Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Aug;142(2):317–325. doi: 10.1042/bj1420317

The control of saccharide synthesis during development of myxamoebae of Dictyostelium discoideum containing differing amounts of glycogen

B D Hames 1,*, J M Ashworth 1,*
PMCID: PMC1168282  PMID: 4280305

Abstract

1. Myxamoebae initially containing 5.59mg of glycogen/108 cells accumulate approx. 25% more cell-wall polysaccharide, 100% more mucopolysaccharide, 200% more glucose and 300% more trehalose during their development than do myxamoebae initially containing less than 0.3mg of glycogen/108 cells. 2. These observations restrict the number of possible control mechanisms operating to regulate carbohydrate metabolism during development. 3. Cells accumulating a large amount of trehalose (approx. 400μg/108 cells) have the same amount and pattern of changes in specific activity of trehalase and trehalose 6-phosphate synthase as do cells accumulating a smaller amount of trehalose (approx. 100μg/108 cells). 4. These two populations of cells do, however, differ markedly in the amount of UDP-glucose and glucose 6-phosphate that they contain. 5. It is concluded that this change in the intracellular pools of the metabolic precursors of trehalose accounts for the increased amount of trehalose synthesized by cells derived from myxamoebae containing an increased glycogen content.

Full text

PDF
317

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ceccarini C., Filosa M. Carbohydrate content during development of the slime mold, Dictyostelium discoideum. J Cell Physiol. 1965 Oct;66(2):135–140. doi: 10.1002/jcp.1030660202. [DOI] [PubMed] [Google Scholar]
  2. Ceccarini C. The biochemical relationship between trehalase and trehalose during growth and differentiation in the cellular slime mold, Dictyostelium discoideum. Biochim Biophys Acta. 1967 Oct 9;148(1):114–124. doi: 10.1016/0304-4165(67)90285-1. [DOI] [PubMed] [Google Scholar]
  3. Ceccarini C. Trehalase from Dictyostelium discoideum: purification and properties. Science. 1966 Jan 28;151(3709):454–456. doi: 10.1126/science.151.3709.454. [DOI] [PubMed] [Google Scholar]
  4. Cleland S. V., Coe E. L. Conversion of aspartic acid to glucose during culmination of Dictyostelium discoideum. Biochim Biophys Acta. 1969 Dec 30;192(3):446–454. doi: 10.1016/0304-4165(69)90393-6. [DOI] [PubMed] [Google Scholar]
  5. Cotter D. A., Raper K. B. Spore germination in Dictyostelium discoideum: trehalase and the requirement for protein synthesis. Dev Biol. 1970 May;22(1):112–128. doi: 10.1016/0012-1606(70)90009-6. [DOI] [PubMed] [Google Scholar]
  6. Garrett M. K., Sussman A. S., Yu S. A. Properties of an inhibitor of trehalase in trehalaseless mutants of Neurospora. Nat New Biol. 1972 Jan 26;235(56):119–121. doi: 10.1038/newbio235119a0. [DOI] [PubMed] [Google Scholar]
  7. Garrod D. R., Ashworth I. M. Effect of growth conditions on development of the cellular slime mould, Dictyostelium discoideum. J Embryol Exp Morphol. 1972 Oct;28(2):463–479. [PubMed] [Google Scholar]
  8. Hames B. D., Ashworth J. M. The metabolism of macromolecules during the differentiation of Myxamoebae of the cellular slime mould Dictyostelium discoideum containing different amounts of glycogen. Biochem J. 1974 Aug;142(2):301–315. doi: 10.1042/bj1420301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hames B. D., Weeks G., Ashworth J. M. Glycogen synthetase and the control of glycogen synthesis in the cellular slime mould Dictyostelium discoideum during cell differentiation. Biochem J. 1972 Feb;126(3):627–633. doi: 10.1042/bj1260627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Killick K. A., Wright B. E. Trehalose synthesis during differentiation in Dictyostelium discoideum. 3. In vitro unmasking of trehalose 6-phosphate synthetase. J Biol Chem. 1972 May 10;247(9):2967–2969. [PubMed] [Google Scholar]
