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Abstract 

Long non-coding RNAs (lncRNAs) play crucial roles in numerous biological processes and are involved in complex 
human diseases through interactions with proteins. Accurate identification of lncRNA-protein interactions (LPI) can 
help elucidate the functional mechanisms of lncRNAs and provide scientific insights into the molecular mechanisms 
underlying related diseases. While many sequence-based methods have been developed to predict LPIs, efficiently 
extracting and effectively integrating potential feature information that reflects functional attributes from lncRNA 
and protein sequences remains a significant challenge. This paper proposes a Dinucleotide-Codon Fusion Fea-
ture encoding (DNCFF) and constructs an LPI prediction model based on deep learning, termed LPI-DNCFF. The 
Dual Nucleotide Visual Fusion Feature encoding (DNVFF) incorporates positional information of single nucleotides 
with subsequent nucleotide connections, while Codon Fusion Feature encoding (CFF) considers the specific-
ity, molecular weight, and physicochemical properties of each amino acid. These encoding methods encapsulate 
rich and intuitive sequence information in limited encoding dimensions. The model comprehensively predicts 
LPIs by integrating global, local, and structural features, and inputs them into BiLSTM and attention layers to form 
a hybrid deep learning model. Experimental results demonstrate that LPI-DNCFF effectively predicts LPIs. The BiLSTM 
layer and attention mechanism can learn long-term dependencies and identify weighted key features, enhancing 
model performance. Compared to one-hot encoding, DNCFF more efficiently and thoroughly extracts potential 
sequence features. Compared to other existing methods, LPI-DNCFF achieved the best performance on the RPI1847 
and ATH948 datasets, with MCC values of approximately 97.84% and 84.58%, respectively, outperforming the state-of-
the-art method by about 1.44% and 3.48%.
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Graphical Abstract

Background
 Long non-coding RNAs (lncRNAs), which are non-
coding RNAs longer than 200 nucleotides, play signif-
icant roles in various biological processes such as cell 
differentiation, gene expression regulation, chroma-
tin modification, and immune responses [1–4]. They 
are closely associated with complex diseases including 
cervical cancer, colorectal cancer, breast cancer, and 
Alzheimer’s disease [5–7]. Investigating the molecular 
mechanisms of lncRNAs in cancer cell invasion and 
metastasis is crucial for cancer diagnosis, treatment, 
and prognosis [8, 9]. Typically, lncRNAs function by 
interacting with proteins like chromatin modification 
complexes and transcription factors. Many critical 
cellular processes, such as signal transduction, chro-
mosome replication, substance transport, mitosis, 

transcription regulation, and translation, are closely 
related to lncRNA-protein interactions (LPI) [10]. 
Accurate prediction of LPI can help decipher the reg-
ulatory mechanisms of lncRNAs on gene expression 
and fully understand their functions in regulating tar-
get genes. Specific LPI disruptions may lead to diseases 
[11, 12], and proteins interacting with dysregulated 
lncRNAs are involved in pathways related to viral infec-
tions, inflammation, and immune functions [13–15]. 
Therefore, predicting potential LPIs is essential for 
exploring the molecular mechanisms of lncRNA func-
tions and related diseases, providing reference targets 
for drug development and addressing complex human 
diseases. In recent years, a number of advanced meth-
ods for predicting drug-target interactions have also 
been proposed [16–19].
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Traditional experimental methods for LPI prediction 
are costly and time-consuming, making computational 
methods essential for large-scale LPI identification. These 
methods can be categorized into network-based and 
machine learning-based approaches [20]. Network-based 
methods effectively propagate LPI labels in heterogene-
ous graphs and path propagation but require each node 
to have at least two connections, making them less effec-
tive in predicting interactions for isolated proteins or 
lncRNAs. The presence of isolated sub-networks and 
imbalanced node degree distributions can also impact 
their predictive performance.

In recent years, various machine learning-based LPI 
prediction models have emerged. For instance, Lu et al. 
proposed lncPro based on Fisher linear discriminant 
analysis [21]. Pan et  al. introduced a sequence-based 
method, IPMiner [22]. Liu et  al. developed LPI-NRLM 
using neighborhood regularized logistic matrix fac-
torization and a semi-supervised learning strategy 
[23]. Zhang et  al. proposed SFPEL-LPI by extracting 
sequence-derived features of lncRNAs and proteins 
[24]. Hu et  al. presented HLPI-Ensemble, specifically 
designed for human LPI prediction using multiple fea-
ture extraction methods [25]. Zhao et al. [26] integrated 
random walk and neighborhood regularized logis-
tic matrix factorization into a semi-supervised model, 
training without negative data sets and using known 
LPIs for prediction. Xie et  al. introduced LPI-IBNRA 
using a bipartite network recommendation algorithm 
[27]. Fan et  al. combined lncRNA and protein features, 
inputting them into five independent extended learn-
ing systems and proposed LPI-BLS [28] using a stack-
ing ensemble strategy. Peng et al. developed LPI-EnEDT 
[29], an ensemble framework with extra tree and deci-
sion tree classifiers, for classifying imbalanced LPI data. 
These machine learning-based methods have advanced 
LPI prediction, but their performance relies heavily on 
the quality of hand-crafted features.

Compared to machine learning methods, deep learn-
ing can better capture the sequence features of lncR-
NAs and proteins. Consequently, deep learning-based 
methods have become increasingly popular. For exam-
ple, Peng et  al. proposed RPITER, a hierarchical deep 
learning approach [30]. Wekesa et al. introduced GPLPI 
[31], a graph representation learning method for predict-
ing plant LPIs using sequence and structural informa-
tion. LPI-DL [32] utilizes sequence features and compact 
LSTM, using k-nucleotide frequency and codon-based 
encoding features as model inputs. Li et al. developed a 
multi-channel capsule network framework, Capsule-LPI 
[33]. Huang et al. proposed LGFC-CNN, which combines 
raw sequence composition features, hand-crafted fea-
tures, and structural features [34]. Song et al. introduced 

an ensemble learning framework, RLF-LPI [35], predict-
ing LPIs through a residual LSTM autoencoder module 
and fuzzy decision-making.

Integrating features from different sources is an 
effective strategy to improve prediction performance. 
However, most methods either extract only sequence 
information and ignore structural information or sim-
ply concatenate different types of features, resulting in 
redundant features. Therefore, selecting appropriate fea-
tures and encoding methods to efficiently extract and 
integrate potential feature information reflecting func-
tional attributes is a significant research challenge.

