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Summary
Background Cancer is one of the leading causes of mortality worldwide, highlighting the urgent need for a deeper
molecular understanding and the development of personalized treatments. The present study aims to establish a solid
association between gene expression and patient survival outcomes to enhance the utility of the Human Pathology
Atlas for cancer research.

Methods In this updated analysis, we examined the expression profiles of 6918 patients across 21 cancer types. We
integrated data from 10 independent cancer cohorts, creating a cross-validated, reliable collection of prognostic genes.
We applied systems biology approach to identify the association between gene expression profiles and patient survival
outcomes. We further constructed prognostic regulatory networks for kidney renal clear cell carcinoma (KIRC) and
liver hepatocellular carcinoma (LIHC), which elucidate the molecular underpinnings associated with patient survival
in these cancers.

Findings We observed that gene expression during the transition from normal to tumorous tissue exhibited diverse
shifting patterns in their original tissue locations. Significant correlations between gene expression and patient
survival outcomes were identified in KIRC and LIHC among the major cancer types. Additionally, the prognostic
regulatory network established for these two cancers showed the indicative capabilities of the Human Pathology Atlas
and provides actionable insights for cancer research.

Interpretation The updated Human Pathology Atlas provides a significant foundation for precision oncology and the
formulation of personalized treatment strategies. These findings deepen our understanding of cancer biology and
have the potential to advance targeted therapeutic approaches in clinical practice.
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Introduction
Cancer remains a significant global health challenge,
with recent estimates indicating approximately 19.3
million new cases and almost 10 million deaths annu-
ally.1 In Europe, breast, colorectal, lung, and prostate
cancers are the most frequently diagnosed cancers,
collectively representing over half of all cases.2 Of
particular concern is the high rate of premature mor-
tality associated with cancer, imposing substantial soci-
etal and economic burdens.3 Extensive efforts have been
*Corresponding author. Science for Life Laboratory, KTH-Royal Institute of
E-mail address: adilm@scilifelab.se (A. Mardinoglu).
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invested in cancer research to develop effective treat-
ment options and improve prognostic outcomes. How-
ever, universally effective and resilient treatments
remain limited due to the heterogeneity of cancer.4–7

This highlights the urgent need for a deeper under-
standing of the molecular mechanisms driving cancer
pathogenesis and for the development of more effective,
targeted and personalized treatment strategies. Cancer
research has experienced significant evolution with ad-
vancements in computational power and the emergence
Technology, Stockholm SE-17165, Sweden.
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Research in context

Evidence before this study
Since its establishment in 2017, the Human Pathology Atlas
has been instrumental in linking gene expression profiling
with patient survival outcomes, providing system-level
insights and experimental validation across a wide range of
cancer research. There is an urgent need for the systematic
exploration of prognostic gene signatures to enhance the
precision of cancer diagnostics and therapeutics.

Added value of this study
In this study, we annotated the pathological attributes of all
protein-coding genes and established the correlations
between gene expression and survival outcomes using global

gene expression profiling. We observed significant variations
in prognostic–gene associations across cancer types, and
further investigated tumour heterogeneity and found that
prognostic gene associations are highly specific to each cancer
type.

Implications of all the available evidence
The Human Pathology Atlas offers a substantial basis for
precision oncology. These discoveries would facilitate our
comprehension of cancer biology and further provide insight
into the progression of cancer treatment and precision
medicine.
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of big data.8–10 Integrating multi-omics has propelled the
field into a new era, where systems biology approaches
can offer new insights into cancer’s complex pathology,
bridging the existing gaps in our understanding of
cancer pathogenesis and treatment efficacy.

Previously, we employed a systems biology approach
to establish associations between gene expression pro-
files and patient survival outcomes, which we compiled
into the Human Pathology Atlas.11 It is available in an
open-access form as an essential component of the
Human Protein Atlas (https://www.proteinatlas.org/),
which has been integral to numerous cancer studies,
furnishing experimental evidence and system-level in-
sights to bolster research on biomarker identification
and disease progression-related gene screening.12–14

Building upon the methodologies of our prior work,
we have also identified tumour genes that correlate with
patient survival, guiding us toward the discovery of
promising drug targets and the development of inhibi-
tory compounds capable of suppressing tumour cell
growth and proliferation.15–17 These advancements
emphasize the need for systematic exploration of prog-
nostic gene signatures to enhance the precision of
cancer diagnostics and therapeutics.

In this study, we re-annotated the pathological attri-
butes of all protein-coding genes starting from the raw
bam files and quantified gene expression as transcripts
per million (TPM) to enable fair comparisons across a
broad spectrum of genes and various cancer datasets.
We also standardized gene expression on a quantile
scale, allowing us to track shifts in gene expression from
normal to tumour tissues. Furthermore, we updated the
correlations between gene expression and survival out-
comes using global gene expression profiling. Addi-
tionally, we compiled independent datasets from 10
different cancer types to identify a robust set of confi-
dence prognostic genes (CPGs) that could enhance
cancer research and potential clinical applications.
Notably, we observed significant variations in
prognostic–gene associations across cancer types. By
focusing on liver hepatocellular carcinoma (LIHC) and
colon adenocarcinoma (COAD), we investigated tumour
heterogeneity and found that prognostic gene associa-
tions are highly specific to each cancer type. In the end,
we constructed a prognostic regulatory network for
kidney renal clear cell carcinoma (KIRC) and LIHC that
incorporates these prognostic genes, paving the way for
more comprehensive cancer investigations. The work-
flow of our study is depicted in Fig. 1a.
Methods
Pre-processing of data
We used the GDC client to download the raw BAM files
of TPM for The Cancer Genome Atlas (TCGA) cohorts.
After screening all samples across 21 cohorts, we
retained data from 6918 donors who had both primary
tumour solid tissue samples and associated clinical in-
formation. This clinical information was sourced from
the TCGA Pan-Cancer Clinical Data Resource (TCGA-
CDR)18 by categorizing the data according to cancer
types.