  11. Newell P. C., Sussman M. Uridine diphosphate glucose pyrophosphorylase in Dictyostelium discoideum. Stability and developmental fate. J Biol Chem. 1969 Jun 10;244(11):2990–2995. [PubMed] [Google Scholar]
  12. Pannbacker R. G. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. I. In vivo measurements. Biochemistry. 1967 May;6(5):1283–1286. doi: 10.1021/bi00857a008. [DOI] [PubMed] [Google Scholar]
  13. Pannbacker R. G. Uridine diphosphoglucose biosynthesis during differentiation in the cellular slime mold. II. In vitro measurements. Biochemistry. 1967 May;6(5):1287–1293. doi: 10.1021/bi00857a009. [DOI] [PubMed] [Google Scholar]
  14. ROTH H., SEGAL S., BERTOLI D. THE QUANTITATIVE DETERMINATION OF GALACTOSE--AN ENZYMIC METHOD USING GALACTOSE OXIDASE, WITH APPLICATIONS TO BLOOD AND OTHER BIOLOGICAL FLUIDS. Anal Biochem. 1965 Jan;10:32–52. doi: 10.1016/0003-2697(65)90238-1. [DOI] [PubMed] [Google Scholar]
  15. Roth R., Sussman M. Trehalose 6-phosphate synthetase (uridine diphosphate glucose: d-glucose 6-phosphate 1-glucosyltransferase) and its regulation during slime mold development. J Biol Chem. 1968 Oct 10;243(19):5081–5087. [PubMed] [Google Scholar]
  16. Roth R., Sussman M. Trehalose synthesis in the cellular slime mold Dictyostelium discoideum. Biochim Biophys Acta. 1966 Aug 10;122(2):225–231. doi: 10.1016/0926-6593(66)90064-6. [DOI] [PubMed] [Google Scholar]
  17. Sargent D., Wright B. E. Trehalose synthesis during differentiation in Dictyostelium discoideum. II. In vivo flux determinations. J Biol Chem. 1971 Sep 10;246(17):5340–5344. [PubMed] [Google Scholar]
  18. WHITE G. J., SUSSMAN M. Metabolism of major cell components during slime mold morphogenesis. Biochim Biophys Acta. 1961 Oct 28;53:285–293. doi: 10.1016/0006-3002(61)90441-3. [DOI] [PubMed] [Google Scholar]
  19. WHITE G. J., SUSSMAN M. Polysaccharides involved in slimemold development. I. Water-soluble glucose polymer (s). Biochim Biophys Acta. 1963 Jul 16;74:173–178. doi: 10.1016/0006-3002(63)91355-6. [DOI] [PubMed] [Google Scholar]
  20. WRIGHT B. E., BRUHMULLER M., WARD C. STUDIES IN VIVO ON HEXOSE METABOLISM IN DICTYOSTELIUM DISCOIDEUM. Dev Biol. 1964 Apr;9:287–297. doi: 10.1016/0012-1606(64)90026-0. [DOI] [PubMed] [Google Scholar]
  21. Weeks G., Ashworth J. M. Glycogen synthetase and the control of glycogen synthesis in the cellular slime mould Dictyostelium discoideum during the growth (myxamoebal) phase. Biochem J. 1972 Feb;126(3):617–626. doi: 10.1042/bj1260617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Wright B. E., Gustafson G. L. Expansion of the kinetic model of differentiation in Dictyostelium discoideum. J Biol Chem. 1972 Dec 25;247(24):7875–7884. [PubMed] [Google Scholar]
  23. Wright B. E. Multiple causes and controls in differentiation. Science. 1966 Aug 19;153(3738):830–837. doi: 10.1126/science.153.3738.830. [DOI] [PubMed] [Google Scholar]
  24. Wright B., Simon W., Walsh B. T. A kinetic model of metabolism essential to differentiation in Dictyostelium discoideum. Proc Natl Acad Sci U S A. 1968 Jun;60(2):644–651. doi: 10.1073/pnas.60.2.644. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES