning tree. Section 4 proposes an online 
deployment and motion control algorithm for multiple relay UAVs based on estimated information to maximize 
network connectivity. Numerical simulation results under different relay scenarios are presented in Sect. 5, and 
the results are analyzed. Subsequently, concluding remarks are given in Sect. 6.

System model
The motivation for this work is to utilize the communication relay capabilities of multiple UAVs to expand 
communications links and improve network performance, mainly for a fleet of ground unmanned vehicles. 
When ground unmanned vehicles perform tasks in harsh environments lacking satellite communications and 
are far apart from each other, relay UAVs can provide them with effective communication connections.

Scenario of air-ground relay
Consider an air-to-ground relay network composed of Na UAVs ni ∈ Na = {n1, n2, · · · , nNa }and Ng  
ground unmanned vehicles nj ∈ Ng = {n1, n2, · · · , nNg } in an urban environment, with ground unmanned 
vehicles carrying out tasks in the region Ω ∈ R2, such as search and rescue. Since the communication between 
ground unmanned vehicles is easily affected by the surrounding terrain, obstacles, tall buildings, etc., fixed-wing 
multi-UAVs equipped with higher-performance communication equipment act as relays in the air to provide 
higher quality communication links between ground unmanned vehicles. It is worth noting that most previous 
works on UAVs acting as communication relays only considered the communications link between relay UAV 
and user node. The difference in this work is that it also considers the communication link between user nodes. 
In other words, this work is to find the best communication network among all available communication links 
that can maintain all nodes connected.

The scenario of air-to-ground relay corresponding to this work is illustrated in Fig. 126. The yellow circular 
dots indicate ground unmanned vehicles, and it is assumed that they are carrying out their own tasks. The cuboid 
represents buildings of different heights in a city. The red solid line indicates the communication link between 
relay UAV and ground unmanned vehicle, and the blue solid line represents the communication link between 
ground unmanned vehicles. The purple solid line indicates the communication link between relay UAVs, while 
the cyan dashed line indicates the flight trajectories of relay UAVs.

In addition, compared to rotorcraft, the fixed-wing UAV has a faster speed and wider operating range. 
However, it has motion constraints such as minimum flight speed and minimum turning radius, etc. This 
work uses multiple fixed-wing UAVs as communication relays, and these constraints have been considered in 
subsequent designs.

Relay UAV kinematic model
Assuming that the relay UAVs have a flight controller for heading and speed maintenance function, and this 
work concentrate on designing guidance inputs for this controller to achieve efficient communication relay. 
Considering the speed control and turn rate control of the relay UAV, the following kinematic model is used27:
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Fig. 1. Illustration of air-to-ground relay communication scenario in urban environment.
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where xpos = [x, y]T represents the position of the relay UAV, v = [ẋ, ẏ]T represents the velocity of the relay 
UAV, ψ ∈ [0, 2π)represents the heading angle of the relay UAV, v = |v| represents the speed, and ω represents 
the turn rate. Due to the limited dynamic performance of the UAV, for a given flight speedv0, the maximum 
turn rate is14:

 
ωmax(v0) = g tan(ϕmax)

v0
 (2)

where g represents gravitational acceleration, ϕmax is the maximum bank angle of the relay UAV.
In addition, τv  andτω  are constants that consider the time delay of the actuator, and can be obtained by 

analyzing characteristic of the autopilot. The control inputs u = [uv, uω]Tare speed control commands and 
turn rate control commands respectively, and their values comply with the following constraints15:

 

{
|uv − v0| < vmax
|uω| < ωmax

 (3)

here v0 represents the relay UAV’s nominal speed. We can use Euler integration to discretize the UAV continuous 
kinematic equation represented by Eq. (1) into:

 xk+1 = fd(xk, uk) = xk + Tsf(xk, uk) (4)

here xk  represents the state of relay UAV at time k, uk  is the control inputs applied to the UAV at time k, and Ts 
represents the unit step time.

Ground node kinematic model
Referring to [30], a smooth-turning random mobility model is used to characterize the movement of the ground 
unmanned vehicle. Let sx(t),sy(t),vx(t),vy(t),ω(t),Φ(t) respectively describe the x coordinate, y coordinate, x 
direction velocity, y direction velocity, turn rate, and heading angle of the ground unmanned vehicle at moment 
t, and the corresponding mathematical model can be expressed as:

 




at(t) = dv

dt
= 0

an(t) =
v2

g

ρ
=

V 2
g

r(Ti)

Φ̇(t) = −ω(t) = − V

r(Ti)
ṡx(t) = vx(t) = V cos(Φ(t))
ṡy(t) = vy(t) = V sin(Φ(t))
τ(Ti) = Ti+1 − Ti

Ti ⩽ t < Ti+1 (5)

where at(t) denotes the tangential acceleration of the ground unmanned vehicle, an(t) denotes the normal 
acceleration of the ground unmanned vehicle, vg  is the speed of the ground unmanned vehicle, and in the 
smooth-turn random mobility model, it is assumed to be constant, namely vg = Vg ,ρ denotes the radius of 
curvature for curved motion, and τ(Ti) is the interval time.

Assumptions
(1)The fixed-wing UAVs are assumed to carry out relay missions with a constant speed and fixed altitude, 
therefore, the control inputs of the relay UAVs is simplified from u = [uv, uω]T to u = uω .

(2)The movement of ground unmanned vehicles are determined by their own tasks and are neither affected 
by the network nor by the relay UAVs.

(3)The relay UAVs are assumed to fly at relatively high altitudes without having to consider obstacle avoidance 
in the air.

Communication network connectivity
In this work, the quality of communication networks is established on the basis of global message 
connectivity(GMC), which are determined by the cost of information transmission to all nodes. This section first 
introduces realistic wireless communication models, including air-to-ground channel modelling, ground-to-
ground channel modelling, and air-to-air channel modelling. Then, based on the concept of minimum spanning 
tree, efficient communication network connections are implemented.

