

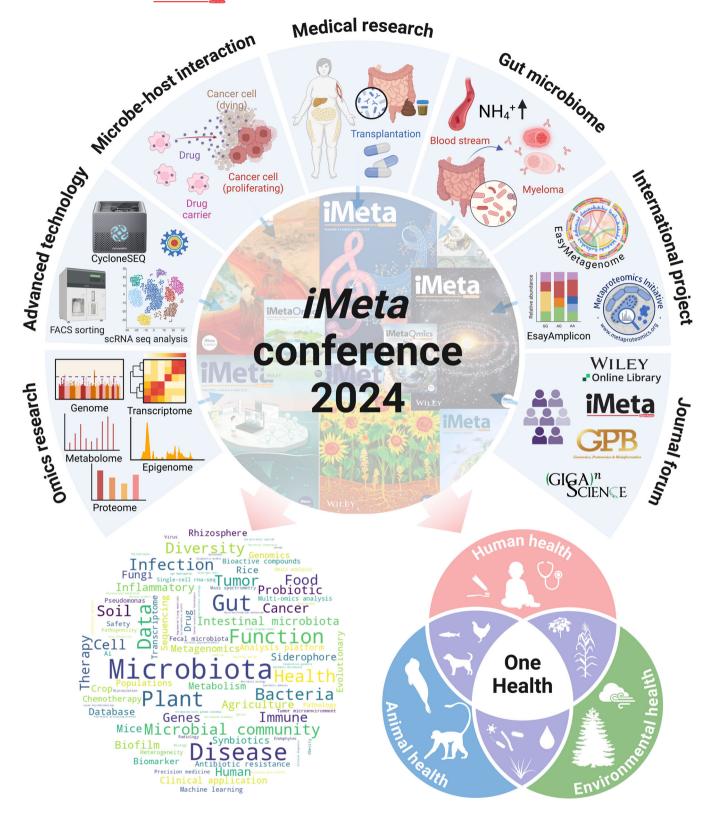
iMeta Conference 2024: Building an innovative scientific research ecosystem for microbiome and One Health

The iMeta Conference 2024, held from October 11 to 13, 2024, at the Nanshan District People's Hospital in Shenzhen, China, attracted over 400 leading scientists, researchers, and industry professionals from around the world (File S1). Organized by the editorial team of *iMeta*, a top-tier interdisciplinary journal in biotechnology, microbiome, and bioinformatics, this conference has been emerging as a premier platform for cutting-edge research in these fields. The iMeta journal, led by Chief Editors Prof. Shuangjiang Liu and Prof. Jingyuan Fu, has an impressive impact factor of 23.8, within the top 0.5% of journals worldwide (107 out of 21,848), and 11th in mainland China. Additionally, iMetaOmics, a subjournal co-edited by Prof. Fangging Zhao and Prof. Jun Yu, is projected to have an impact factor of over 10, positioning it as a high-level interdisciplinary journal that welcomes submissions [1].

Since its inception in 2022, the iMeta journal has launched a series of conferences aimed at advancing research, fostering international collaboration, and promoting the development of the field [2]. Following successful events in Qingdao and Beijing [3], the 2024 edition marks the third event in this series that was co-organized by the Southern University of Science and Technology (Department of Biochemistry and Key University Laboratory of Metabolism and Health of Guangdong), Xianghu Laboratory, TreatGut, and HaploX. The conference covered a wide range of key topics (Figure 1), including Cutting-Edge Technologies, Gut Microbiota, Omics, Medicine, One Health, International Projects, and Journal Forum. These sessions highlighted the interdisciplinary nature of modern life sciences, with presentations covering microbial ecology, advancements in sequencing technologies, genome editing, and the broader implications of these innovations on human, animal, and environmental health. With the theme of "Building an Innovative Research Ecosystem," the iMeta Conference 2024 provided an interdisciplinary forum where participants could share breakthroughs, explore collaborative opportunities, and discuss the future of biotechnology, microbiome, and bioinformatics research.