This study introduces LPI-DNCFF, a novel method for 
predicting lncRNA-protein interactions based on deep 
learning. The study has two main innovations: (1) It pro-
poses a novel Dual Nucleotide Visual Fusion Feature 
encoding (DNVFF) encoding to extract potential func-
tional features from preprocessed lncRNA sequences. 
DNVFF captures both the specificity of single nucleo-
tides and their connectivity with subsequent nucleotides, 
providing comprehensive biological information; (2) It 
introduces a codon fusion feature (CFF) encoding to effi-
ciently extract potential features from preprocessed pro-
tein sequences, considering the specificity of each amino 
acid, its molecular weight, and physicochemical proper-
ties. These encoding methods contain rich and intuitive 
sequence information in limited encoding spaces. Com-
pared to one-hot encoding [36] and k-mer methods, the 
feature matrix obtained by DNCFF is smaller, more effi-
ciently extracts sequence features, and reduces redun-
dant features. In the hybrid deep learning model, global 
features, local features, and structural features of the raw 
sequence are extracted through LocCNN, GloCNN, and 
SS modules, respectively. These integrated features are 
then input into BiLSTM and attention layers for compre-
hensive prediction. The BiLSTM layer learns long-dis-
tance dependency structures in the sequence, capturing 
long-term correlations, while the attention mechanism 
enhances its ability to process remote information, iden-
tifying and weighting key features, thereby improving 
model performance and adaptability. Experimental results 
show that LPI-DNCFF performs satisfactorily on bench-
mark datasets, surpassing some state-of-the-art methods.

Methods
Dataset construction
In lncRNA-protein interaction datasets, non-interac-
tions (negative samples) are typically far more preva-
lent than interactions (positive samples). This imbalance 
can lead to the model being biased towards predicting 
non-interactions; therefore, data balancing strategies 
such as oversampling, undersampling, or weighted loss 
functions are necessary. To evaluate the performance of 
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LPI-DNCFF, we used the lncRNA-protein interaction 
dataset RPI21850 from the NPInterv4.0 [34], constructed 
by Huang et  al. [34]. This dataset excludes lncRNA 
sequences shorter than 200 nt and non-human lncRNA-
protein interactions, containing 21,850 high-confidence 
lncRNA-protein interactions. The high-quality nega-
tive dataset was constructed using the standards from 
FIRE [37]. Similarly constructed datasets, RPI7317 and 
RPI1847, were derived from LPI-BLS [28]. RPI7317 and 
RPI1847 are sourced from the human species section 
and the muscle species subset of NPInter3.0 [38], respec-
tively. There is no overlap between RPI7317, RPI1847, 
and RPI21850. The lncRNA sequences were obtained 
from NONECODE v6.0 [39], and the protein sequences 
from UniProt [40]. Additionally, we collected other LPI 
datasets from previous studies. The datasets ATH948 
and ZEA22133 from PlncRNADB [41], corresponding to 
Arabidopsis and maize, were sourced from the paper by 

Zhou et al. [42]. We used CD-HIT [43] to exclude redun-
dant sequences with more than 90% similarity, reducing 
sequence homology bias. We generated an equal num-
ber of positive and negative samples by randomly pairing 
proteins and lncRNAs and removing existing interaction 
pairs. Table 1 provides detailed descriptions of the afore-
mentioned datasets. During training, each dataset was 
divided into training and testing sets in a 1:1 ratio, ensur-
ing independence, with the validation set comprising 20% 
of the training data.

Sequence feature coding
Since CNN models require input sequences of fixed 
length, and LncRNA and protein sequences vary greatly 
in length, we used the sequence preprocessing method 
from LGFC-CNN [34] to convert sequences to fixed 
lengths [44]. By setting an average sequence length Llnc 
and Lpro, Represents the fixed length of the lncRNA and 
the protein sequence, respectively. To fully extract global 
and local features from the sequences, we preprocess 
LncRNA and protein sequences in two ways.

Taking the LncRNA sequence as an example, as shown 
in Fig.  1, if the LncRNA sequence length exceeds the 
Llnc, when extracting global information, it is trimmed 
to the fixed length; When the sequence length is less 
than Llnc, it is padded with the letter N to reach the fixed 
length. When extracting local information, the lncRNA 
sequence is divided into W windows based on the win-
dow size lnc_window_size, with each window size being 

Table 1  Benchmark dataset

Dataset lncRNAs Proteins Interaction Pairs Non-
Interaction 
Pairs

RPI21850 4221 701 21,850 21850

RPI7317 1874 118 7317 7317

RPI1847 1939 60 1847 1847

ATH948 109 35 948 948

ZEA22133 1704 42 22133 22133

Fig. 1  Flow chart of the preprocessing and encoding of the LncRNA sequence. The lncRNA sequences were converted into fixed length sequences 
using two preprocessing methods, after which the sequences were encoded using Dual Nucleotide Visual Fusion Feature encoding, input GloCNN 
and LocCNN modules respectively
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the average length Llnc divided by the maximum number 
of channels C, calculated based on the average sequence 
length. Each window is treated as a channel, with s over-
lapping positions between each window. If the number of 
channels exceeds C, the sequence is trimmed to C subse-
quences; if fewer, it is padded with the letter N to reach 
C subsequences. Protein sequences are preprocessed 
similarly, converting them to fixed-length sequences. The 
processed sequences are then encoded using Dinucleo-
tide-Codon Fusion Feature (DNCFF) encoding and input 
into the GloCNN and LocCNN modules.