Air-to-ground channel model
Most previous studies using UAVs as communication relays have used wireless communication models that only 
consider communication distance, which are actually oversimplified because using controllers that only consider 
geographical range will result in degraded communication performance. This work refers to the work of Al-
Hourani et al.28,29 and adopts a more realistic wireless communications model between the ground unmanned 
vehicle nodes and the relay UAVs, in which the impacts of the environments on the probability of Line-of-Sight 
are reflected.
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The radio signal emitted by the relay UAVs is first propagated in free space and then reached the low altitude 
environment, as shown in Fig. 2. Owing to the impact of terrain, buildings, trees, etc., signals undergoes 
shadowing and scattering phenomena, leading to extra losses in air-to-ground channel. Thus, the path losses of 
air-to-ground signal transmission can be modeled as28,29:

 Lε = FSPL + ηε (6)

where Lε is the propagation losses in air-to-ground channel, in dB, ε is the propagation group, FSPL is the free 
space propagation loss between relay UAV and ground unmanned vehicle, and ηε represents the additional loss 
caused by shadowing, scattering, etc., generally expressed by a Gaussian distribution, and the value of η largely 
depends on the signal propagation group ε to which it belongs.

In order to find the expected value of path losses between relay UAV and ground unmanned vehicle node 
with an elevation angle of θ, the following formula can be applied28,29:

 
Λ =

∑
ε

LεP (ε, θ) (7)

where P (ε, θ) is the probability that the ε signal propagation group with an elevation angle of θ appears, Lε 
represents the path loss of the εpropagation group. This work follows the supposition of two transmission 
groups28, which in a strict manner corresponds to the Line-of-Sight(LoS) propagation conditions and Non-
Line-of-Sight(NLoS) propagation conditions, namely ε ∈ {LoS, NLoS}, then

 Λ = P (LoS, θ)LLoS + (1 − P (LoS, θ))LNLoS (8)

For air-to-ground communication, the LoS and NLoScomponents exist in the following form28,29:

 




LLoS = ηLoS

(4πfcd

c

)λ

LNLoS = ηNLoS

(4πfcd

c

)λ
 (9)

here d represents the distance between relay UAV and ground unmanned vehicle node, fc represents the carrier 
frequency of radio wave, c represents the speed of light wave, λ represents the path attenuation factor with a 
value range of 2–6, ηLoS and ηNLoS respectively represent the extra path loss of LoS propagation link and NLoS 
propagation link.

The LoS probability is affected by the environment and is a function of the transmitting antenna height 
hTX and the receiving antenna height hRX, and is related to the statistical parameters of the environment. 
In conformity with recommended document of the International Telecommunications Union29, it might be 
expressed as:

 

P (LoS) =
m∏

n=0


1 − exp


−

[
hTX − (n+ 1

2 )(hTX−hRX)
m+1

]2

2γ2





 (10)

 m = floor(r
√

αβ − 1) (11)

where α represents the percentage of building land areas to total land areas, β represents the number of buildings 
per square kilometer, γ is a proportional parameter describing the height distribution of buildings based on 
the Rayleigh probability density function, r denotes the ground distance between transmitting antenna and 

Fig. 2. Illustration of relay UAV-ground unmanned vehicle signal transmission.
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receiving antenna, as illustrated in Fig. 2. Since the receiving antenna height hRX is far lower than height of 
the buildings and the relay UAVs, it can be ignored, so the ground distance r between relay UAV and ground 
unmanned vehicle can be formulated as:

 
r = h

tan(θ)  (12)

here h represents the altitude of the relay UAV. By fitting the channel attenuation of Eq. (10) in different 
environments, it can be found that Eq. (10) can be expressed by the Sigmoid function (S-Curve) as29:

 
P (LoS, θ) = 1

1 + a · exp(−b(θ − a))  (13)

 
θ = 180

π
× arctan

(
h

r

)
 (14)

where θ represents the elevation angle between ground unmanned vehicle and relay UAV, as illustrated in Fig. 2; 
a and b represent the S-Curve parameters. Therefore, the average channel gain g between relay UAV and ground 
unmanned vehicle can be expressed as:

 g = 10(Λ/10) (15)

The quality of wireless communications, such as bit error rate, throughput, delay, capacity, etc., are tightly 
associated with the received signal strength(RSS). This study uses it as a measure of channel performance, which 
can be given as follows:

 S = P T · g (16)

where S is the value of the received signal strength, and P T is the transmitting power.

Ground-to-ground channel model
Previous studies on using UAVs as communication relays only considered the single communication link 
between relay UAV and user node. However, in practical applications, if the communication link quality between 
two user nodes is good, such as being close and without serious communication obstacles, the UAV only needs 
to relay and connect one of the two user nodes with other user nodes to form a network, and then connect 
the adjacent user node. From the above analysis, it can be seen that in the study of only considering a single 
communication link between relay UAV and user node, the communication topology structure of the relay 
network remains unchanged; while in the study of simultaneously considering the communication link between 
relay UAV and user node, as well as the communication link between user nodes, the communication topology 
of the relay networks is in dynamic changes, and there are essential differences between the two different studies.

The complexity of ground-to-ground signal transmission makes it difficult to accurately model it. This work 
utilises the following model to characterize the ground-to-ground channel30,31:

 

S

P T
dB

= 10log10Kg2g − 10λg2glog10
d

d0
− N(0, σ2

dB) (17)

where S represents the received signal strength, P T
dB  represents the transmitting power, in dB, Kg2g  represents 

the ground-to-ground channel gain, which is a dimensionless constant and is related to the antenna characteristics 
and the average attenuation characteristics of the channel, λg2g  is the path attenuation factor, which is affected by 
terrain, buildings, etc. in the environments, and typically varies from 2 to 6, d represents the geometric distance 
between transmitting node and receiving node, and d0 represents the far-field reference distance of the antenna.

Observing Eq. (17), we can find that if d → 0, then S → ∞, which is obviously unrealistic, so this model can 
only be used at large-scale distances, and the minimum value of this distance is called the Fraunhofer distance, 
denoted as dF:

 
dF = ζ

2π
 (18)

where ζ  is the wavelength of the signal. When applying Eq. (17), the condition d ⩾ dF needs to be satisfied.
It is worth noting that when S is less than a specific threshold, the two users may be considered disconnected, 

but the entire relay networks in our work are assumed to be linked to each other with a rather robust transmitting 
power, and concentrates on how to utilize the signal strength S to improve global message connectivity(GMC) 
as the network evolves.