THE OPENING CEREMONY

The opening ceremony included addresses from prominent figures such as Tieying Hou, President of Nanshan District People's Hospital, Hua Yang, Executive Deputy Director of Xianghu Laboratory, and Shuang-Jiang Liu, Chief Editor of *iMeta*. They provided an overview of the major mission and development of Nanshan Hospital and Xianghu Laboratory and emphasized *iMeta*'s mission to "serve readers and authors." The hosts and organizers extended a warm welcome to all attendees and expressed their best wishes for the conference's success.


In addition, the ceremony featured five keynote speeches, covering diverse topics such as the screening of antibiotic alternatives based on gut microbiota responses, research on microecology and cancer, in situ analysis techniques for microbiota-host interfaces, reflections in microbiome research on Koch's postulates, and the study of chemical molecule-driven mechanisms in microbiota-host interactions. These talks not only reviewed the history of microbial research and revisited the foundational "Koch's postulates" but also highlighted how emerging technologies and interdisciplinary approaches are propelling advancements in microbiology.

Screening for antibiotic alternatives through the response of gut microbiota communities

Presented by Prof. Yulong Yin, Yuelushan Laboratory

Professor Yulong Yin delivered a report on swine ecology, focusing on four key areas: quorum sensing, approaches for screening antibiotic alternatives based on quorum sensing, methods for regulating quorum sensing and their effects, and the development of new antibiotic alternatives. He explained that high-density microbial communities in the gut secrete specific signaling molecules, allowing them to adapt to the complex gut environment

© 2024 The Author(s). iMeta published by John Wiley & Sons Australia, Ltd on behalf of iMeta Science.

FIGURE 1 Overview of key themes and research areas presented at the *iMeta* Conference 2024. The figure captures the key themes discussed during the conference, including advanced technologies, microbe–host interactions, medical research, gut microbiome, international collaborative projects, and insights from the journal forum. A keyword cloud reflecting core research topics such as microbiota, health, microbial community, disease, and plant microbiome is included. *iMeta* is dedicated to building an innovative scientific research ecosystem for microbiome and One Health.

and fulfill physiological roles [4]. Alternatives to antibiotics, such as plant extracts, organic acids, and probiotics, can inhibit pathogen colonization, enhance epithelial barrier function, and promote nutrient absorption through quorum sensing. Prof. Yin also discussed how synthetic biology enables the engineering of probiotics that neutralize pathogen defense mechanisms through quorum sensing, thereby improving feed conversion efficiency. His talk provided a comprehensive overview of the theoretical mechanisms, practical applications, and product development in swine ecology, offering new directions for reducing disease and promoting animal growth.

Journey and insights in microecology and cancer research

Presented by Prof. Jun Yu, The Chinese University of Hong Kong

Professor Jun Yu explored the connection between microecology and colorectal cancer, focusing on two major areas: the role of gut microbiota in digestive tumor mechanisms and its application in diagnosing and treating digestive system cancers. She first discussed the relationships between gut microbiota and digestive tumors, examining the interactions between tumor-associated bacteria and the host [5]. In the second part of her presentation, Prof. Yu highlighted four key aspects: the interplays between gut microbiota and drugs, fecal microbial markers for diagnosing digestive tumors, the use of anticancer bacteria in prevention and treatment, and the influence of bacteria and their metabolites on tumor immunotherapy [6]. Throughout the presentation, she referenced relevant research cases, emphasizing the potential of these findings to advance clinical diagnosis, prevention, and treatment strategies for digestive system cancers.

In situ analysis techniques at the interface of microbiota-host interactions

Presented by Prof. Fangqing Zhao, Beijing Institutes of Life Sciences, Chinese Academy of Sciences

Professor Fangqing Zhao focused on technological advancements for studying the interactions between microbiota and hosts. His research addresses host gene expressions and regulatory patterns, as well as in situ analysis techniques for understanding the complex interactions within biological systems [7]. He introduced new real-time transcriptomic sequencing technology

based on programmable control, along with single-cell spatial omics technology. These technologies have significantly reduced batch effects, increased gene detection rates, improved resolution, and lowered analysis costs, paving the way for more precise studies of microbiota-host dynamics.