We retrieved the global gene expression profiles
(measured in Fragments Per Kilobase of transcript per
Million mapped reads, FPKM) and clinical information
for 442 donors from the International Cancer Genome
Consortium (ICGC) database (http://icgc.org/), which
includes data on breast cancer (BRCA-KR), liver cancer
(LIRI-JP), ovarian cancer (OV-AU), and pancreatic can-
cer (PACA-AU). In our study, we limited our dataset to
samples that included primary tumour solid tissue
samples and clinical information. To avoid ambiguity in
the expression data for donors with multiple tumour
samples, we followed the criteria: preference was given
to the sample labelled ‘C01’, or in the absence of such a
label, we selected samples that were ‘untreated’,
‘included in PCAWG’, or had a ‘higher percentage of
cellularity’. All FPKM values were converted to TPM,
focusing on protein-coding genes to ensure data
consistency.
www.thelancet.com Vol 111 January, 2025
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Fig. 1: Schematic overview. (a) The overview of the workflow. The study covers 21 cancer types. Blue nodes indicate the cancer types have
corresponding independent datasets of the same cancer type. (b) The PCA plot and centroid plot of 6918 patients among 21 cancer types. The
plot is generated using mRNA expression levels, each axis reflects a principal component.
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The metadata and raw RNA-sequencing data for
colorectal cancer were acquired from individuals who
had surgery at Uppsala University Hospital in Sweden.19

The colon adenocarcinoma (COAD-UCAN) cohort con-
sists of data from 486 patients, and the rectum
www.thelancet.com Vol 111 January, 2025
adenocarcinoma (READ-UCAN) cohort comprises data
from 207 patients.

The raw bam files and clinical information for 58
patients with Glioblastoma (GBM-GSE121720) were
retrieved from the Gene Expression Omnibus (GEO)
3
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database (https://www.ncbi.nlm.nih.gov/geo/) using the
accession number GSE121720.20 Only patients diag-
nosed with “primary glioblastoma” were included in our
analysis. Additionally, we retrieved the RNA-seq data of
100 patients diagnosed with clear cell renal cell carci-
noma (JAP-KIRC) from a Japanese cohort21 from the
European Genome-phenome Archive using the acces-
sion number EGAS00001000509.

The metadata and raw RNA-sequencing data for lung
cancer were collected from patients who underwent
surgical treatment between 2006 and 2010 at Uppsala
University Hospital in Uppsala, Sweden. These data are
available in the NCBI SRA database using the accession
number SRP074349.22,23 The lung adenocarcinoma
cohort (LUAD-UCAN) includes data from 105 patients,
and the lung squamous cell carcinoma (LUSC-UCAN)
cohort comprises data from 68 patients.

For all cohorts with available raw data in this study,
we employed the BEDTools24 for converting BAM to
FASTQ files, and the Kallisto25 for calculating the TPM
values for each gene (annotated by GRCh38 and
Ensemble 103). During the analysis, we focused on the
protein-coding genes, considering the mRNA expres-
sion value of the gene as the cumulative total of TPMs
for all its transcripts. We included genes that exhibited
an average expression level >1 across patients within
each cancer type in our analysis. Furthermore, we
included only patients with a recorded survival time of
more than 0 days to minimize potential inaccuracies in
clinical information. We conducted a Principal
Component Analysis (PCA) to illustrate the overarching
gene expression patterns across 21 different cancers. We
finally clustered the cancers based on the mean
expression level of genes, utilizing Euclidean distance as
the metric for clustering.

Ethics
Ethical approval was not required as only publicly
available RNA-seq data was used.

Classification of genes in cancers and normal
tissues
The TPM values for normal tissues were acquired from
the Human Protein Atlas.26 To ensure a fair compari-
son, we included only tissues with matched cancer types
from the same sites. We categorized the protein-coding
genes into five distinct groups according to their
expression patterns in tumours and normal tissues,
separately. The classifications are as follows: 1) Cancer/
tissue enriched genes, which expression levels are at
least four-fold higher in one cancer type/tissue
compared with any others; 2) Group enriched genes,
which expression levels are at least four-fold higher in a
small number of cancer types or tissues (2–7 for cancer
types, 2–6 for tissues); 3) Cancer/tissue enhanced genes,
which expression levels are at least four-fold higher in
one cancer type/tissue compared with the average
expression level of that gene across all cancer types/
tissues; 4) Low cancer/tissue specificity genes, which are
expressed (TPM ≥ 1) in at least one cancer type/tissue,
but not elevated in any of them; 5) Not detected genes,
which expression levels are lower than 1 (TPM < 1) in all
cancer types and tissues. A gene is denoted as an
elevated gene if it’s classified as a cancer/tissue
enriched, group enriched, or cancer-enhanced gene.