Air-to-air channel model
Since this article studies multi-UAV relay, there exist air-to-air communication channels in the system. Refering 
to [33] and [34], the following model is utilised for characterizing the air-to-air channel:
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S

P T
dB

= 10log10Ka2a − 10λa2alog10
d

d0
− N(0, σ2

dB) (19)

where Ka2a represents the air-to-air channel gain, which is a dimensionless constant and is related to the 
antenna characteristics and the average attenuation characteristics of the channel, λa2a is the path attenuation 
factor, which is affected by terrain, buildings, etc. in the environment, and generally ranges from 2 to 6, and the 
remaining parameters are the same as in the ground-to-ground channel model. It is worth noting that the line 
of sight propagation path usually appears more frequently in the air-to-air channel, therefore, the value of λa2a 
is usually smaller than λg2g  in the ground-to-ground channel model.

MST-based network connectivity
As the number of vehicles in the ground unmanned vehicle fleet grows, communication complexity of the relay 
networks climbs significantly. Therefore, maintaining network connectivity to efficiently transmit information 
among the fleet can be a difficult problem. Under this circumstances, it is necessary to decide which link ought 
to be employed to transmit data across the network so as to: (1)make sure all nodes are connected; (2)the 
communication performance index of the entire network based on global message connectivity(GMC) have 
been optimized.

In the concept of minimum spanning tree in graph theory, each edge has a different weight, and the different 
weights of the edges can be used to reflect the signal strength of different communication links. Therefore, 
from the perspective of edge definition and weight, the minimum spanning tree can be used to construct the 
communication topology relationship, and the nodes in the graph are also defined as ground nodes and UAV 
nodes in this article. In addition, the minimum spanning tree is to find the path with the lowest transmission 
cost from all possible information transmission paths. The purpose of constructing the entire air-to-ground 
relay system in this article is also to ensure that all nodes in the system can be included in the communication 
topology and that information can be transmitted among all nodes in the system with the lowest transmission 
cost. Therefore, the use of the minimum spanning tree in graph theory can enhance the construction of 
network connectivity for UAVs and ground nodes. An example of the corresponding minimum spanning tree 
communication topology in this article is shown in Fig. 3.

There can be various spanning trees in each graph, which are subgraphs that connect all vertices of the 
graph. We can calculate the total cost of a specific spanning tree by assigning an appropriate weight to each 
edge and summing up the weights of all edges. kFinally, MST is determined to be the spanning tree having the 
the lowest cost32. The edge weight in our work is set as a function of RSS, that is, the weight coefficient of the 
communication topology graph is designed as:

 
Wij = (−S′

S′
t

)α (20)

where Wij  represents the edge weight, S′ is the dB format of the received signal strength S in the above Eq. (16) 
and Eq. (17), namely S′ = 10 lg(S),S′

t is the baseline received signal strength, which can be determined based 
on experience and actual needs, and αis the scaling factor.

Fig. 3. Communication network topology based on minimum spanning tree.
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From Eq. (20), it can be seen that the weight of an edge is relevant to the received signal strength. The 
smaller the weight of an edge, the greater signal strength between two nodes, and the more likely information 
is to be transmitted to all users within the network. In order to discover the MST solution of a graph, multiple 
polynomial-time algorithm can be used, and the Kruskal algorithm is used in our work.

Motion control of relay UAVs
This work optimizes the communication connectivity and performance of the air-ground relay networks by 
controlling the motion of multiple relay UAVs. When the fixed-wing UAV equipped with wireless transceivers is 
flying in the air, it communicates with ground unmanned vehicle nodes and other relay UAVs through a wireless 
ad-hoc manner. Therefore, the work studied in this article may also involve ad-hoc networks or the domain 
of Internet of Things(IoT). This section first introduces the optimal deployment strategy of relay UAVs under 
stationary communication nodes, and then analyzes and designs the optimal motion control strategy of relay 
UAVs in detail in the scenario of mobile communication nodes.

Optimal deployment for stationary nodes
This work drives the UAVs to their desired relay positions by controlling the motion of multiple relay UAVs, 
thereby maintaining the communication connectivity of the network and achieving optimal communication 
performance. Assuming that the relay UAVs maintain a constant altitude and speed, leaving the control inputs of 
the UAVs as turn rate ψ̇. Therefore, the optimization problem of relay UAVs motion control can be expressed as:

 
ψ̇∗ = arg maxJ(ψ̇)

|ψ̇|⩽ωmax
 (21)

where J represents the objective function of networks performance which reflects the communication quality of 
data links.

To achieve the aim of finding optimal positions for multi-UAV acting as aerial communications relays among 
a fleet of stationary ground unmanned vehicles, it is essential to first construct the performance index of the 
networks connectivity. This work utilises the definition of global message connectivity(GMC), which denotes 
the cost of successfully transmitting information to all nodes through minimum spanning tree. The lower 
the cost, the better the quality of relay communication. If the position of relay UAVs and ground unmanned 
vehicles are known, the minimum spanning tree can be established using Wij  in the above Eq. (20). Let matrix 
A′ ∈ R(Na+Ng)×(Na+Ng) represents the adjacency matrix of the minimum spanning tree under a specific 
case. If the communication link from node i to node j is part of the minimum spanning tree, then A′

ij = 1, 
otherwise, A′

ij = 0. Since the sum of edge weight in a minimum spanning tree correspond to the total cost of 
successfully transmitting information to all nodes through this minimum spanning tree(MST), this work defines 
the performance index of GMC as:

 
Js(xpos, xg,pos) =

Na+Ng∑
i=1

Na+Ng∑
j=1

A′
ijWij  (22)

where xpos ∈ R2×Na  represents the positions of relay UAVs, xg,pos ∈ R2×Ng  represents the positions of 
ground unmanned vehicle nodes. The adjacency matrix A′ and the edge weight Wij  are jointly determined 
by the positions of relay UAVs, the positions of ground unmanned vehicles, and the channel conditions of the 
environment. Therefore, the deployment problem of relay UAVs can be expressed as: optimizing the positions 
xpos of UAVs to minimize the performance index of GMC, that is:

 
min
xpos

Js(xpos, xg,pos) = min
xpos

Na+Ng∑
i=1

Na+Ng∑
j=1

A′
ijWij  (23)

Once the optimal positions are acquired, the UAVs will be deployed to these locations for relaying. Since they are 
fixed-wing, the UAVs will hover around these points rather than hovering at the optimal relay points33.

Optimal motion control for mobile nodes
Driving multiple relay UAVs to optimal positions so as to continuously provide the best possible communication 
quality among a fleet of ground unmanned vehicles is a critical and challenging issue that requires excellent 
motion control of relay UAV. Compared with the deployment of multiple UAVs under stationary nodes, the 
relay control of UAVs in dynamic environments requires prediction of the motion of ground unmanned vehicle 
nodes. Therefore, this section first introduces the estimation algorithm for the future positions of ground 
unmanned vehicle nodes, and then designs an online motion control strategy for relay UAVs under mobile 
nodes by combining distributed nonlinear model predictive control (DNMPC) and improved particle swarm 
optimization (IPSO) algorithms.

Kf-based position prediction
The optimal positions of relay UAVs are related to the positions of ground unmanned vehicle nodes, and this 
section predicts the future positions of ground unmanned vehicle nodes based on Kalman filtering34. The 
discrete system equation of the ground unmanned vehicle node from time k to time k + 1 can be formulated as:
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 xg
k+1 = F xg

k + ηk  (24)

where xg
k = (xg

k, ẋg
k, ẍg

k, yg
k, ẏg

k, ÿg
k) is the states vector of the ground unmanned vehicle node at time k, ηk  is the 

process noise, expressed by a Gaussian variable with a mean value of 0 and a covariance matrix of Qk = σ2
ηI6

, F is the state transition matrix:

 

F =




1 Ts q1 0 0 0
0 1 q2 0 0 0
0 0 e−αgTs 0 0 0
0 0 0 1 Ts q1
0 0 0 0 1 q2
0 0 0 0 0 e−αgTs


 (25)

 q1 = (e−αgTs + αgTs − 1)/α2
g  (26)

 q2 = (1 − e−αgTs )/αg  (27)

where Ts is the time length from time k to time k + 1, αgis a parameter used to simulate different types of 
maneuvering targets, and its value is related to the speed of the mobile object. When the speed is slow, αg  is 
smaller, and when the speed is fast, αg  is larger.

Assuming that the ground unmanned vehicle can use GPS or other types of sensors to measure its own 
position, and only requires a small bandwidth to transmit the position information to the UAV, then the noisy 
position observation of the ground unmanned vehicle node at time k can be given as:

 zk = Hxg
k + vk  (28)

 
H =

( 1 0 0 0 0 0
0 0 0 1 0 0

)
 (29)

where Hrepresents the observation matrix, vk  represents the observation noise, expressed by a Gaussian 
variable with its mean value of 0 and the covariance matrix of Rk = σ2

vI2.
Prediction

 x̂g
k|k−1 = F x̂g

k−1 (30)

 P k|k−1 = F P k−1F T + Qk−1 (31)

Kalman gains

 Kk = P k|k−1T T(T P k|k−1T T + Rk)−1 (32)

State measurement and covariance matrix

 x̂g
k = x̂g

k|k−1 + Kk(zk − T x̂g
k|k−1) (33)

 P k = (I4 − KkT )P k|k−1 (34)

Distributed NMPC and the mechanism of consistency
Offline optimization strategies often have better global optimization performance, but are not flexible or fast 
enough35. An important feature of nonlinear model predictive control (NMPC) is the implicit determination of 
control laws by solving constrained optimization problems online. This flexibility and the explicit use of models 
are the main advantages of NMPC. In view of the multi-variable, multi-constraint, and nonlinear characteristics 
of UAVs relay communication, the use of nonlinear model predictive control is an effective method for online 
optimization of the trajectories of relay UAVs in dynamic environments. In addition, since it would be almost 
impossible to simultaneously optimize the control input sequence for the entire multiple relay UAVs in a 
centralized manner35, this work uses a completely distributed nonlinear model predictive control strategy.

NMPC usually adopts a receding horizon process to handle dynamic situations, that is, within a certain time 
horizon, the local optimum is used to replace the global optimum. Suppose the number of receding optimization 
steps is Nr, the current moment is tk , the sampling period is Ts, thus we can express the control input sequence 
as U(tk) = {u(tk), u(tk + Ts), · · · , u(tk + (Nr − 1)Ts)}, abbreviated as Uk = {u0, u1, · · · , uNr−1}, 
and the corresponding prediction state sequence is X(tk) = {x(tk), x(tk + Ts), · · · , x(tk + (Nr − 1)Ts)}, 
abbreviated as Xk = {x0, x1, · · · , xNr−1}. The optimized communication performance index for the motion 
control of relay UAVs under mobile communication nodes is:

 
Jd = ϕ(xNr , xg

Nr
) +

Nr−1∑
k=0

L(xk, xg
k, ui

k) (35)

s.t.
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 xi
k+1 = fd(xi

k, ui
k) (36)

 ωmin ⩽ ui
k ⩽ ωmax (37)

 
∣∣C(xi

k − xj ̸=i
k )

∣∣ > rc, ∀j ∈ {1, . . . , Na} (38)

where

 ϕ(xNr , xg
Nr

) = pcJs(xpos
Nr

, xg,pos
Nr

) (39)

 
L(xk, xg

k, ui
k) = qcJs(xpos

k , xg,pos
k ) + rω( ui

k

ωmax
)2 (40)

here i represents the i-th relay UAV, Jd is the performance index of GMC under dynamic environments, Js 
is the performance index of GMC under a stationary environment, as shown in Eq. (22), rc represents the 
safe distance between relay UAVs for preventing collisions, pc,qc, and rωare constant weight coefficients, 
xpos

k = {Cx1
k, . . . , CxNa

k } represents the current positions of the relay UAVs, xg,pos
k = {Cgxg1

k , . . . , Cgx
gNg

k } 
represents the positions of ground unmanned vehicles, which are obtained from the position estimation based 
on Kalman filtering, xk = (xk, yk, ψk, vk, ωk)T  represents the states vector of relay UAV at moment k, 
xg

k = (xg
k, ẋg

k, ẍg
k, yg

k, ẏg
k, ÿg

k)T  represents the states vector of ground unmanned vehicle node at moment k, C 
and Cg  are determined by xk  and xg

k  respectively, and the specific values are:

 
C =

[ 1 0 0 0 0
0 1 0 0 0

]
 (41)

 
Cg =

[ 1 0 0 0 0 0
0 0 0 1 0 0

]
 (42)

Each relay UAV determines the minimum spanning tree and optimizes its controller in an independent manner 
based on future states prediction of other relay UAVs, positions estimate of ground unmanned vehicles, and 
environmental channel conditions. Assuming that the required data is able to be distributed between relay 
UAVs through communications during one sampling period, depending on the capabilities of the onboard 
communication devices and the number of relay UAV, the above assumption might be loosened by scaling up 
the sampling period.