Koch's postulates: From microbes to microbiomes

Presented by Prof. Shuang-Jiang Liu, Institute of Microbiology, Chinese Academy of Sciences/Shandong University

Professor Shuang-Jiang Liu revisited the classical "Koch's postulates," which serve as the gold standard for establishing causality between microbes and diseases. He explored the challenges of applying these postulates to microbiomes, especially regarding the isolation and cultivation of microbial strains and the issue of functional redundancy within microbial communities. Prof. Liu discussed key terminologies in microbiome research and reviewed the development of microbiology. He proposed a redefinition of Koch's postulates to address the complexities involved in studying microbiomes, highlighting the evolving nature of this foundational concept.

Chemical molecules driving gut microbiota research

Presented by Prof. Hongwei Liu, Institute of Microbiology, Chinese Academy of Sciences

Professor Hongwei Liu focused on the chemical moleculedriven mechanisms that shape interactions between microbiota and their hosts. He highlighted key challenges in gut microbiome research, such as identifying core functional strains, functional genes, metabolic pathways, and physiologically active substances. Prof. Liu reported on the effects of administering exogenous active molecules on gut bacterial growth, community structure, and host functions. For instance, compounds from Ganoderma (reishi mushroom) have been shown to promote the growth of Parabacteroides distasonis, which helps alleviate glucose and lipid metabolic disorders in the host. Prof. Liu also presented findings from metabolomic studies, which identified a novel secondary bile acid produced by Christensenella minuta that plays a role in improving host metabolism [8]. His talk demonstrated how a chemistry-based approach can open new avenues for understanding the microbiome and its implications for human health.

PLENARY PRESENTATIONS

This session featured eight speakers who presented on the intricate relationships between medicine, animals, plants, and microorganisms, as well as related advanced technologies. The medical field was represented by Prof. Hubing Shi from the West China School of Medicine at Sichuan University and Associate Professor Li Liang from the Southern University of Science and Technology. Prof. Shi presented on "Immune Surveillance and Evasion Mechanisms in Tumor Metastasis," addressing three key questions: (1) Are CTCs subject to immune surveillance? (2) If so, which immune cells are responsible? (3) How do CTCs evade surveillance? He explored these questions using pancreatic cancer liver metastasis models, providing new insights into the immune system's role in tumor progression [9]. Associate Professor Li delivered a report on "Microbe-Host Interactions and Drug Development Using a Platform of Cultured Clinical Samples and Human Organoids." He emphasized the growing significance of organoids as a host model for studying microbial infections and immunity mechanisms, highlighting their high potential for pharmaceutical research and drug development.

In the section of animal immune and plant biotechnology studies, Professor Wenkai Ren from South China Agricultural University and Professor Shuangxia Jin from Huazhong Agricultural University gave compelling presentations. Professor Ren discussed "Amino Acid Metabolism and Immune Cell Fate in Piglets," showing that amino acid metabolism plays a vital role in the immune characteristics, disease resistance, and fate of immune cells. His research sheds light on metabolic pathway reshaping, signaling pathways, epigenetic changes, and posttranslational modifications, which are critical for reducing high mortality rates in piglets. On the plant side, Prof. Jin focused on the "Development of Gene Editing Tools for Cotton and Their Application in Molecular Breeding." He presented a detailed overview of the diversity of genome editing technologies, such as the delivery system for CRISPR/Cas components into plant cells, CRISPR/Cas9, Cas12a, Cas12b, base editors (CBE, ABE), dCas9-TV transcription activation systems, and Cas13 knockdown systems. He highlighted the wide applications of these genome editing systems in cotton molecular breeding for improving yield, quality, and stress tolerance [10, 11].

Additionally, the session featured presentations by Prof. Diwei Zheng from the Institute of Process Engineering at the Chinese Academy of Sciences, Assistant Professor Robert Schlaberg from Illumina, and Chief Technology Officer Bangzhou Zhang from TreatGut Biotechnology Co., Ltd. Prof. Zheng discussed advances in bacterial biomaterial technology, including the development

of engineered strains with specialized functions such as drug delivery, fluorescent imaging, and light-controlled drug synthesis [12]. Assistant Professor Schlaberg presented on sequence-based solutions for identifying pathogens and antibiotic resistance, offering new tools for tackling antimicrobial resistance. Finally, CTO Bangzhou Zhang introduced a platform for microbiome medicine and translational research, which includes precise microbiota transplantation therapy platforms and live microbial drugs, providing promising new avenues for medical treatments.