Statistics
The Kaplan–Meier (KM) analysis was used to evaluate
the association of gene expression with patients’ overall
survival. We categorized each gene into two groups
based on their TPM values for KM survival analysis and
compared the survival outcomes using log-rank tests. To
identify the optimal expression cut-offs for grouping, we
examined all TPM values of each gene from the 20th to
the 80th percentiles to stratify the patients. We exam-
ined significant differences in the survival outcomes of
these groups and chose the cut-offs that yielded the
lowest log-rank p value. The “survival” R package
(version 3.5.5) was used for the Kaplan–Meier survival
analysis, and “ggplot2” (version 3.5.0) was employed for
visualizations. Genes were designated as prognostic
genes (PGs) if they had log-rank p values less than
0.001. Additionally, a prognostic gene was considered
unfavourable if the group with high expression had a
higher number of observed events than expected;
conversely, it was considered favourable if the number
was lower. All analyses were executed using RStudio
with R version 4.2.3.

The t-test was performed to compare the clinical
information of different patient cohorts. The Wilcoxon
rank sum test was applied to compare the mean values
of cell ratio among different groups. The Kolmogorov–
Smirnov test was used to assess the differences in
pathway activity between patients who were alive and
those who were deceased. Pathways with a p-value <
0.05 were extracted for downstream analysis.

Correlation analysis
A gene qualifies as an overlapping prognostic gene
across different datasets if it is identified as a prognostic
gene in any dataset and shows a consistent directional
effect (either consistently positive or consistently nega-
tive across all datasets). To evaluate the correlation be-
tween gene expression patterns across two different
cohorts, we used the Spearman coefficient and the Jac-
card Coefficient (JC). Furthermore, we employed the
hypergeometric test to determine the statistical signifi-
cance of the overlap between two gene lists. We per-
formed the entire analytical process using RStudio with
R version 4.2.3.

Clinical feature ranking
We analysed the significance of clinical features using
the Boruta SHAP algorithm,27 which integrates Boruta’s
www.thelancet.com Vol 111 January, 2025
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variable selection method with Shapley values, employ-
ing random forests to methodically determine variable
importance. The Boruta algorithm iteratively identifies
important features by comparing them against shadow
features, which are randomly permuted versions of the
original features. To determine the expression features,
we applied the PCA to extract primary expression pat-
terns, with a focus on the three most impactful principal
components. We further transformed categorical clin-
ical features, including cancer stage, race and sex, into
numerical data using one-hot encoding. To achieve
unbiased feature selection, we standardized all variables
to a scale ranging from −1 to 1. To ensure the robust-
ness of our feature selection method, we subjected all
features to 100 shuffling iterations to bring them closer
to a state of randomness. This entire analysis was car-
ried out using Python.

Prediction of cell-type proportion
We performed the analysis to identify cell types and
their proportions within bulk RNA-seq datasets using
the Dampened Weighted Least Squares (DWLS)
approach.28 This technique is tailored to accurately
deduce cell-type compositions, adjusting for any bias
towards cells with either high gene expression levels or
prevalence. Necessary reference profiles were sourced
from single-cell RNA-seq data; for colorectal cancer, this
data was retrieved from the GEO database using the
accession number GSE178341. For hepatocellular car-
cinoma, the single-cell RNA-seq data was similarly ob-
tained from the GEO database, linked to the accession
number GSE149614.

Construction of the regulatory networks for
prognostic genes
We retrieved the KEGG29 pathway database from the
Molecular Signatures Database (MSigDB).30 Quantita-
tive assessment of molecular pathways and gene activity
levels in tumour samples was performed to establish
their associative patterns through the following steps: 1)
The normalized enrichment score for each pathway was
calculated for individual samples using a single sample-
based Gene Set Enrichment Analysis (ssGSEA),31 and
these scores were compiled into a pathway activity vec-
tor. Similarly, the VIPER algorithm32 was used to
determine the activity score of transcriptional regulators
(TRs) based on the ARACNe-inferred cancer network.33

These scores formed the basis for the TRs activity
score vector. 2) Linear regression analysis was used to
identify the regulatory relationship between gene activ-
ity (as the predictor) and pathway activity (as the
response), denoted as the ‘slope’. A positive slope in-
dicates a direct association, whereas a negative slope
indicates an inverse relationship. 3) The robustness of
these associations was validated through bootstrapping,
performing 100 iterations to ensure statistical reliability.
4) Pathways that showed significant concordance with
www.thelancet.com Vol 111 January, 2025
prognostic genes (PGs) were categorized as prognostic
pathways, highlighting their potential influence on pa-
tient outcomes. The analyses were performed using the
TR2PATH34 package (version 0.2.9) within RStudio. We
applied the Kolmogorov–Smirnov test to assess the
differences in activity between patients who were alive
and those who were deceased. Pathways with a p-value
> 0.05 were excluded from the analysis, which was
performed using R.

Role of funders
This study was funded by the Knut and Alice Wallen-
berg Foundation. The funder has no role in the study
design, data collection, analysis, interpretation and
writing of the report. The corresponding author had full
access to all the data in this study and held the final
responsibility for the decision to submit it for
publication.
Results
Classification of genes in cancers and normal
tissues
The RNA-seq data and corresponding clinical informa-
tion for 6918 cancer patients diagnosed with 21 distinct
human cancer types, as catalogued in TCGA
(Supplementary Table S1), were downloaded. This
dataset was uniformly processed through a consistent
bioinformatics pipeline. Expression levels were subse-
quently normalized to TPM in order to enable
comparative analysis across samples. We performed
PCA to delineate the gene expression patterns among 21
different cancers (Fig. 1b). While a significant propor-
tion of the cancers were closely aggregated, LIHC
demonstrated pronounced heterogeneity in comparison
to the other cancer types.