Dual nucleotide visual fusion feature encoding(DNVFF)
To extract potential features reflecting functional attrib-
utes from preprocessed lncRNA sequences, selecting an 
appropriate encoding method is crucial. We propose the 
Dual Nucleotide Visual Fusion Feature (DNVFF) encod-
ing, which is derived from two classic 2D visualization 
methods for DNA sequences. The first method, proposed 
by Gate et al. [45], uses different 2D vectors to represent 
the four DNA bases (A, T, C, G), mapping the origi-
nal sequence onto a plane curve (Fig.  2a). Since we are 
encoding lncRNA sequences in this work, thymine (T) is 
replaced by uracil (U), resulting in the following vector 
mapping:

The second method is an extension of a 2D spectral 
graph model proposed by Randic et al. [46]. This method 
maps the four nucleotides onto four horizontal lines 
spaced one unit apart on the y-axis. Since this graphical 
representation resembles a spectral wave curve extending 
along the horizontal direction, while being constrained in 
a limited range along the vertical axis, it is referred to as a 
spectral graph. However, this method only considers the 
positional specificity of single nucleotides. Therefore, it 
was extended by introducing four corresponding lines for 
the four nucleotide bases on both the x-axis and y-axis. 
The vertical lines on the x-axis (A→1, G→2, T→3, C→4) 
correspond to the current nucleotide’s base type, while 
the horizontal lines on the y-axis (A→1, G→2, T→3, 
C→4) correspond to the base type of the connected next 
nucleotide. The intersection of the horizontal and verti-
cal lines gives the 2D coordinate of the current nucleo-
tide (Fig. 2b). In this way, the conversion from sequence 
to visualization incorporates both the information of the 
current nucleotide and the connection to the next nucle-
otide. Using the aforementioned coordinate mapping, we 
obtain fixed x and y components for each nucleotide’s 
corresponding vector. By setting the z component as the 
current nucleotide’s position, we can generate a 3D curve 
along the z-axis. Figure  1(b) also shows the 3D graphi-
cal representation of the DNA sequence “ATG​GTG​

(1,0) → A, (−1,0) → G, (0,1) → U, (0,−1) → C

CACC”. Similar to the first method, for encoding lncRNA 
sequences, thymine (T) is replaced by uracil (U).

Finally, by combining the mappings from the two 
above-mentioned visualization methods, the Dual 
Nucleotide Visual Fusion Feature Encoding (DNVFF) is 
obtained. For LncRNA sequences, the following mapping 
applies:

This mapping converts each nucleotide into a 4D vec-
tor, where i(i∈ [1, 40])represents the current nucleotide 
and j represents the next nucleotide. The first two com-
ponents of the 4D vector reflect the information of the 
current nucleotide, while the last two components rep-
resent the connection to the next nucleotide. This map-
ping converts an N-nt LncRNA sequence into an (N-1) x 
4 feature matrix (Fig. 2c). Using this method, the 16 types 
of dinucleotides are encoded efficiently and effectively. 
This is ideal because, when the numeric encoding and the 
dinucleotide combinations correspond one-to-one, the 
minimum number of bits required for binary encoding 
is 4. DNVFF includes the type of the current nucleotide 
and the connection information with the next nucleotide, 
avoiding complex calculations, and is suitable for any 
RNA sequence. Compared to one-hot encoding, DNVFF 
encapsulates richer sequence information, is more intui-
tive, and enhances feature expression. Compared to the 
k-mer method, it saves space and reduces redundancy.

Codon fusion feature encoding(CFF)
To encode the features of preprocessed protein 
sequences, we extended DNVFF and proposed Codon 
Fusion Feature (CFF) encoding for amino acids. In the 
genetic code, nucleotide triplets (codons) determine the 
specific amino acids in protein synthesis. Therefore, we 
encode amino acids by converting them into codons. 
Due to the redundancy in the genetic code, multiple 
codons can encode the same amino acid. The first two 

(1)f i, j =

(1,0, 1,4), if i, j = A,C
(1,0, 1,3), if i, j = A,U
(1,0, 1,2), if i, j = A,G
(1,0, 1,1), if i, j = A,A
(−1,0, 2,4), if i, j = G,C
(−1,0, 2,3), if i, j = G,U
(−1,0, 2,2), if i, j = G,G
(−1,0, 2,1), if i, j = G,A
(0,1, 3,4), if i, j = U ,C
(0,1, 3,3), if i, j = U ,U
(0,1, 3,2), if i, j = U ,G
(0,1, 3,1), if i, j = U ,A
(0,−1,4, 4), if i, j = C ,C
(0,−1,4, 3), if i, j = C ,U
(0,−1,4, 2), if i, j = C ,G
(0,−1,4, 1), if i, j = C ,A
(0,0, 0,0), if i, j = else
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nucleotides of these codons are typically the same, with 
only the third nucleotide differing. Consequently, the 
specificity of codons is primarily determined by the first 
two nucleotides, with the third nucleotide having mini-
mal impact. Thus, when encoding codons, we focus on 
the first two nucleotides, which can be directly encoded 
into corresponding 4D vectors using DNVFF.

However, certain special cases arise. For example, for 
leucine (L), arginine (R), and serine (S), the codons for 

these amino acids share the same first two nucleotides in 
two different forms. In such cases, we encode based on 
the codon with the higher frequency. For instance, for 
serine (S), we use CUX instead of UUX. Another situa-
tion involves different amino acids sharing the same first 
two nucleotides in their codons. For example, both glu-
tamine (Q) and histidine (H) correspond to CAX type 
codons. However, this conflict occurs with no more 
than two amino acids. To differentiate between these 

Fig. 2  Dual Nucleotide Visual Fusion Feature encoding (DNVFF). a The 2D visualization method for DNA sequences by Gate et al., applied 
to LncRNA sequences after replacing thymine (T) with uracil (U) in the mapping. b The extension of the 2D spectral graph method proposed 
by Randic et al. In the sequence of arrows: the 2D spectral graph of the DNA sequence “ATG​GTG​CACC”; the extended spectral graph model, 
showing the distribution of all intersection points of the dinucleotides on the plane and their corresponding 2D coordinates. For example, “TG” 
indicates that the current nucleotide T is connected to the next nucleotide G; further extension into 3D space; the 3D graphical representation 
of the sequence “ATG​GTG​CACC”. This mapping is applied to LncRNA sequences after replacing thymine (T) with uracil (U). c Each nucleotide 
in the sequence is encoded as a 4D vector, where the first two components reflect the information of the current nucleotide, and the last two 
components represent the connection to the next nucleotide. An LncRNA sequence of N nucleotides (nt) is converted into an (N-1) x 4 feature 
matrix
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conflicting amino acids, we add an additional binary bit 
(the fifth position) to the 4D vector. The value of this 
binary bit is determined by the following two rules: (1) 
When a conflict occurs between two amino acids, the 
one with the larger molecular weight is assigned a value 
of “1,” and the one with the smaller molecular weight 
is assigned a value of “0.” For example, the molecular 
weights of glutamine (Q) and histidine (H) are 146.15 and 
155.16, respectively, so glutamine (Q) is assigned “0” and 
histidine (H) is assigned “1.” (2) If there is no conflict, the 
binary bit value is the same for amino acids with simi-
lar properties. The final Codon Fusion Feature encoding 
table is shown in Table 2.