CUTTING-EDGE TECHNOLOGY SESSION

The Cutting-Edge Technology Session featured 13 speakers who shared insights into the latest experimental, analytical, and sequencing technologies. Presentations centered around the development of innovative methods and tools, such as metaRUpor for genome extraction of rare species, Tencent's medical AI model for assisted diagnosis, microbial analysis tools like metaProbiotics and MOBFinder [13], and CycloneSEQ nanopore sequencing technology. Topics covered systematic research on antibiotic resistance genes, analysis of gut microbial metabolism, studies on microbial interactions, single-cell transcriptomics, and the application of highthroughput data in environmental viromics and microecology. Professor Huizeng Sun from Zhejiang University delivered the keynote speech, systematically introducing advances in microbial single-cell transcription research, highlighting the principles of single-cell transcriptomics based on random primer microfluidics and microbial pangenome mapping, with successful applications in the study of rumen microorganisms [14]. Professor Yan Ni from the National Clinical Research Center for Child Health offered an in-depth presentation on integrated analysis methods for gut microbiota and metabolism that have been recently introduced in the newest version MetOrigin 2.0 (http:// metorigin.met-bioinformatics.cn), covering quick database search, covering correlation analysis, metabolic function analysis, origin analysis, gut microbial enzyme analysis, and microbe-metabolism mediation effect analysis. The session concluded with discussions on the growing need for more advanced and efficient methods to process and analyze target data in the context of high-throughput sequencing.

BIOTECHNOLOGY SESSION

The Biotechnology Session featured five presentations that emphasized cutting-edge technologies such as single-cell and spatial omics, single-bacterium RNA sequencing, and in situ targeted isolation of functional microorganisms, alongside their practical applications. Professor Yongcheng Wang from Zhejiang University developed a new generation of high-throughput singlecell whole-transcriptome sequencing platform based on random primers [15]. This platform not only processes eukaryotic cells but also achieves single-cell transcriptome sequencing for bacteria and other microorganisms. It has produced excellent results even with less active frozen and FFPE (Formalin-Fixed Paraffin-Embedded) samples. Prof. Shengguo Zhao from the Chinese Academy of Agricultural Sciences introduced two innovative targeted isolation technologies for functional microorganisms using magnetic nanoparticles and microbeads. These methods significantly reduce the labor-intensive nature of traditional culturing techniques and offer advantages like high throughput, simplicity, and ease of anaerobic operation. These technologies present a breakthrough in isolating and cultivating gastrointestinal microorganisms. The session also highlighted the value of multi-omics technologies in analyzing complex samples, tackling challenges in cultivating difficult microorganisms, and contributing to human disease research and criminal investigations. For instance, case studies were presented on using multiomics to study the gut microbiome's role in cardiovascular metabolic health, the molecular mechanisms underlying tumor metastasis, and advances in forensic soil microbiology. These presentations emphasized the critical role of emerging biotechnologies in addressing complex biological and forensic challenges.

MEDICAL SESSION

The Medical Session featured four presentations that explored themes such as "Ouercetin Induces Akkermansia to Regulate Host Bile Acid Metabolism for Obesity Alleviation," "Biological Research and Clinical Applications of Circulating Tumor Cells (CTCs)," and "Gut Microbiota and Autism" and comprehensively examined the connection between microorganisms and human physical and mental health. Jianquan He from TreatGut Biotechnology Co., Ltd. demonstrated the significant clinical benefits of precise microbiota transplantation. Professor Xinxia Wang from Zhejiang University presented findings on quercetin, a dietary flavonoid, which was shown to increase the abundance of Akkermansia muciniphila in the gut and enhance the production of indole-3-lactic acid (ILA). This leads to the regulation of m6A modification, promotion of bile acid synthesis, and activation of the FXR receptor, which collectively inhibit fat deposition and suggest new targets for obesity treatment. Assistant Professor Xin Hong from the Southern University of Science and Technology discussed the use of single-cell sequencing technology for circulating tumor cells (CTCs), exploring the mechanisms of tumor metastasis and its potential clinical applications. Associate Researcher Mingbang Wang explained the microbiota-gut-brain axis and its implications for treating autism spectrum disorder (ASD), offering new hope for therapeutic interventions. These presentations underscored the therapeutic potential of modulating microorganisms through plant bioactive compounds or directly altering the gut microbiota, with precise microbiota transplantation poised to play a critical role in future treatments.