In this study, we adopted a comparable approach to
categorize 19,652 protein-coding genes into five distinct
categories based on their expression levels across
various cancer types (Supplementary Fig. S1a) as pre-
viously described.26 Our analysis showed that a sub-
stantial portion (53.6%) of protein-coding genes were
expressed in all cancers analysed, while an additional
12.1% of genes were not detected in any of the cancer
types examined. The commonly expressed protein-
coding genes were found to be enriched in typical
cancer-related processes such as mRNA processing and
cell cycle-related biological functions (Supplementary
Fig. S1b). This enrichment aligns with the rapid
cellular proliferation that occurs during tumourigenesis.

Our analysis extended to the prevalence of genes
with elevated expression levels across all cancer types,
encompassing categories of cancer-enriched, group-
enriched, and cancer-enhanced genes (Fig. 2a).
Remarkably, glioblastoma multiforme (GBM), testicular
germ cell tumours (TGCT), and LIHC exhibited the
highest number of upregulated genes. This observation
5
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Fig. 2: Gene specificity classification. (a) Number of elevated genes across 21 cancer types. A gene is considered elevated if classified as cancer/
tissue-enriched, group-enriched, or cancer-enhanced. (b) Chord diagram showing the gene specificity shift pattern between 19,564 tissue- and
19,652 cancer-specificity genes based on TPM expression profiles. The outermost arc represents the tissue type (Blue - tissue specificity genes
and pink – cancer specificity genes), while the second layer arcs indicate the specific gene specificity classification (Red – cancer/tissue enriched,
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may be partly explained by the intrinsic heterogeneity of
the brain, testis, and liver tissues, indicating that the
elevated gene expression could be inherently connected
to the properties of the tissues from which these cancers
originate.

We downloaded the TPM expression profiles of
genes in normal tissues from the Human Protein
Atlas.26 Consequently, we sourced TPM profiles for 19
tissues corresponding to 17 distinct cancer types to
delineate the gene expression patterns (detailed corre-
sponding relationships can be found in Supplementary
Table S2). Furthermore, we organized the 19,564
protein-coding genes sequenced in normal tissues into
five categories across these tissue types (Supplementary
Fig. S1c and d). In contrast to cancer states, a smaller
fraction of genes (43.2%) was expressed across all
normal tissue types, and a lower number of genes
(7.7%) remain undetected in normal tissues. This
pattern suggests a shift in gene expression from normal
to cancerous tissues. To delve deeper into this phe-
nomenon, we conducted a comparative analysis of gene
specificity categories between normal and cancerous
tissues (Fig. 2b).

We observed that the majority of genes with low
tissue specificity maintained this characteristic during
the transition from normal to tumour conditions. These
genes are predominantly involved in essential cellular
biological processes such as ribosome biogenesis and
mitochondrial gene expression (Supplementary
Fig. S1e). Additionally, genes that were categorized as
having elevated expression in normal tissues exhibited a
shift to various specificity categories in the context of
cancer, reflecting the heterogeneity of gene expression
across different cancer types. We particularly focused on
genes that were not detected in normal tissues but
showed elevated expression in cancerous conditions
(Fig. 2c), as these genes may contribute to the progres-
sion of tumorigenesis. Among these, we identified 263
genes (Supplementary Table S3) predominantly
involved in nucleosome assembly or DNA packaging
processes (Fig. 2d), aligning with the rapid cellular
proliferation typical of tumour progression.

The identification of prognostic genes for cancers
The KM analysis was employed to assess the relation-
ship between the patient’s tumour transcriptomic pro-
files and clinical survival outcomes, from the
recruitment in the study to the occurrence of death. As
described in the Methods section and our previous
research,11 patients were stratified into groups based on
the high or low expression levels of the genes. The as-
sociation between survival outcomes and gene
yellow – group enriched, purple – cancer/tissue enhanced, grey – low can
second arc represents the gene numbers for each classification. (c) Venn
specificity to cancer elevated status. (d) The cancer elevated genes are en
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expression levels was evaluated using KM analysis for
each gene individually. As results, genes were labelled
as ‘favourable’ and ‘unfavourable’ if high expression
correlated with better or poor survival outcomes,
respectively. We analysed the number of PGs for each
cancer type (Fig. 3a) and observed that KIRC and LIHC
had the highest numbers of PGs. In KIRC, the majority
of PGs (87.3%) were categorized as favourable genes,
whereas the majority of PGs (92.3%) were categorized
as unfavourable genes in LIHC.

The prognostic significance of the genes varied
across cancer types, with some demonstrating consis-
tent prognostic values. For example, CD6, a crucial gene
for T-cell activation, is identified as a favourable prog-
nostic marker in multiple cancers, such as breast inva-
sive carcinoma (BRCA), cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC),
head and neck squamous cell carcinoma (HNSC), and
skin cutaneous melanoma (SKCM), as shown in Fig. 3b.
Similarly, PSMB1, the non-catalytic component of the
proteasome complex, was implicated in poor survival
outcomes across several cancer types (Fig. 3c), namely
bladder urothelial carcinoma (BLCA), BRCA, HNSC and
lung adenocarcinoma (LUAD). Our findings suggest a
potential underlying commonality in the regulatory
mechanisms across these cancers.

Conversely, certain genes exhibited distinctly
different prognostic significance depending on the
cancer type. As shown in Fig. 3d, interferon-induced
anti-viral exoribonuclease (ISG20), acting on single
stranded RNA and involved in immune and inflamma-
tory responses, correlated with improved survival in
ovarian serous cystadenocarcinoma (OV) and SKCM.
However, its high expression is indicative of poorer
survival in GBM and KIRC. These findings align with
previously published research about these cancers.35–37

Validation of prognostic genes in different cancer
cohorts
In the previous version of the Human Pathology Atlas,11

we reported significant variability in the number of PGs
across different cancer types. To reduce dependence on
a single dataset, we compiled 10 follow-up datasets
(FDs) from various sources, each corresponding to one
of the cancer types included in the leading datasets
(LDs), specifically the TCGA cohorts (refer to Fig. 4a and
Supplementary Table S4). These FDs were re-annotated
using the same bioinformatics pipeline and reference
genomes, and a consistent approach was applied to filter
their clinical records.

We analysed the connectivity among LDs and FDs
for the 10 cancer types using PCA based on the
cer/tissue specificity and light grey – not detected). The axis of the
diagram showing the 263 genes potentially shifting from low tissue
riched in cell cycle-related progression.
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Fig. 3: Prognostic association between gene expression and survival outcome. (a) The bar plot shows the prognostic gene numbers across 21 cancer types. (b) Gene
CD6 exhibits an unfavourable association with multiple cancers. (c) Gene PSMB1 exhibits a favourable association with multiple cancers. (d) Gene ISG20 exhibits different
prognostic implications depending on the cancer type.
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Fig. 4: The confidence prognostic genes. (a) Patients number in the leading datasets (LD) cohorts and follow-up datasets (FD) across 10 cancer
types. (b) Mean expression level correlations in 10 cancer types between LD and FD. The circle size and colour represent the value of the
Spearman correlation. A smaller size indicates a lower correlation (min is LIHC-FD & GBM-FD, max is KIRC & KIRC-FD). (c) The stack plot shows
the number of prognostic genes in 10 cancer types. (d) The Spearman correlation of KM coefficient of prognostic genes among cancer types.
The hypergeometric test was applied to examine the overlap significance, p values are denoted as: *p < 0.05, **p < 0.01, and ***p < 0.001. (e)
Favourable and unfavourable gene numbers in shared prognostic genes.
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expression patterns of all protein-coding genes
(Supplementary Fig. S2a). Notably, the LIHC-FD
exhibited distinct expression patterns that aligned
closely with those of the LD cohort. The centroid plot in
the upper right corner further demonstrated that LD
and FD share similar variances in PCA. Additionally, a
clearer clustering trend was observed in the dendrogram
plot (Supplementary Fig. S2b), showing that dataset
pairs of the same cancer type generally clustered more
closely. However, a significant divergence was noted in
the breast cancer (BRCA) FD, which could be attributed
to its specific age demographic—comprising solely
young individuals aged 25 to 35 years—differing from
the broader age range (25–90 years old) in the LD.

The cluster heatmap supports our observations
(Fig. 4b), aligning with the findings discussed above.
Although the Spearman correlation coefficients for all
LDs and FDs were generally above 0.6, indicating a
robust association, expression profiles were most
conserved within the same cancer type—reflecting un-
derlying biological consistencies. Notably, GBM
emerged as the most distinct cancer type, with the
Spearman correlation between GBM datasets being the
lowest among all dataset pairs of the same cancer type.
In contrast, KIRC and LIHC displayed the highest
Spearman correlation between their respective LD and
FD. Consistent with the PCA results, LIHC also showed
a considerably low Spearman correlation with datasets
of other cancer types. Aside from these three cancers,
other cancer types clustered together, suggesting greater
homogeneity in gene expression patterns. Within this
larger cluster, COAD and rectum adenocarcinoma
(READ), both originating from the same organ and
often collectively referred to as colorectal cancer, showed
higher intragroup similarity.

To assess the robustness of the PGs, we performed
KM analysis in the 10 FDs using the same pipeline. A
gene was considered a confidence gene if it consistently
demonstrated prognostic value across both the LD and
FD of the same cancer type. Consequently, we were able
to identify shared CPG for the two independent data sets
(Fig. 4c). KIRC and LIHC exhibited the highest number
of shared prognostic genes, while cancers such as
COAD and lung squamous cell carcinoma (LUSC) were
found to have fewer prognostic genes identified by the
two independent cohorts.

We further assessed the repeatability of PG identifi-
cation by calculating the Spearman correlation for KM
coefficients of genes between the LDs and FDs. As
shown in Fig. 4d, there was a general trend of positive
correlation between the KM coefficients for the same
cancer type. The PGs from the LDs and FDs for four
cancers (GBM, KIRC, LIHC, and LUAD) showed sig-
nificant overlap (hypergeometric test, p < 0.05), indi-
cating a robust expression–survival association for these
cancers. Notably, KIRC and LIHC displayed the highest
correlation coefficients (r = 0.64, JC = 0.26 for KIRC;
r = 0.66, JC = 0.24 for LIHC, Fig. 4e). We observed that
most of the identified KIRC CPGs were favourable and
these genes are associated with the regulation of cell
cycle-related transcription, whereas the majority of
LIHC CPGs were unfavourable and they are enriched in
biogenesis, RNA assembly and gene expression.

Cell proportions in cancer have a major effect on
prognostic genes
Significant differences were observed in the CPGs
across the 10 cancer types studied. Given that LDs and
FDs originated from various sources, it was not possible
to account for all variables in our analysis. To interpret
these results from a systems biology perspective, we
focused on LIHC, which showed high consistency in
CPGs, and COAD, which displayed low consistency, for
more detailed analysis.

The LIHC datasets exhibited a strong correlation in
expression profiles across all protein-coding genes
(Fig. 5a) and negligible differences in survival times
(Fig. 5b), along with a considerable number of shared
PGs. As previously mentioned, LIHC showed the
highest similarity in KM coefficients (Fig. 5c). Using the
Boruta SHAP algorithm, which identifying the most
relevant features to outcomes, we evaluated critical fea-
tures influencing patient survival. Four well-
documented clinical variables (cancer stage, race, sex,
and age) and the top three principal components of the
LD expression profiles, representing overall expression
patterns, were assessed. Across 100 iterations, expres-
sion principal components consistently emerged as
significant factors for survival, while other clinical at-
tributes were not emphasized (Fig. 5d). Furthermore,
both LIHC datasets displayed high congruence in cell-
type proportions, with hepatocytes constituting the ma-
jority (>90%, Fig. 5e), indicating high cellular homoge-
neity within the samples.

In contrast to LIHC, COAD displayed distinct char-
acteristics in all evaluated aspects. As previously noted,
the gene expression profiles across all protein-coding
genes of COAD were less distinctive compared to
those of LIHC (Fig. 5f). Significant differences were also
observed in the survival times between the living and
deceased patient groups (Fig. 5g), suggesting that the
COAD cohorts might be subject to highly divergent
exposure factors. These multiple discrepancies likely
contributed to the lower confidence in PGs identified for
COAD (Fig. 5h).

In our survival analysis (Fig. 5i), expression principal
components for COAD were identified as important less
frequently compared to LIHC, whereas ‘Race’ was more
frequently recognized as a significant factor (N = 20),
even surpassing PCA2. Additionally, the major cell types
within COAD, namely epithelial cells and fibroblasts,
showed significantly different proportions across the
datasets, yet both were present in low percentages
(Fig. 5j). These comparisons underscore the intrinsic
www.thelancet.com Vol 111 January, 2025
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Fig. 5: Features that affect prognostic estimation. (a) The spearman correlation of gene average expression level between LIHC and LIHC-FD
cohorts. (b) The violin plot shows that patient survival days distribution between LIHC and LIHC-FD do not have statistical differences (p = 0.6
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differences between the two COAD cohorts, both in
terms of the clinical characteristics of the patients and
the cellular composition of the sequenced samples.

The KM analysis assigns greater weight to the sur-
vival days of deceased patients because they represent
“completed event records.” When comparing survival
days between cohort pairs (Supplementary Fig. S3 and
Table S5), it was found that, of the ten cancer dataset
pairs, six showed no statistical difference in the survival
days of the deceased patient group. Among these, cancer
types such as KIRC, LIHC and LUAD demonstrated
significant consistency between the LD and FD.
Although there was no statistical difference in survival
among deceased patients with BRCA, intrinsic biolog-
ical differences are evident; the FD for BRCA includes
younger patients (ages 25–35) compared to the broader
age range (26–90 years) in the LD, which could influ-
ence the overlap of prognostic genes. Additionally, var-
iations in cancer subtypes or treatment modalities can
lead to notable deviations between datasets. For
instance, in the READ cohort, 43.2% of patients un-
derwent pharmaceutical therapy and 56.8% received
radiation therapy. In contrast, the majority of the
(READ-FD) cohort did not receive any treatment
(77.7%), with only a small fraction undergoing phar-
maceutical intervention. This divergence in treatment
approaches is reflected in the substantial variation in
survival durations observed between the living and
deceased patients across both cohorts.

Construction of the cancer regulatory networks for
prognostic genes
Our study revealed that KIRC and LIHC are character-
ized by a strong correlation between gene expression
profiles and prognostic outcomes. Despite the abun-
dance of PGs, selecting the most efficacious genes for
treatment remains challenging. To improve the speci-
ficity of PGs selection, we construct a regulatory
network for KIRC prognostic genes. This network serves
as a strategic framework to guide the selection of genes
within relevant pathways, potentially streamlining the
identification of therapeutic targets (see Methods sec-
tion for a detailed methodology).

We downloaded a comprehensive set of 186 KEGG
pathways with their associated genes from MSigDB.30

For each sample in our dataset, we calculated the ac-
tivity score for each of these pathways. The top 10
for alive group and p = 0.21 for deceased group, estimated by t-test). (c)
Feature contribution to survival outcome in LIHC (by Bruta Sharp, iterat
statistical differences between LIHC and LIHC-FD cohorts, with hepatocyte
(f) The spearman correlation of gene average expression level between C
survival days distribution in COAD and COAD-FD have statistical differen
estimated by t-test). (h) The confidence prognostic genes were estimated
(by Bruta Sharp, iteration times = 100). (j) The cell proportion of major cel
cohorts (estimated by Wilcoxon rank sum test). The p values are denote
pathways with the lowest p values (p < 0.05, by
Kolmogorov–Smirnov test) that significantly have
different activity scores among the alive and deceased
patient groups in KIRC-LD were shown in Fig. 6a, while
the top pathways in KIRC-FD were shown in Fig. 6b.
The tight junction pathway, which emerged as the
shared top pathway of different activity in both LD and
FD cohorts, was thus regarded as a potential key
pathway related to different survival outcomes. It plays a
key role in cell adhesion and permeability in epithelial
cells and shows reduced activity in KIRC samples
compared to non-tumourous tissue.38 Additionally, it
has been implicated in the progression of more
advanced tumour pathology by contributing to cell pro-
liferation, migration and differentiation.39,40