Figure 3 illustrates the encoding process for a specific 
protein sequence “MAFASRIGNALRRTLAPTC”.

Finally, we used a 5D vector to encode the 20 amino 
acids. This encoding method is both ideal and efficient 
because, when the numeric encoding corresponds one-
to-one with the amino acid types, the minimum number 
of binary encoding bits required to encode an amino acid 
is five. Although each amino acid is encoded as a single 
5D feature vector, CFF not only considers the specific-
ity of each amino acid but also accounts for the molecu-
lar weight and physicochemical properties of the amino 
acids, minimizing information loss. Compared to one-
hot encoding and k-mer methods, CFF provides rich and 
intuitive sequence information using a limited number 
of encoding bits, significantly reducing space waste and 
redundancy.

Structural feature coding
Molecular features dependent on LncRNA and protein 
structural information play a crucial role in LPI, enhanc-
ing the expression of sequence information and the pre-
dictive power of models. For the RPI7317, RPI1847, and 
RPI21850 datasets, secondary structure, hydrogen bond 
propensity, and van der Waals interactions are used to 
represent the structural information of LncRNA and 
proteins. For the ATH948 and ZEA22133 datasets, the 
normalized occurrence frequency of K-mers in the sec-
ondary structure sequences of LncRNA and proteins is 
calculated.

The formation and decomposition of LncRNA sec-
ondary structures are accompanied by the release or 
consumption of free energy. Using the RNAfold pro-
gram [47] from the ViennaRNA package, the secondary 
structure sequence of LncRNA with the minimum free 
energy can be obtained, with the secondary structure’s 
‘.’ and ‘()’ encoded as 0 and 1, respectively. Additionally, 

Table 2  Codon fusion feature encoding

Amino 
acid

Codon Ecoding Amino 
acid

Codon Ecoding

P CCU CCC​
CCA CCG​

[0,-1,4,4,1] L CUU CUC​
CUA CUG​
UUA UUG​

[0,-1,4,3,1]

Q CAA CAG​ [0,-1,4,1,0] H CAU CAC​ [0,-1,4,1,1]

R CGU CGC​
CGA CGG​
AGA AGG​

[0,-1,4,2,0] S UCU UCC​
UCA UCG​
AGU AGC​

[0,1,3,4,1]

Y UAU UAC​ [0,1,3,1,0] F UUU UUC​ [0,1,3,3,1]

W UGG​ [0,1,3,2,0] C UGU UGC​ [0,1,3,2,1]

T ACU ACC​
ACA ACG​

[1,0,1,4,0] I AUU AUC​
AUA​

[1,0,1,3,0]

M AUG​ [1,0,1,3,1] K AAA AAG​ [1,0,1,1,0]

N AAU AAC​ [1,0,1,1,1] A GCU GCC​
GCA GCG​

[-1,0,3,1,1]

V GUU GUC​
GUA GUG​

[-1,0,2,3,0] D GAU GAC​ [-1,0,2,1,0]

E GAA GAG​ [-1,0,2,1,1] G GGU GGC​
GGA GGG​

[-1,0,2,2,0]

END UAA UAG​
UGA​

[0,0,0,0,0] else [0,0,0,0,0]

Fig. 3  Codon fusion feature encoding of the protein sequence “MAFASRIGNALRRTLAPTC”
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the hydrogen bond propensity and van der Waals interac-
tions [48] are encoded using purine and pyrimidine con-
tact information from a set of 41 RNA-protein complexes 
in LncPro [21]. Each LncRNA structure is represented 
by three numerical feature vectors. The secondary struc-
ture of proteins is obtained using Predator [49] based on 
their amino acid sequences and encoded by replacing 
each amino acid with Chou-Fasman propensities [50] 
from LncADeep [51]. Hydrogen bond propensities are 
encoded using Grantham propensities [52] and Zimmer-
man propensities [53], while van der Waals interactions 
are encoded using Kyte-Doolittle [54] and Bull-Breese 
propensities [55]. Each protein structure is represented 
by five numerical feature vectors.

For the RPI7317, RPI1847, and RPI21850 datasets, 
Fourier transform is used to unify dimensions, with the 
first ten terms of the Fourier series as the new numeri-
cal feature vectors, resulting in 30-dimensional LncRNA 
structural feature vectors B1 = [LSS, LOHB, lOVW]

and 50-dimensional protein structural feature vectors 
B2 = [PSS, PGHB, PZHB, PKVW, PBVW] . For the ATH948 
and ZEA22133 datasets, K-mer methods yield 39-dimen-
sional protein structural features and 399-dimensional 
LncRNA structural features.

LPI‑DNCFF model
The hybrid deep learning framework proposed in this 
paper is illustrated in Fig.  4. It consists of several com-
ponents: (a) construction of the benchmark dataset, (b) 
encoding of global and local sequence features, (c) encod-
ing of sequence structural features, and (d) construction 
of the prediction model.

First, positive and negative samples of LncRNA-protein 
interaction pairs are obtained from the open-source data-
bases PlncRNADB and NPInter to construct the train-
ing dataset. Then, the LncRNA and protein sequences 
undergo preprocessing, followed by encoding of global, 
local, and structural features before being input into the 
model. The model includes three input modules, a BiL-
STM layer, an attention layer, and a fully connected layer. 
Specifically, the three input modules are: the GloCNN 
module, the LocCNN module, and the SS module, which 
extract global, local, and structural features, respectively. 
The outputs of these three modules are fused and then 
fed into the BiLSTM layer and attention layer. The BiL-
STM layer learns long-range dependencies between the 
LncRNA and protein sequences, as well as the struc-
tural modules. The attention layer further enhances the 
model’s ability to process distant information, helping to 

Fig. 4  Hybrid deep learning model LPI-DNCFF. a Constructing the benchmark dataset. b Preprocessing the LncRNA and protein sequences 
and inputting them into the GloCNN and LocCNN modules. c Encoding the structural features of LncRNA and protein sequences and inputting 
them into the SS module. d Extracting global sequence, local sequence, and structural features through the GloCNN, LocCNN, and SS modules 
respectively, concatenating them and inputting them into the BiLSTM layer and attention layer
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identify and weigh key features, thereby reducing predic-
tion errors. Finally, the fully connected layer generates 
the final output.

For the GloCNN module, the feature matrices encoded 
from LncRNA and protein sequences are respectively 
input into two single-channel CNNs to extract global 
features. These global features are then concatenated 
and reduced to 64 dimensions via a fully connected 
layer. For the LocCNN module, the input is fed into two 
multi-channel CNNs to extract local features from the 
raw sequences, with the number of channels being the 
maximum channel number C from the sequence pre-
processing. After concatenating the local features, a 
fully connected layer reduces the dimensions to 32. The 
SS module uses two fully connected layers to learn the 
structural features of LncRNA and proteins, which are 
then concatenated and reduced to 32 dimensions via a 
fully connected layer.

The features from the three modules are further com-
bined and input into the BiLSTM layer, which learns 
the long-range dependencies between the sequence and 
the structure modules, containing 32 hidden units. To 
enhance the model’s ability to identify key features, an 
attention mechanism is added after the BiLSTM layer. 
The attention mechanism applies attention weights to 
the features of the input sequence at each time step of 
the BiLSTM, emphasizing important time steps and 
eliminating redundant features in the feature representa-
tion. The size of the attention weights reflects the impor-
tance of each hidden state in determining the prediction 
result, generating a context vector that represents the 
weighted average of the important information in the 
input. Although BiLSTM is designed to capture long-
range dependencies in sequences, position attention can 
further strengthen the model’s ability to process distant 
information.

The steps of the attention mechanism include: (1) 
applying a tanh activation function to the input three-
dimensional tensor; (2) multiplying the activated tensor 
by a learnable weight matrix to obtain an energy matrix; 
(3) applying a softmax function to the product to obtain 
attention weights; (4) using the attention weights to per-
form a weighted sum on the input to obtain the context 
vector. Given the input tensor X, the detailed mathemati-
cal formula is as follows:

(2)energy = tahn(X) · attn_weights

(3)attention_weight = softmax
(

energy
)

(4)context_vector =
∑

length
i=1 (input · attention_weighti)

Where ‘length’ indicates the length of the sequence. 
Therefore, the mathematical representation of this atten-
tion mechanism is summarized as follows:

Finally, after flattening the data, it is input into the 
fully connected layer using a softmax activation func-
tion. The LPI-DNCFF model employs a multi-layer 
modular design, consisting of three input CNN modules 
(GloCNN, LocCNN, SS), a BiLSTM layer, an attention 
mechanism, and fully connected layers. During training, 
binary cross-entropy is used as the loss function, and 
Adam is chosen as the optimizer. To mitigate overfitting, 
an early stopping strategy is applied, halting the training 
process when performance on the validation set begins 
to decline. The model is trained using 5-fold cross-vali-
dation on the training dataset and evaluated on an inde-
pendent test dataset. If a model contains a large number 
of parameters, especially deep learning models such as 
BiLSTM and Transformer, its computational complex-
ity is usually proportional to the number of parameters 
and the scale of the input data. Although BiLSTM is 
typically efficient in terms of time complexity, it can still 
face memory and computational bottlenecks when deal-
ing with multiple time steps, longer sequences, or large-
scale datasets. While the multi-module architecture does 
increase computational costs, experimental results indi-
cate that this complexity is essential for enhancing model 
performance, particularly when dealing with small-scale 
datasets and high-noise features. Although the compu-
tational cost is slightly higher, the relative improvements 
in predictive performance and model robustness demon-
strate that this complexity is justified.

To address the issue of computational costs, several 
optimization strategies were implemented during model 
design and training. For example, the modular design 
allows researchers to tailor the model based on resource 
constraints, slightly reducing the comprehensiveness of 
feature extraction while significantly lowering compu-
tational demands. For users with limited computational 
resources, we recommend removing the attention mech-
anism or reducing the number of channels in the CNN 
modules to decrease model complexity. Additionally, 
reducing batch sizes during training can accommodate 
memory limitations, and downsampling input features 
can further reduce computational requirements. In sum-
mary, while LPI-DNCFF exhibits a certain degree of com-
plexity, its modular design provides flexibility, enabling 
users to adjust the model configuration according to their 
specific needs and resource limitations, thereby optimiz-
ing the balance between performance and efficiency.

(5)
context_vector =

∑

length
i=1 (Xi · softmax(tanh(Xi) · attn_weights))
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Performance measures
To evaluate the performance of the model, we used six 
widely applied metrics: Accuracy (ACC), Sensitivity 
(SN), Specificity (SP), Area Under the Curve (AUC), Mat-
thews Correlation Coefficient (MCC), and F1 Score (F1). 
The formulas for these metrics are as follows:

where TP, FN, TN, and FP represent the number of 
true positive, false negative, true negative, and false posi-
tive samples, respectively. The MCC is primarily used 
to assess binary classification performance, especially in 
cases of class imbalance. SN quantifies the proportion of 
actual LPI samples correctly predicted, while SP quanti-
fies the proportion of actual non-LPI samples correctly 
identified. AUC represents the area under the Receiver 
Operating Characteristic (ROC) curve, with values close 
to 1 indicating superior model performance. The F1 
score, which considers both Precision and Recall, pro-
vides a more comprehensive evaluation of the model’s 
performance across different classes.

Results
Experimental results of model performance
To evaluate the performance and adaptability of LPI-
DNCFF across different datasets, we conducted assess-
ments on RPI7317, RPI1847, RPI21850, ATH948, and 
ZEA22133. The specific results are shown in Fig. 5.

As illustrated in Fig. 5, the model produced good pre-
diction results. Except for the ZEA22133 dataset, all 
datasets achieved ACC values above 90% and MCC val-
ues above 80%. Particularly, as seen in Fig.  5(b)-(d), the 
ZEA22133 dataset had poor prediction performance and 
very unbalanced performance metrics. In contrast, the 

(6)SN =
TP

TP+ FN

(7)SP =
TN

TN+ FP

(8)ACC =
TP+ TN

TP+ TN+ FP+ FN

(9)MCC =
TP× TN− FP× FN

√
(TP+ FP)× (TP+ FN)× (TN+ FP)× (TN+ FN)

(10)AUC =
∑

i∈ posranki −
numpos× (numpos+1)

2

numpos × numneg

(11)F1 = 2×
TP

2TP+ FP+ FN

RPI1847 dataset showed the best and most balanced per-
formance across all metrics, with an ACC of 98.92% and 
an MCC of 97.84%. Although other datasets performed 
slightly worse than RPI1847, their performance metrics 
were more balanced compared to ZEA22133.

The specific analysis for the poor performance on the 
ZEA22133 dataset is as follows: Since the performance 
of state-of-the-art methods on the ZEA22133 dataset 
remains relatively high, label noise—such as incorrect or 
inconsistent labels—is unlikely to be the primary cause. 
A more probable explanation is that the dataset contains 
noise or outliers, particularly among the positive samples. 
Some positive samples might include errors or extreme 
values, making it challenging for the model to recognize 
them. This is evident from Fig.  5(b), where the model’s 
SN value on the ZEA22133 dataset is very low, while its 
SP value is very high. Although the dataset is balanced, 
atypical noise in the positive samples can hinder the 
model’s ability to identify positive instances, leading to 
low sensitivity. Conversely, the negative samples may be 
more consistent, resulting in higher specificity. Another 
contributing factor is the inherent difficulty or complex-
ity of the samples. If the positive samples in the dataset 
are highly complex or exhibit ambiguous boundaries, the 
model may struggle to distinguish them from negative 
samples. The low homology of plant lncRNAs and the 
fact that many interactions involve only a few lncRNAs 
and proteins exacerbate feature extraction challenges. 
The large size of the ZEA22133 dataset further amplifies 
these difficulties.

The impact of each module on model performance
The LPI-DNCFF hybrid deep learning model comprises 
three initial input modules: GloCNN, LocCNN, and SS, 
which extract global features, local features, and struc-
tural features from the original sequences, respectively. 
To verify the superiority of combining these three mod-
ules, we compared the performance of these individual 
modules and their combinations on benchmark datasets. 
The performance results are shown in Fig. 6.

As seen in Fig. 6, the ACC and MCC values of the sin-
gle GloCNN module are always higher than those of the 
single LocCNN module, and the single LocCNN mod-
ule performs better than the single SS module, regard-
less of the dataset. This indicates that the global features 
extracted by the GloCNN module result in the best pre-
diction performance, likely because the local and struc-
tural features extracted by the LocCNN and SS modules 
contain too many redundant features and noise, which 
hinder the prediction. Additionally, no single module’s 
prediction accuracy surpasses that of the module com-
binations, and the GloCNN + LocCNN + SS combination 
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outperforms the GloCNN + LocCNN combination. This 
demonstrates that each module contributes to the over-
all performance. Therefore, the model leverages the 
strengths of all three modules, enabling a more compre-
hensive prediction of lncRNA-protein interactions and 
yielding more accurate results.

The impact of BiLSTM and attention mechanisms
This section investigates the impact of the BiLSTM 
layer and attention mechanism on model performance 
through ablation experiments. We compared the perfor-
mance of three configurations on benchmark datasets: 
CNN, CNN + BiLSTM, and CNN + BiLSTM + Attention. 
To verify the model’s generalization ability, we gener-
ated negative samples by randomly pairing proteins with 
lncRNAs and removing existing interaction pairs, result-
ing in datasets ran1847, ran7317, and ran21850. The 
experimental results are shown in Fig. 7.

The results indicate that the prediction performance 
of the datasets generated by random pairing is inferior 
to the benchmark datasets. Both the BiLSTM layer and 

attention mechanism enhanced the model’s performance, 
particularly on the smaller dataset ATH948, showing sig-
nificant improvement, which demonstrates the effective-
ness of the BiLSTM layer and attention mechanism in 
handling small datasets. Adding the BiLSTM layer signif-
icantly improved the prediction on the ZEA22133 data-
set, as BiLSTM effectively removes redundant features. 
When dealing with biological sequence data character-
ized by complex dependencies and high-dimensional fea-
tures, it is essential to recognize that certain important 
contextual information may be present at various posi-
tions within the sequence. For instance, changes in spe-
cific nucleotides or amino acids may only hold biological 
significance within a particular context. BiLSTM effec-
tively captures such dependencies by processing informa-
tion in both forward and backward directions.

On the other hand, the attention mechanism ampli-
fies the role of crucial time steps within the BiLSTM, 
aiding in identifying and weighting key features. The 
importance of features at each time step can vary, and 
the attention mechanism allows for adaptive weight 

Fig. 5  Performance metrics of LPI-DNCFF predicting lncRNA-protein interactions across different datasets. a Bar chart of ACC and MCC. b Line 
chart of performance across different datasets. c Line chart of performance metrics ACC, MCC, AUC, SP, and SN. d Distribution and box plot 
of performance metrics ACC, MCC, AUC, SP, and SN
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distribution based on the relevance of different posi-
tions within the input, eliminating the need for man-
ually designed feature selection rules. Furthermore, 
the positional attention mechanism effectively cap-
tures relationships between any positions in the input 
sequence, regardless of their distance apart. This is par-
ticularly crucial, as certain significant interactions may 
occur between positions that are far apart.

To visually demonstrate the enhanced model perfor-
mance, we used Principal Component Analysis (PCA) 
[56] to reduce the dimensionality of the feature space, 
allowing visualization of feature vectors output by the 
BiLSTM layer and attention layer in a two-dimensional 
space. Figure 8 shows the PCA visualization results on 
datasets RPI1847, RPI7317, and ZEA22133, after the 
CNN module, BiLSTM layer, and attention layer.

The visualization results vividly illustrate that ini-
tially, positive and negative samples were mixed. As 
training iterations increased, the samples eventually 
separated into two distinct clusters, indicating that 
our model effectively distinguished the sample points. 

Additionally, integrating the BiLSTM layer and atten-
tion mechanism enhanced the separation between 
positive and negative samples, making the classifica-
tion boundaries in the feature space more distinct. In 
summary, the combination of BiLSTM’s enhanced 
contextual modeling and the precise feature selection 
provided by the attention mechanism leverages the 
strengths of both approaches, resulting in a substan-
tial performance improvement. BiLSTM offers a com-
prehensive modeling of global dependencies, while the 
positional attention layer further dynamically adjusts 
the weights of each position in the sequence, ena-
bling the model to focus on the most informative parts 
while capturing global dependencies. This complemen-
tary effect facilitates bidirectional context and global 
interaction.

Performance comparison of DNCFF and other feature 
encodings
To validate the effectiveness of the dinucleotide-codon 
fusion feature encoding, we compared it with the 

Fig. 6  Performance comparison of the three modules and their combinations in the model. a Line chart comparison of MCC. b Bar chart 
comparison of ACC. c Bar chart comparison of ACC​
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commonly used one-hot encoding [36]. One-hot encod-
ing translates LncRNA sequences into binary vectors, 
encoding A, U, G, and C as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 
1, 0), and (0, 0, 0, 1), respectively, using a full vector for 
other cases. For protein sequences, the 20 amino acids 
are grouped into seven sets based on dipole moments 
and side chains [55]: R1 = {A, G, V}, R2 = {I, L, F, P}, R3 = 
{Y, M, T, S}, R4 = {H, N, Q, W}, R5 = {R, K}, R6 = {D, E}, 
R7 = {C}, and then converted into binary vectors, using a 
full vector for other cases. The performance comparison 
results are shown in Fig. 9.

Figure  9(a)-(b) shows that DNCFF performs compa-
rably to one-hot encoding on most datasets. However, 
on ATH948 and ZEA22133, DNCFF demonstrates a 
clear advantage. For example, DNCFF’s ACC values for 
ATH948 and ZEA22133 are approximately 3.87% and 
1.53% higher than those of one-hot encoding, respec-
tively. This indicates that DNCFF captures more infor-
mation and better filters redundant features when 
handling small datasets. While encoding LncRNA 
sequences, one-hot encoding only focuses on the posi-
tional specificity of single nucleotides, whereas DNVFF 
not only captures the specificity of single nucleotides 

but also considers their connectivity with subsequent 
nucleotides, fully leveraging the long-term depend-
encies between adjacent nucleotides. When encod-
ing protein sequences, one-hot encoding does not 
consider amino acid specificity, leading to significant 
information loss and resulting in a larger, more redun-
dant encoding matrix compared to CFF. In contrast, 
CFF accounts for the specificity of each amino acid 
and incorporates molecular weight and physicochemi-
cal properties, embedding richer sequence informa-
tion within limited encoding dimensions and avoiding 
substantial redundancy. Figure 9(c)-(d) also shows that 
the SN value distribution of CFF is similar to one-hot 
encoding, but the SP value distribution is significantly 
better. This demonstrates that DNCFF is more effective 
in correctly identifying actual non-LPI samples.

Performance comparison between LPI‑DNCFF and other 
existing methods
In this section, we compare LPI-DNCFF with recent 
state-of-the-art methods. To further expand the scope 
of comparison, we also integrate some baseline models 
after the CNN module, including recent deep learning 

Fig. 7  Performance comparison of CNN, CNN + BiLSTM, and CNN + BiLSTM + Attention on benchmark datasets. a Line chart of MCC for CNN, 
CNN + BiLSTM, and CNN + BiLSTM + Attention. b, c Bar charts of ACC for CNN, CNN + BiLSTM, and CNN + BiLSTM + Attention
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models such as BiLSTM, Transformer, and Attention. 
This approach allows us to analyze whether the Trans-
former structure outperforms BiLSTM. The performance 
results of the comparison methods are derived from 
LGFC-CNN [34]and RLF-LPI [35]. Additionally, we com-
pare LPI-DNCFF, LGFC-CNN, and the baseline models 
on datasets ran1847, ran7317, and ran21850 to further 
validate the robustness of LPI-DNCFF. The experimental 
results are shown in Fig. 10.

From Fig. 10(a)-(c), it can be observed that LPI-DNCFF 
outperforms all other methods on the RPI1847 data-
set. Specifically, the ACC of LPI-DNCFF on RPI1847 is 
approximately 98.92%, which is 2.53%, 2.17%, and 0.73% 

higher than IPMiner, LPIBLS, and LGFC-CNN, respec-
tively. Similarly, its MCC is approximately 97.84%, which 
surpasses IPMiner, LPIBLS, and LGFC-CNN by 4.97%, 
4.32%, and 1.44%, respectively. On datasets RPI7317 
and RPI21850, LPI-DNCFF performs comparably to 
the best method, LGFC-CNN, achieving ACC values of 
approximately 92.76% and 93.97% and MCC values of 
approximately 85.64% and 88.33%, respectively. Nota-
bly, LPI-DNCFF achieves the highest SN value across all 
datasets, with SN values of approximately 95.44% and 
98.63% on RPI7317 and RPI21850, respectively, which 
are 2.34% and 0.73% higher than LGFC-CNN. This indi-
cates that LPI-DNCFF demonstrates a stronger ability to 

Fig. 8  Feature space distribution of positive and negative samples based on Principal Component Analysis (PCA). a-c Visualization results of dataset 
RPI1847. d-f Visualization results of dataset RPI7317. g-i Visualization results of dataset ZEA22133
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identify positive samples, with fewer misclassifications of 
true positive samples as negative.

From Fig.  10(d)-(e), it is evident that LPI-DNCFF 
achieves the best performance on the ATH948 dataset, 
with ACC and MCC values of approximately 92.25% and 
84.58%, respectively. Its ACC surpasses the highest-per-
forming method, RLF-LPI, by 1.05%, and its MCC out-
performs the best method, PLRPI, by 3.48%. Although its 
performance on the ZEA22133 dataset is slightly lower 
than the best method, RLF-LPI, it remains comparable. 
From Fig.  10(h), despite being influenced by different 
data sources, LPI-DNCFF demonstrates better perfor-
mance and robustness on randomly paired datasets com-
pared to LGFC-CNN.

On the other hand, LPI-DNCFF demonstrates superior 
performance compared to all baseline models, includ-
ing BiLSTM, Transformer, and Attention. Among these, 

BiLSTM exhibits the most balanced and generally best 
overall performance as a baseline model. The Trans-
former model performs comparably to or slightly better 
than BiLSTM only on large datasets such as RPI21850 
and ZEA22133. However, its performance on smaller 
datasets is significantly worse, even falling below that of 
the Attention model. This discrepancy is a key reason 
why LPI-DNCFF incorporates BiLSTM layers rather than 
Transformer structures, aiming to ensure adaptability 
across datasets of varying sizes and enhance the model’s 
generalization ability.

To ensure the robustness of the performance con-
clusions, we conducted Wilcoxon signed-rank tests 
on the results of each dataset. The Wilcoxon signed-
rank test is a paired test used to compare performance 
differences between two models. The resulting p-val-
ues assess whether the performance differences are 

Fig. 9  Performance comparison between Dinucleotide-Codon Fusion Feature and one-hot encoding. a Line chart of ACC for DNCFF and one-hot 
encoding. b Bar chart of MCC for DNCFF and one-hot encoding. c Box plot of SN for DNCFF and one-hot encoding. d Box plot of SP for DNCFF 
and one-hot encoding



Page 16 of 19Tan et al. BMC Genomics         (2024) 25:1253 

statistically significant. To visualize the test results, 
heatmaps were employed, providing an intuitive rep-
resentation of significant differences between models.