GUT MICROBIOTA SESSION

The Gut Microbiota Session highlighted a range of cuttingedge research, investigating how the gut microbiome influences disease mechanisms and exploring innovative therapeutic approaches (Figure 1). The presentations covered topics from basic research to clinical applications, focusing on the complex relationships between gut microbiota dysbiosis and disease progression, as well as intervention strategies. One groundbreaking study, led by Prof. Yi Duan's team and published in Nature, was the first to demonstrate that specific bacterial toxins produced by gut strains can induce liver cell death, worsening alcoholic hepatitis. The team developed bacteriophage-based targeted therapy, effectively alleviating the condition and opening new avenues for precision treatment. Furthermore, Professor Jin Wang's team successfully separated the M9 probiotics from the breast milk of healthy women living in the Inner Mongolia. The study found that breast milk probiotics M9 can improve food allergy disease by modulating intestinal flora structure and short-chain fatty acid levels [16]. The team developed novel strategies for the health management of individuals suffering from food allergies and food industries. Another significant study, reported by Associate Professor Xingxing Jian, used metagenomic sequencing to reveal the crucial role of gut microbiota in drug resistance among multiple myeloma (MM) patients [17]. The study found that "nitrogen-cycling gut microbes," particularly Citrobacter freundii, were enriched in MM patients. These microbes increase blood ammonia levels and stabilize the NEK2 protein in MM cells, promoting drug resistance and tumor progression. This discovery provides fresh insights into how gut microbiota interactions drive drug resistance through metabolic pathways. These studies not only deepen our understanding of the intricate relationship between gut microbiota and health but also lay a crucial scientific foundation for the development of more precise, personalized treatment strategies.

ONE HEALTH SESSION

The One Health Session featured seven presentations that emphasized the interconnectedness of human, animal, and environmental health, highlighting the importance of interdisciplinary collaboration to tackle global health challenges (Figure 1). Professor Shaolin Wang underscored the consequences of antimicrobial overuse in livestock and poultry farming, explaining how these practices have turned farm environments into major reservoirs of resistance genes. These resistance genes, which may persist in the environment despite wastewater treatment and composting, contribute to the spread of resistant bacteria, posing a significant threat to human health and public safety. Studying the dynamics of the resistome in livestock environments is critical for controlling the development and transmission of antibiotic resistance. Associate Professor Guangyu Liu focused on the quality control mechanisms of bacterial membrane protein complexes. His research explored how orphan proteins that fail to properly integrate into complexes are identified and removed. In Shigella, it was found that the rhomboid protease GlpG, together with a newly identified protein, Rhom7, senses the stability of transmembrane regions and selectively cleaves unstable orphan proteins, thus preserving functional complexes. This mechanism may also have parallels in eukaryotes, offering new insights into cellular quality control systems. The session also addressed a wide range of topics, including microplastic pollution, the evolution of ancient fermentation microbes, microbial interactions with iron, and the mechanisms of traditional Chinese medicine formulations. These studies illustrated the intricate interactions between microbes, ecosystems, and public health, providing a scientific foundation for the development of effective pollution control measures and targeted therapeutic strategies in the future.