For KIRC, we utilized the ARACNe-inferred KIRC
network,33 which includes 6054 transcriptional regula-
tors (TRs) and their gene regulatory associations. We
conducted a linear regression analysis to assess the
correlation between pathway activities and the activities
of major identified TRs, with the robustness of these
correlations verified via bootstrap analysis (n = 100 it-
erations). In KIRC, we identified 529 TRs that exhibit
regulatory interactions with the tight junction pathway
(Supplementary Table S6). Of these, 319 TRs (60.03%)
also demonstrated a correlation with patient survival
outcomes in KIRC. In the KIRC-FD, 2051 TRs were
implicated in the regulation of the tight junction
pathway, with 23.55% (483 TRs) associated with patient
survival in KIRC-FD.

Comparative analysis between the KIRC-LD and
KIRC-FD cohorts revealed 90 TRs involved in the tight
junction pathway, which were also concurrently identi-
fied as KIRC CPGs in previous KM analysis (Fig. 6c).
These TRs exhibited a high correlation in slope value
(r = 0.89, by Spearman Coefficient, Fig. 6d). The ma-
jority of these TRs were categorized as favourable CPG
biomarkers (88 TRs), each showing positive regulation
of the tight junction pathway. In contrast, two TRs,
DNMT3B and PPP1R1A, were classified as unfav-
ourable KIRC CPGs, displaying a negative regulatory
relationship with the tight junction pathway. The
impairment of this pathway may play a critical role in
KIRC pathogenesis, aligning with our findings where
the overexpression of the two unfavourable CPGs could
decrease pathway activity, potentially accelerating
tumour progression and resulting in worse patient
The confidence prognostic genes were estimated by KM analysis. (d)
ion times = 100). (e) The cell proportion of major cell types has no
s p = 0.1, Fibroblasts p = 0.87 (estimated by Wilcoxon rank sum test).
OAD and COAD-FD cohorts. (g) The violin plot shows that patient
ces (p = 8e-08 for alive group and p = 0.00035 for deceased group,
by KM analysis. (i) Feature contribution to survival outcome in COAD
l types (top 6) has statistical differences between COAD and COAD-FD
d as: *p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.
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Fig. 6: Prognostic pathway regulatory network of KIRC. (a) The pathways that differently activated among alive and deceased patients in
KIRC. (b) The pathways that are differently activated among alive and deceased patients in KIRC-FD. (c) The TRs that regulate tight junction
pathways are significantly associated with the patient prognosis of KIRC and KIRC-FD. (d) The CPGs deprived of (c) and KM analysis showed high
consistency of activity in KIRC and KIRC-FD.
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survival outcomes. Moreover, the two TRs have been
extensively investigated across multiple studies and
recognized as potential candidates for cancer therapy,41,42

indicating their potential application in future KIRC
research.

We applied a similar methodology to construct the
regulatory network for LIHC prognostic genes
(Supplementary Table S7). Differential activation of the
purine metabolism and RNA polymerase pathways was
observed between alive and deceased patients with
LIHC, as well as LIHC-FD, as shown in Supplementary
Fig. S4a and b. Within the regulatory framework of the
purine metabolism pathway, 209 TRs were also
www.thelancet.com Vol 111 January, 2025
identified as LIHC CPG (Supplementary Fig. S4c). The
inhibition of purine metabolism is known to suppress
the progression of hepatocellular carcinoma (HCC).43

Notably, genes classified as unfavourable exhibited a
positive regulatory association with purine metabolism,
suggesting a potential inhibition through the unfav-
ourable genes.

In contrast, 165 TRs, which also align with CPGs,
were identified concerning the RNA polymerase
pathway, as shown in Supplementary Fig. S4d.
Although the activity scores of CPGs within survival-
differential pathways indicated a lower Spearman cor-
relation in LIHC, we observed three genes—TAF15,
13
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CHEK1, and PDCD6—as having the highest slope
values in both purine metabolism and RNA polymerase
pathways (Supplementary Fig. S4e and f). These genes
have been implicated in the inhibition of HCC pro-
gression44,45 and cellular migration,46 illustrating their
potential as targets for the development of effective
HCC treatment.

The impact of updated datasets on prognostic
genes
In the Human Pathology Atlas, our focus was on
protein-coding genes, deriving expression levels from
the aggregate of protein-coding transcripts. Utilizing
Ensembl release 103, which includes updated gene or
transcript classification for over 3000 genes, updating
our gene classification was a crucial initial step in our
analysis. We performed a correlation analysis of
expression profiles to detect changes in overall expres-
sion patterns between the previous version11 and pre-
sented version. Despite employing different gene
quantification methods (previously FPKM and currently
TPM), the average Spearman correlation coefficient
remained above 0.8, which is relatively low considering
the samples are generally the same.