Distributed optimizations are carried out after obtaining control input from prior sampling and shared 
states of other relay UAVs. If the relay UAVs exchange identical positional data at every time step, the MST 
solutions obtained by relay UAVs to maintain the entire network connected would be the same36. However, due 
to communication delays and corruption, the MST of every individual relay UAV can be intermittently different 
from each other.

The method to address this issue in this work is to communicate the minimum spanning tree structures with 
each relay UAV’s ID tag within the relay UAVs group, with detailed process shown in Fig. 4, and then selecting 
the minimum spanning tree with the lowest cost in cases that differences exist between the relay UAVs.

The proposed distributed structure is beneficial compared to a centralized structure, as it not only greatly 
reduces the computational burden, but also can be seen as more robust in consideration of achiving a successful 
mission, as even in the event of several relay UAVs failing during the mission, the remaining relay UAVs can 
continue to perform the communications relay mission.

Improved-PSO
The Particle Swarm Optimization (PSO) algorithm originates from the study of birds foraging behavior. 
Each particle in this algorithm is a potential solution for the problem, and it utilizes the sharing of individual 
information in the population and the iterative search of the particle swarm to acquire the optimal solution for 
the problem. Introducing the particle swarm optimization algorithm into distributed nonlinear model predictive 
control can further speed up the acquisition of optimal output prediction values for air-ground relay networks.

Suppose the number of particles in the population is q, the dimension of each particle is D, the position of 
the i-th particle is xi = (x1

i , x2
i , · · · , xD

i ), the speed of the i-th particle is vi = (v1
i , v2

i , · · · , vD
i ),1 ⩽ i ⩽ q, the 

historical optimal positions that the i-th particle passes through are pip = (p1
ip, p2

ip, · · · , pD
ip), and the historical 

optimal positions of the population are pig = (p1
ig, p2

ig, · · · , pD
ig). The update equation of particle position in 

this work can be expressed as:

 xk+1
id = ωxk

id + c1r1(pk
id − xk

id) + c2r2(pk
gd − xk

gd) (43)

where c1 and c2 are termed as learning factor,r1 and r2 are both random number with their value ranges from 0 
to 1,ω denotes the inertia weight, k denotes the number of iteration, xk

id denotes the position of the i-th particle 
in the d-th dimension at the k-th iteration, d = 1, 2, · · · , D.

According to the iterative optimization principle of PSO algorithm in Eq. (43), it can be observed that when 
the inertia weight ω increases, the global optimization ability of the particles will be enhanced, but the search 
accuracy and local optimization ability will be worse; on the contrary, when the value of inertia weight ωis small, 
the search accuracy and local optimization ability will be enhanced, but the global optimization ability of the 
particles will be weakened37. To make the entire algorithm converge faster, the global optimization ability of 
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particles should be strengthened at the beginning of the algorithm iteration, and the local optimization ability 
and search accuracy of particles should be strengthened in the subsequent stages37. Based on this, this work first 
adopts the method of nonlinear decreasing inertia weight ω to improve the classic PSO algorithm, specifically:

 ω(c′) = ωstart − (ωstart − ωend)(c′/cmax)2 (44)

where c′ represents the current number of iteration, when c′ is small, the inertia weight ω is larger, and when c′ 
is large, the inertia weight ω is smaller, and cmax represents the maximum number of iteration.

Moreover, in view of the gradual convergence of particle positions in later stage of iterative evolution of 
the PSO method, which leads to slow convergence of the optimization and falling into local extremum at such 
time, this work introduces the extremum perturbation operators38 and adjusts the individual extremum pi 
and population extremum pg  in the population through the random perturbation generated by them, thereby 
generating a new search direction. The extremum perturbation operators are:

 pi = r
tp>Tp

3 pi; pg = r
tg>Tg

4 pg  (45)

where tp and tg  are the number of evolutionary steps at which pi and pg  have stalled, respectively, Tp and Tg  are 
the step thresholds for pi and pg  to generate disturbances, respectively, rtp>Tp

3  and rtg>Tg

4  are uniform random 
functions with conditions and their specific values are:

 
r

tp>Tp

3 =
{

1, tp < Tp

R(0, 1), tp ⩾ Tp
 (46)

 
r

tg>Tg

4 =
{

1, tg < Tg

R(0, 1), tg ⩾ Tg
 (47)

where R(0, 1) is a random number with its value from 0 ~ 1. Based on the above improvements to the inertia 
weight ω and the introduction of extremum perturbation operators, the update equation of particle positions in 
the improved-PSO algorithm is transformed into:

Fig. 4. Consistency mechanism in distributed optimizations.
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xk+1
id = ω(c′)xk

id + c1r1(rtp>Tp

3 pi − xk
id)+

c2r2(rtg>Tg

4 pg − xk
gd)

 (48)

IPSO-DNMPC-based motion control for multiple UAVs
The NMPC algorithm is effective in processing constrained, multi-variable, nonlinear optimization control with 
complex models, at the cost of a relatively high computation, while the PSO algorithm has the characteristic of 
parallel processing and fast optimization speed, and, in order to make the PSO algorithm more powerful and 
further enhance its optimization ability, this work improved the value of the inertia weight ω in the previous 
section, further accelerating the speed of PSO algorithm in optimization, and together introduced the extremum 
perturbation operators to improve the situation of falling into local extremum.

Therefore, in the scenario of using multiple relay UAVs to support the communications among a fleet of 
mobile ground unmanned vehicles, considering the motion of ground unmanned vehicles and the constraints 
of fixed-wing UAVs, this work proposes an IPSO-DNMPC-based motion control strategy for relay UAVs under 
dynamic environments. ∆U  is used as the optimization variable of the IPSO algorithm, and dimension D of 
each particle in the population is equal to the predicted horizon Nr, and Eq. (35) ~ (40) are selected as objective 
functions for calculating each particle’s fitness. The specific implementation procedures are as follows:

Step1 Obtaining motion state estimations of ground unmanned vehicle nodes by utilizing sensor data and 
filtering techniques;

Step 2 Based on the predicted positions of ground unmanned vehicles, the current states of other relay UAVs, 
the control input from previous sampling, and the environmental channel states, each individual UAV obtains 
an MST solution;

Step 3 Communicating the MST solutions tagged with every relay UAV’s ID within the group, and selecting 
the minimum spanning tree which has the lowest cost;

Step 4 Based on the lowest-cost MST, each individual UAV iteratively optimizes the objective function using 
the IPSO algorithm in a completely distributed manner and obtains the optimal control input sequence U∗

k ;
Step 5 Executeing the first item of each relay UAV’s optimal control input sequence and updating their 

respective states;
Step 6 Repeating the above steps until the mission is completed.
The pseudocodes corresponding to the entire optimization process is shown in Table 1, and the motion 

control flowchart of multiple relay UAVs based on the IPSO-DNMPC algorithm is illustrated in Fig. 5.