OMICS SESSION

The Omics Session featured seven presentations that explored the wide-ranging applications and cutting-edge advancements in omics research. Topics covered plant multi-omics, microbial ecology, epigenetics, and innovative applications in both medicine and agriculture (Figure 1). One standout presentation was delivered by Associate Professor Moyang Liu, who discussed integrating artificial intelligence with phylogenetic analysis to investigate the evolutionary mechanisms of plant gene functions [18]. He emphasized that while high-throughput sequencing technologies have dramatically increased the amount of plant multi-omics data,

interpreting this data to understand gene function evolution remains a challenge. By integrating multi-scale data, this approach sets the stage for future agricultural and biotechnological innovations. Associate Professor Lei Dong introduced novel strategies for investigating microbial dark matter in extremely arid desert environments. Using innovative culture-omics and metagenomics techniques (such as CBM and SCP), the team successfully isolated and preserved a variety of microbial resources, including those with antibacterial and antituberculosis properties. This research not only uncovered the rich microbial diversity in deserts but also highlighted their potential to produce natural pigments and biocontrol agents. Other presentations included Associate Professor Qiang Sun's work on the role of alternative splicing in cancer [19], Professor Weipeng Zhang's research on the diversity and functions of marine biofilms, and Associate Professor Yang Liu's exploration of bacterial epigenetic regulation. These studies illustrated the power of omics research in advancing our understanding of biological processes and developing new technologies. The session showcased the versatility of omics technologies, from basic research to practical applications, offering new perspectives and solutions in fields such as agriculture, ecology, and medicine.

INTERNATIONAL PROJECTS

The International Projects Session featured three keynote presentations, focusing on recent advancements in global scientific collaboration and technological innovation (Figure 1). Dr. Leyuan Li from the National Protein Science Center presented on the International Human Proteome Organization (IHPO) project and the International Metaproteomics Organization. These initiatives aim to foster global collaboration and resource sharing in proteomics research. Dr. Li emphasized the importance of multinational team efforts in scientific communication and standardizing research methodologies. As an official review writer, she encouraged scientists worldwide to engage more actively in international academic exchanges to accelerate advancements in the field of proteomics.

Dr. Yunyun Gao from the Institute of Genomics at the Chinese Academy of Agricultural Sciences provided an in-depth update on several international projects, including "EasyAmplicon," "EasyMetagenome," and the "Microbiome Protocols eBook (MPB)." These projects are designed to offer standardized tools and methods to researchers globally, improving the efficiency and reproducibility of microbiome studies. Dr. Gao called for the formation of a global alliance to establish and promote

omics technology guidelines, advocating for deeper international collaboration to enhance connectivity and knowledge sharing within the research community [20].

Dr. Shifu Chen, founder and CTO of HaploX Biotechnology, a company focused on sequencing and bioinformatics technologies. He introduced a new tool fastplong, which is specifically designed for ultra-fast preprocessing and quality control FASTQ data from longread sequencing platforms, such as Nanopore, CyClone, and PacBio. This tool addresses quality challenges in long-read data processing, thereby enhancing the accuracy and efficiency of data analysis. The technology marks a significant step forward in precise genome assembly and functional analysis in genomics and metagenomics. This session showcased cutting-edge explorations and collaborations in proteomics, microbiomics, and sequencing technology. Through cross-border partnerships and technological innovations, researchers are working to provide more efficient tools and methods for advancing biological research and its applications.

EDITORIAL BOARD AND JOURNAL FORUM

The Editorial Board Meeting featured a special report by Executive Editor Yongxin Liu titled "Progress and Future Planning of the *iMeta* Series Journals." The report provided a comprehensive review of the journal's development since its launch 2 years ago, with an analysis of key metrics, including the number of published articles, citation counts, and the geographical distribution of authors. Prof. Liu also discussed future goals and strategies for the *iMeta* journals. Following the report, the Chief Editor Shuangjiang Liu presented appointment letters to the executive associate editors, young editors, and outstanding reviewers. Prof. Liu summarized the discussions among editorial board members, acknowledging the achievements in the journals' growth, identifying challenges, and setting an annual goal to prioritize article quality while steadily expanding the journal's scale and influence.

The Journal Forum featured five presentations, covering various aspects of journal publishing, submission guidelines, and editorial perspectives. Hongling Zhou, Editorial Director of *GigaScience*, provided an overview of the journal, which focuses on big data research in life sciences and medicine. Founded in 2012, *GigaScience* publishes a wide array of data-driven articles, from genomics to fields like imaging, neuroscience, and ecology. The journal also features methodological papers on data processing software, tools, and workflows, alongside research articles, reviews, and commentaries. Zhou highlighted submission standards and key points to consider when submitting papers.