As shown in Fig. 11, heatmaps for datasets RPI1847 
(Fig.  11a) and ATH948 (Fig.  11d) indicate that LPI-
DNCFF consistently exhibits the most light-colored 
blocks in the top row, representing low p-values. This 
suggests that LPI-DNCFF not only achieves superior 
performance but also demonstrates statistically sig-
nificant differences compared to other models. Fur-
thermore, in Fig.  11(e), the second row dominated 
by light-colored blocks with a p-value of 0.0625 illus-
trates that the IPMiner method performs the worst on 
the ZEA22133 dataset and has significant differences 
compared to other models, validating the effective-
ness of the Wilcoxon signed-rank test results. In con-
clusion, compared to existing methods and baseline 
models, LPI-DNCFF achieves the best performance on 
datasets RPI1847 and ATH948, meeting the expected 
standards.

Discussion
The proposed LPI-DNCFF model demonstrates excel-
lent performance in predicting lncRNA-protein interac-
tions (LPI), primarily due to several key innovations and 
improvements.Firstly, the introduction of Dinucleotide 

Visualization Fusion Feature (DNVFF) and Codon 
Fusion Feature (CFF) encoding is the core innovation 
of the model. DNVFF captures comprehensive biologi-
cal information by considering the position of individ-
ual nucleotides and their connections with subsequent 
nucleotides. CFF efficiently extracts potential features 
of protein sequences by considering the specificity and 
physicochemical properties of amino acids. These encod-
ing methods enhance feature extraction efficiency and 
reduce redundancy.Secondly, LPI-DNCFF employs a 
hybrid deep learning model that integrates global, local, 
and structural features. The LocCNN, GloCNN, and SS 
modules extract these features respectively, ensuring 
comprehensive coverage of the original sequence infor-
mation. The introduction of the BiLSTM layer and the 
attention mechanism significantly enhances the model’s 
ability to capture long-range dependencies and identify 
and weight key features. This multi-level, multi-angle fea-
ture extraction and fusion strategy improves the model’s 
generalization ability and prediction accuracy.In experi-
ments, LPI-DNCFF performed outstandingly on multiple 
benchmark datasets, even surpassing existing state-of-
the-art methods on some datasets. These results dem-
onstrate the model’s strong adaptability and robustness 
across different datasets.

Fig. 10  A detailed comparison of the performance metrics for LPI-DNCFF against other advanced methods and baseline models across different 
datasets. a-e bar charts comparing performance metrics for various methods and baseline models across datasets. h the ACC values of LPI-DNCFF, 
LGFC-CNN, and baseline models on the randomly paired datasets ran1847, ran7317, and ran21850
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Although LPI-DNCFF demonstrates outstanding per-
formance in predicting lncRNA-protein interactions, 
there are still several limitations: The majority of experi-
mentally validated high-quality human lncRNA-protein 
pairs mainly come from the NPInter database, resulting 
in insufficient known training data. This limitation, along 
with dataset constraints, poses significant challenges in 
acquiring negative samples. The features extracted from 
positive samples in the ZEA22133 dataset may exhibit 
weak discriminatory power between positive and nega-
tive classes, leading the model to easily identify nega-
tive samples while struggling to capture the patterns of 
positive samples. Unlike other pre-trained large models, 
the BiLSTM and attention layers in this model are con-
nected after three CNN input modules. Currently, it is 
difficult to determine which motifs significantly impact 
the results by extracting and analyzing attention weights. 
Consequently, the traceability of important motifs is 
challenging, preventing us from providing further biolog-
ical insights. Overall, LPI-DNCFF significantly enhances 
LPI prediction performance through innovative feature 
encoding and deep learning architecture, offering new 
insights and tools for related research. Future studies will 
continue to optimize and expand the model while explor-
ing additional application scenarios.

Conclusions
This study proposes a method, LPI-DNCFF, for pre-
dicting lncRNA-protein interactions (LPI) based on 
deep learning and utilizing a novel Dinucleotide-Codon 
Fusion Feature (DNCFF) encoding. Compared to one-
hot encoding, DNCFF encapsulates rich sequence infor-
mation within limited encoding positions. Specifically, 
DNVFF combines the positional information of indi-
vidual nucleotides and their connections with subse-
quent nucleotides, while CFF considers the specificity, 
molecular weight, and physicochemical properties of 
each amino acid. The model uses a combination of global 
sequence features, local sequence features, and structural 
features as input, providing more comprehensive predic-
tion results. Ablation experiments have demonstrated 
that incorporating BiLSTM and attention mechanisms 
enhances the model’s ability to learn features from both 
positive and negative samples, further improving model 
performance. Comparisons with one-hot encoding 
validate the superiority of DNCFF. Additionally, com-
parisons with existing methods show that LPI-DNCFF 
achieves the best performance on certain datasets, mak-
ing it an effective and reliable tool for LPI prediction.
However, there are still issues that need to be addressed.

At the same time, given the numerous limitations of 
the model, future research will focus on the following 

Fig. 11  Heatmaps of Wilcoxon signed-rank test results comparing LPI-DNCFF with other existing methods and baseline models across different 
datasets. In the heatmaps, smaller p-values indicate lighter colors, signifying more significant differences between the two models. Conversely, 
larger p-values result in darker colors, indicating less significant differences between the two models
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areas: Acquiring more experimentally validated high-
quality lncRNA-protein interaction data, as well as 
high-quality negative samples. By increasing the 
amount of training data, we can cover a wider range of 
scenarios. Improving the feature extraction methods 
for datasets similar to ZEA22133 to reduce noise in fea-
ture extraction and enhance the model’s adaptability to 
large, complex data. Finding feasible methods to extract 
and analyze attention weights to identify which motifs 
significantly impact the results, thereby improving the 
model’s interpretability. Integrating more biological 
information to enhance the model’s predictive capabili-
ties. For example, incorporating the three-dimensional 
structural features of lncRNA and proteins (such as 
molecular surface characteristics and the geometric 
structure of binding sites) using bioinformatics tools 
can help the model capture richer information. Addi-
tionally, adding dedicated modules for processing 3D 
structural information would be beneficial.
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