Simulation and results
Parameters
This section verifies the feasibility of the proposed optimal deployment and motion control method for multiple 
relay UAVs supporting communications among a fleet of ground unmanned vehicles through simulation 
experiments. The smooth-turning random motion model39is used to represent the motion of ground unmanned 
vehicle nodes, and the relay UAVs cannot know the speed and direction of the movement of mobile users, but 
can only know their positions. The task environments are sorted into four typical types, namely suburban, urban, 
dense-urban and high-rise-urban areas, with the corresponding channel parameters28,29 shown in Table 2 and 
coverage range shown in Table 3.

The relay UAVs are fixed-wing and have motion constraints, and other parameters used for simulation are 
shown in Table 4. It should be noted that as the number of ground unmanned vehicles grows, the time it takes to 
seek the MST solution in the entire relay network increases, thereby increasing the time of the entire optimization 
process. Meanwhile, the relay UAVs will need higher communications bandwidth to acquire information from 
all ground unmanned vehicles. Therefore, the maximum number of ground unmanned vehicles that can be 
covered by the presented approach needs to be determined based on actual computing and communication 
resources. For situations where there are too many ground unmanned vehicles, clustering can be used to classify 
them into multiple different clusters, with each cluster assigning several UAVs for relay.

In addition, there is a trade-off between the sampling time and the network performance. If the sampling 
frequency is faster, the communication performance of the relay network will be better. However, NMPC requires 
a heavier computational load because within a given cycle, number of the receding optimization steps becomes 
more. Due to the lower movement speed of ground unmanned vehicles compared to aerial relay UAVs, the 
frequency of guidance commands generated for communication relay is lower than the frequency of relay UAVs’ 
flight control commands. Based on this, the sampling time used in this work is Ts = 0.5s. However, when the 
ground unmanned vehicle nodes are moving rapidly, more frequent sampling is needed to ensure the coverage of 
air-ground relays. In practical applications, the sampling time Ts for predictive control ought to be determined 
according to the number of ground unmanned vehicles and the onboard computing capability of the relay UAVs.

Stationary users
Using relay UAVs to support the communications among stationary ground unmanned vehicles is a simple 
and common scenario. In Experiment 1, UAVs are used as relays to support the communications among 
eight stationary ground unmanned vehicles. The positions of ground unmanned vehicles are (6540,4000), 
(2660,9800), (4340,7600), (10800,7260), (7460,500), (9860,5200), (2760,3300), and (7260,8400), with the unit in 
m, the transmitting power are P T = 100 mW, and the signal frequency are fc = 2 GHz.

As shown in Fig. 6(a), eight ground unmanned vehicles are distributed in an area of 12 km x 14 km. The black 
dashed line in Fig. 6(a) represents all available communication links between ground unmanned vehicle nodes, 
and the numbers on the line show the cost of each communication link transmitting messages. The lower the 
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Channel parameter Suburban Urban DenseUrban HighRiseUrban

α 0.1 0.3 0.5 0.5

β 750 500 300 300

γ 8 5 20 50

a 5.0188 9.6101 11.9480 27.1562

b 0.3511 0.1592 0.1359 0.1228

ηLoS(dB) 0.1 1.0 1.6 2.3

ηNLoS(dB) 21 22 23 34

Table 2. Channel parameter for different areas.

 

Fig. 5. A flowchart of optimal deployment and motion control for multiple UAVs acting as communication 
relays among a fleet of ground unmanned vehicles.

 

Algorithm for motion control of multiple relay UAVs

1. Predicting the future position of UGVs xg,pos
k  based on KF.

2. Obtaining current states of relay UAVs x(tk) and environmental channel state information e(tk).

3. Each individual UAV calculates its own MST solution Ti .

4. Communicating the MST solutions within the group, so that the MST having the lowest cost is selected, namely Tmin .

5. Initializing the parameters, i.e.,the current iteration c = 1.

6. Initializing each particle’s positionxi .

7. Choose the current optimal input U∗
k = {u0, u1, . . . , uNr−1} and calculate the corresponding objective function J∗

d .

8. Whilec ⩽ cmax
9. Update each particle’s position by Eq. (48).

10. Calculate the corresponding objective function Jd .

11. IfJd ⩽ J∗
d ,then

12. J∗
d ← Jd ,andU∗[tk : tk + (Nr − 1)Ts] ← U [tk : tk + (Nr − 1)Ts]

13. End if

14. c ← c + 1
15. End while

16. Return and execute the first item of U∗[tk : tk + (Nr − 1)Ts].

Table 1. Pseudocodes for motion control of relay UAVs.
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cost, the greater the signal strength, and the better the communication quality. The solid blue line in Fig. 6(a) 
shows the MST structure representing the communication networks topology between eight ground unmanned 
vehicles when there are no relay UAV. In this example, the cost of GMC is J = 7.5257.

Figure 6(b) illustrates the optimized MST connections and communication cost of using one single realy 
UAV to serve communications among a fleet of ground unmanned vehicles in the same suburban environment. 
Among them, the red solid lines represent the air-ground communication links between the relay UAV and the 
ground unmanned vehicle node, and the blue solid lines represent the ground-ground communication links 
between the ground unmanned vehicle and the ground unmanned vehicle. By optimizing the optimal relay 
positions, the cost of GMC becomes J = 4.8335.

Comparing Fig. 6(a) and (b), we can see that after deploying one single relay UAV to serve the communications 
among ground unmanned vehicles, the cost of global message connectivity for the entire network is significantly 
reduced from J = 7.5257 that without relay to J = 4.8335 that with one relay. This means that deploying only 
one single UAV to relay for a fleet of ground unmanned vehicles can improve the communication quality by 56%.

It can be expected that the more UAVs used for relay, the lower the cost of GMC and the better the 
communication quality of the entire network, as given in Fig. 6(c) and Fig. 7. Nevertheless, as the number of 
relay UAV grows, the rate of improving global message connectivity cost gradually decreases, as shown in Fig. 
7. Further observation of Fig. 7 reveals that the rate of change in global message connectivity cost is related to 
the transmitting power P T

i  of the nodes. The smaller the transmitting power P T
i  of the communications node, 

the greater the improvement is able to be achieved by deploying UAVs as communication relays to serve the 
communications among a fleet of ground unmanned vehicles.

The comparative experiments in experiment 1 verifies the feasibility and efficiency of the presented optimal 
deployment and motion control method for relay UAVs under stationary nodes. Next, we will discuss the actual 
performance of our method under mobile nodes and conduct comparative experimental analysis.

Parameter Value Unit

Nominal speed of the UAVv0 40 m/s

Flight altitude h 400 m

Turn rate constraint (ωmin, ωmax) (−0.3,0.3) rad/s

Minimum turning radius rmin 133.3 m

Safe distance between relay UAV rc 50 m

Nominal speed of the UGVvg 10 m/s

Scaling factor α 10 N/A

Baseline received signal strength S′
t −110 dBm

Weighting factor pc 1e1 N/A

Weighting factor qc 2 N/A

Weighting factor rω 1e5 N/A

Learning coefficient c1 3 N/A

Learning coefficient c2 3 N/A

Sampling time Ts 0.5 s

Receding horizon step Nr 5 N/A

Air-to-air channel gain Ka2a 1e-6 N/A

Path attenuation factor λa2a 3 N/A

Ground-to-ground channel gain Kg2g 1e-6 N/A

Path attenuation factor λg2g 5 N/A

Far-field reference distance d0 200 m

Fraunhofer distance dF 500 m

Table 4. Other simulation parameters.

 

Environmental areas

Coverage 
center

Coverage radius (m)X(m) Y(m)

Suburban 6000 7000 9000

Urban 6490 4480 3600

DenseUrban 7000 3150 2000

HighRiseUrban 7340 2300 600

Table 3. Coverage of various types of areas.
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Mobile users
In experiment 2, three UAVs are used as relays to serve the communications among eight mobile ground 
unmanned vehicles. The motion trajectories of the ground unmanned vehicles are randomly generated based 
on the smooth turn random mobility model39, with a motion speed of vg = 10 m/s and a transmitting power 
of P T = 100 mW for each ground unmanned vehicle. The initial positions of the relay UAVs are (1000,9000), 

Fig. 6.  Optimal UAVs deployment results and the minimum spanning tree connections for a fleet of static 
ground unmanned vehicles. (a) No relay UAV, (b) One relay UAV, (c) Four relay UAVs.
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(2000,1000), (11200,6400) respectively, with the unit in m, and a flight speed of v0 = 40 m/s, a expected flying 
radius of 300 m. The simulation time is set to 1320 s.

In order to highlight the relay motion control effect of the approach presented in this work under mobile 
nodes, the relay UAV motion control strategy based on IPSO-DNMPC algorithm, the relay strategy of UAVs 
circling around fixed points, and the relay strategy of UAVs’ random motion are separately simulated under 
the same conditions. The random motion of the UAVs are given by the smooth-turn random mobility model39. 
The simulation results under different relay strategies are shown in Fig. 8, and the corresponding cost curves of 
global message connectivity are shown in Fig. 9.

Observing the four curves in Fig. 9, we can find that the communication cost in the case of no relay is always 
at the highest position among the four. Compared with the case of no relay, the global message connectivity 
cost of the entire network has been significantly reduced in the case of hovering relay and random motion 
relay. However, for relays based on the IPSO-DNMPC algorithm in this article, the cost of GMC is always at the 
lowest position, and the control effect of relay communication is the best. For example, at the time of 190s, the 
global message connectivity cost corresponding to the relay strategy based on the IPSO-DNMPC algorithm is 
J = 2.9681, while at the same time, the global message connectivity costs corresponding to the random motion 
relay strategy and the hovering relay strategy are J = 4.5627 and J = 6.2006, respectively. Compared to the 
random motion relay strategy, the communication performance of our algorithm has improved by 53.72%, and 
compared to the hovering relay strategy, the communication performance of our algorithm has improved by 
108.91%.

In addition, observing the purple curve corresponding to the no-relay case in Fig. 9, we can find that the 
communication cost among ground unmanned vehicles has experienced a process of first increasing and 
then declining, indicating that as the ground unmanned vehicle nodes move, the distance between them 
becomes farther and farther in early stage, and gradually approaches in later stage; Observing the cyan curve 
corresponding to the relay strategy based on the IPSO-DNMPC algorithm in Fig. 9, we can find that except 
for 0 ~ 190s, the changing trends of the curve are basically consistent with the changing trends of the curve in 
the case of no relay. This indicates that the motion control method of relay UAVs proposed in this work can 
adaptively adjust the positions of relay UAVs according to the motion of ground unmanned vehicle nodes, 
so as to keep the communication performance of the entire network optimized. And the reason why there is 
a decline in the 0 ~ 190s stage is that all three relay UAVs start the relay mission from the edge of the mission 
area, which means that the communication cost of the entire relay network is already relatively high at the 
initial moment; Finally, observing the green and blue curves corresponding to the random motion relay strategy 
and the hovering relay strategy in Fig. 9, we can find that the changing trends of the two curves do not follow 
the changing trends of the curve in the case of no relay, and the fluctuations generated by the two curves are 
irregular. This is because neither the random motion relay nor the hovering relay adaptively adjusts the motion 
of the relay UAVs according to the motion of the ground unmanned vehicle nodes.

The comparative results in the above experiment 2 show that the relay UAV motion control approach based 
on the IPSO-DNMPC algorithm presented in this work can effectively support the communications among a 
fleet of mobile ground unmanned vehicles. Next, we will discuss the actual effect of our method in controlling 
relay UAVs to support the communications among a fleet of ground unmanned vehicles under complex and 
dynamic environments, verify the impact of environments on the channel and relay communication, and focus 
on the real-time changes in the communication topology of the entire air-ground relay network as vehicles in 
the fleet enter different types of urban areas.