Our dataset has been updated with the latest clinical
records from the TCGA database, meticulously
comparing changes on a case-by-case basis. Significant
updates include alterations in cohort sample sizes, with
notable reductions observed across most cancer types
(Supplementary Fig. S5a). For instance, the sample size
for uterine corpus endometrial carcinoma (UCEC)
decreased by 67.5% due to the unavailability of raw bam
files for 365 patients, resulting in the lowest expression
correlation (r = 0.84, by the Spearman coefficient). Ad-
justments in patients’ clinical information were also
evident; for example, the survival days for a patient
sample of BRCA was revised to 1468 days (2024 days
less than the previous record), and the survival status of
a patient with CESC was updated to deceased with no
change in survival time.

We conducted a comparative analysis of PGs across
two versions of the dataset, as shown in Supplementary
Fig. S5b. The number of PGs for each cancer type is
listed, along with their respective categories, with the
significance of overlap indicated by asterisks. While
high consistency was anticipated and observed within
the same cancer types, the gene lists are not entirely
identical. This discrepancy highlights the sensitivity of
survival analysis to data variations, particularly changes
in expression levels and clinical information.
Discussion
In this study, we compiled and updated publicly avail-
able cancer datasets and conducted KM survival analyses
to systematically explore the relationship between gene
expression and patient survival outcomes. The
identification of PGs holds significant biological rele-
vance, as these genes provide insights into the prog-
nostic implications of gene expression. Generally, genes
involved in cell proliferation and mitosis correlate with
unfavourable prognoses, while those related to cellular
differentiation and immune activation typically signify
more favourable outcomes. Understanding the function
of these prognostic genes facilitates insights into the
heterogeneous gene associations in cancers, thereby
contributing to the discovery of cancer target genes and
key biological processes relevant to precision medicine.

Our findings revealed distinct patterns across various
cancer types. Notably, KIRC and LIHC demonstrated a
significant number of PGs, indicating a robust correla-
tion between gene expression profiles and survival out-
comes in these cancers. These PGs were further
validated using independent datasets. The high expres-
sion correlation observed in both the initial and follow-
up datasets for KIRC and LIHC suggests better consis-
tency in the disease pathology rather than significant
variability among patients. This consistency was also
supported by cell type analysis derived from the LIHC
datasets, suggesting that LIHC may exhibit uniform
behaviour across different studies, potentially due to the
homogeneous nature of the tissue involved.

However, the impact of gene expression on cancer
prognosis varies across different cancer types. The
fundamental complexity of cancer, which includes ge-
netic diversity, epigenetic modifications, comorbidities,
environmental factors, and lifestyle choices, contributes
differently to disease progression and patient
survival.47–50 Certain cancers, such as TGCT and Prostate
Adenocarcinoma (PRAD), have been found to have a
significantly smaller set of prognostic genes, suggesting
a potentially weaker correlation between gene expres-
sion and survival outcomes in these cases.

Furthermore, our methodology for selecting PGs was
stringent, utilizing a p-value threshold of less than 0.001
to ensure robust statistical significance. This rigorous
cut-off minimizes the influence of potential gene
expression fluctuations on our results. However, the
unique characteristics of each tumour type may neces-
sitate a more flexible approach to cut-off criteria,
potentially adapting them to better match the specific-
ities of individual cancers. Such a nuanced consider-
ation of cut-off thresholds could facilitate a more
tailored and insightful analysis when studying specific
cancer types.15–17

Additionally, we constructed prognostic networks for
KIRC and LIHC, showcasing how cancer-specific prog-
nostic genes can be integrated into cancer research.
These CPGs can serve as a systematic reference to
streamline the selection of gene candidates and further
identify those with strong associations with survival
outcomes.

Our comparative analysis of clinical information
across different cancer cohorts showed that even minor
www.thelancet.com Vol 111 January, 2025
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discrepancies can significantly affect survival analysis
outcomes. This underscores the need for meticulous
examination of the original data before conducting
survival analysis to reduce the risk of error and ensure
the reliability of the study’s conclusions. However, one
limitation of this study is the need to expand the num-
ber of FDs, which would provide broader insights into
additional cancer types and deepen our understanding
of cancer. Furthermore, the clinical data of cancer pa-
tients is often noisy and lacks standardized protocols,
which limits the availability of clinical factors for eval-
uating their impact on overall survival. While gene
expression patterns serve as crucial biomarkers in some
cancers, their prognostic value may be less pronounced
in others, necessitating a comprehensive approach to
understanding and predicting cancer survival. Future
studies should strive to incorporate a broader range of
data to enhance the accuracy of survival analyses and
minimize the effects of inconsistent clinical
information.

In conclusion, we employed the Kaplan–Meier ana-
lyses to determine the prognostic significance of
protein-coding genes in patients’ survival across 21
cancer types. We curated lists of genes with favourable
and unfavourable prognostic values. Additionally, we
compiled a robust list of genes for 10 cancer types,
confirming their prognostic value through validation
with independent cancer cohorts. The comprehensive
analysis and use of large datasets increases the statistical
power and transparency of the study, enabling us to
identify significant associations with confidence. Our
analysis of clinical information indicated that gene
expression patterns significantly impacted survival pre-
dictions, particularly in KIRC and LIHC cancer types.
The results of this study are presented in the updated
Cancer section of the open access Human Protein Atlas
resource (www.proteinatlas.org).
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