Fig. 7. Relationship between the cost of GMC and the number of UAVs.
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Real-time changes in communication topology under complex environments
On the basis of experiment 2, in experiment 3, to highlight the effectiveness of the relay UAV motion control 
method proposed in this work in supporting the communications among a fleet of ground unmanned vehicles 
under complex and ever-changing urban environments, the task environments are sorted into four typical types, 
namely suburban, urban, dense-urban and high-rise-urban areas, with the corresponding channel parameters28,29 
shown in Table 2 of Sect. 5.1 and coverage range shown in Table 3 of Sect. 5.1. Other experimental parameters 
remain unchanged compared to experiment 2.

The simulation results of three time moments during the experiment are selected, as given in Fig. 10(a)~(c). 
In Fig. 10, circles of different colors represent the coverage range for different types of environmental areas. 
High-rise-urban areas are marked with purple circles, dense-urban areas with blue circles, urban areas with 
green circles, and the remaining areas classified as suburban.

Observing Fig. 10(a)~(c), it can be seen that as the ground unmanned vehicles moves, they will enter different 
urban areas at various moments. In Fig. 10(a), the ground unmanned vehicle 5 has not yet entered the high-rise-
urban area which has the worst communication conditions. It is noted that there exits a direct communication 

Fig. 9. Comparison of communication performance under different relay strategies.

 

Fig. 8. Optimal UAV motion control result and the minimum spanning tree connections using three UAVs for 
a fleet of mobile ground unmanned vehicles.
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link between the ground unmanned vehicle 5 and the relay UAV at this moment. However, in Fig. 10(b), the 
ground unmanned vehicle 5 has already moved to the high-rise-urban area. According to the empirical channel 
parameter given in Table 2 and the air-to-ground channel models in Eq. (9) and Eq. (13), the communication 
environment in this area has a low probability of LoS in the channel due to high-density and high-altitude 
buildings, resulting in a harsh communication environment for users in this area. If it directly establishes a 
communication link with the relay UAV, the communication quality will be very poor. In Fig. 10(b), the relay 

Fig. 10. Real-time changes in communication topology under complex environments. (a) t = 600s, (b) t = 840s, 
(c) t = 1080s.
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UAV has indeed disconnected the direct communication link with the ground unmanned vehicle 5, and instead 
communicates with the ground unmanned vehicle 5 through the ground unmanned vehicle 1. In Fig. 10(c), 
the ground unmanned vehicle 5 has left the high-rise-urban area, and the relay UAV has resumed its direct 
communication link with the ground unmanned vehicle 5.

This is in line with the above theoretical analysis, which verifies the feasibility of the relay UAV motion 
control method proposed in this work under complex urban environments, that is, the air-ground relay network 
can dynamically adjust the communication topology of the network according to changes in environmental 
channels, and control the UAVs to fly to the relay positions with optimal communication performance while 
maintaining connectivity throughout the entire network. It also verifies the significance of considering the 
impact of environments on channel characteristics when designing the motion control method for relay UAVs, 
which are crucial in practical communication relay missions.

Comparison of relay communication performance under different channel models
Most previous studies using UAVs as communication relays used wireless communication models that 
only considered communication distance or other oversimplified channel models, resulting in a decrease in 
communication performance. To reflect the impacts of channel models on relay control results and highlight 
that the realistic channel model used in this work can achieve better relay communication performance, this 
experiment 4, based on experiment 3, conducts simulation experiments on three scenarios: relay UAV motion 
control based on the channel model in this work, relay UAV motion control based on the distance channel 
model, and no relay. The comparative curves of the cost of global message connectivity are given in Fig. 11.

Observing the three curves in Fig. 11, we can see that the communication cost in the case of no relay is always 
at the highest position among the three. Compared with the case of no relay, the cost of GMC for the entire 
network has been significantly reduced in the relay based on the distance channel model. However, the cost of 
GMC in the air-ground relay communication based on the channel model in this work is always at the lowest 
position, and the control effect of relay communication is the best.

Comparison of relay communication performance under different motion control algorithms
In order to further verify the feasibility and superiority of the DNNPC-IPSO algorithm proposed in this paper in 
multi-UAV relay motion control, the improved PSO algorithm proposed by Pasandideh et al.9 is combined with 
the DNNPC method in this paper and denoted as the DNNPC-IPSO-Pasandideh algorithm; at the same time, the 
gradient-based relay UAV motion control method proposed by Wu et al.14 is applied to the simulation scenario 
of this paper and denoted as the gradient-based algorithm. In Experiment 5, based on Experiment 3, simulation 
experiments are conducted on the three algorithms: gradient-based relay UAV motion control, DMNPC-IPSO-
Pasandideh algorithm-based relay UAV motion control, and DMNPC-IPSO algorithm-based relay UAV motion 
control. The comparison curves of the global message connectivity cost over time are shown in Fig. 12. At the 
same time, in order to compare the computational time cost of different motion control algorithms, Matlab is 
used to record and average the calculation time of each optimal relay position during one simulation, and the 
corresponding table is shown in Table 5.

From Fig. 12; Table 5, it can be seen that the relay UAV motion control algorithm proposed in this paper 
achieves the best performance; although the relay UAV motion control algorithm based on DMNPC-IPSO-
Pasandideh achieves similar communication performance to the method proposed in this paper, its calculation 
time for the optimal relay position is much higher than that of the method proposed in this paper; and although 
the gradient-based relay UAV motion control algorithm is slightly better than the method proposed in this paper 
in terms of calculation time, its realized relay communication performance is poor.

Fig. 11. Comparisons of relay communication performance under different channel models.
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Conclusions
(1) In order to improve the communication connectivity and communication performance of air-ground relay 
networks, a motion control method for multiple relay UAVs that combines improved particle swarm optimization 
and distributed nonlinear model predictive control is proposed. Numerical simulation results demonstrate that 
the proposed motion control method can drive the UAVs to reach or track the motion of the optimal relay 
positions, and significantly improves the communication quality and connectivity of the networks in both static 
and dynamic environments.

(2) The cost of global message connectivity is constructed based on the concept of minimum spanning tree 
in graph theory, which can conveniently and accurately evaluate the communication performance of the relay 
network. In addition, the network connectivity not only considers the communication link between the UAV 
and the ground node, but also considers the communication link between the ground node and the ground 
node, which has more practical application value.

(3) The results of comparative simulation experiments under complex and dynamic environments show that 
considering the impact of environments on channel characteristics is beneficial and can achieve better network 
performance under complex urban environments.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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