Professor Yuxia Jiao, Executive Editor-in-Chief of the *Genomics, Proteomics & Bioinformatics* (GPB) journal, discussed its role as a leading open-access journal cosponsored by the National Center for Bioinformation and the Chinese Society for Genetics. Published by Oxford University Press, GPB accepts high-quality manuscripts in omics, bioinformatics, and related fields. Jiao provided insights into submission guidelines and outlined GPB's status as a key journal under China's "Excellence Action Plan for Science and Technology Journals."

Professor Lei Lei from Wiley Publishing Group presented on the publisher's suite of academic journals, including Advanced Science. In her keynote, she posed a thought-provoking question: "Why do we publish papers?" More than three quarters of the attendees responded that their primary motivation was to share their ongoing work. This highlights how the desire to share knowledge remains a major driving force behind scientific research.

Professor Shuangxia Jin, Executive Editor-in-Chief of *Plant Biotechnology Journal*, Editorial Board Member of *Genome Biology*, and Associate Editor of *Crop Journal*, offered valuable insights for the development of newly launched journals, such as "How important to precisely define the scope of your journal? How to keep a balance between the quality and the quantity (the number of yearly publications) of the publications? Does the internationalization of the journal really matter?" Professor Jin believed that Chinese scientists and journals will play increasingly important roles and contribute greatly to the global life science society in the near future.

Prof. Yongxin Liu analyzed the characteristics of high-impact papers, categorizing them into three types: research articles, methods papers, and reviews. He explained that research articles must offer innovation and a new research paradigm, while methodological papers should emphasize versatility and undergo continual optimization through user feedback and testing. Review articles must comprehensively summarize past research while providing new insights and guiding future studies. The Journal Forum concluded with a "Dialogue with Editors" part, where participants engaged with journal editors to discuss challenges in journal development. China is poised to play a leading role in the future of academic publishing.

CONFERENCE ABSTRACT

The *iMeta* Conference 2024 featured a total of 62 research abstracts, spanning diverse and cutting-edge topics across microbiome, biotechnology, and bioinformatics (File S1). These abstracts covered a wide range of research areas, including the development of novel therapeutic platforms such as CAT-BLAST, which focuses on

precision targeting of cancer-associated fibroblasts, and ENSURE, an AI-assisted encyclopedia for suppressor tRNA therapeutics. The abstracts also explored themes such as microbial community dynamics, antimicrobial resource discovery, glycoproteomics in disease treatment, plant disease detection technologies, and gut microbiome studies in relation to cardiometabolic health. Additionally, the collection showcased advanced research on environmental microbiomes, multi-omics techniques, and the potential for gut microbiota interventions in diseases like ulcerative colitis. The breadth of topics and innovations highlighted the interdisciplinary approach of modern life sciences and the crucial role microbiome research plays in addressing global health and ecological challenges.

CONCLUSION

The *iMeta* Conference 2024 emphasized the critical role of interdisciplinary collaboration and global partnerships in advancing life sciences. The presentations and discussions shed light on the intricate connections between microorganisms, ecosystems, and human health, showcasing the transformative potential of emerging technologies in microbiota research, proteomics, and omics applications. With innovative strategies to combat antibiotic resistance, improve disease treatments, and support ecological conservation, the conference highlighted the ongoing requirement for knowledge sharing and technological progress to tackle future health and environmental challenges.

iMeta Conference 2024 not only laid a solid foundation for future scientific collaborations but also underscored China's growing leadership in pioneering biological research and fostering global scientific exchange. The conference reaffirmed the importance of such gatherings in shaping the future of life sciences and addressing critical global health issues.

AUTHOR CONTRIBUTIONS

Yao Wang, Huiyu Hou, Luo Hao, Jiani Xun, Chuang Ma, Haifei Yang, Defeng Bai, Salsabeel Yousuf, Hujie Lyu, Tianyuan Zhang, Xiulin Wan, Xiaofang Yao, and Tengfei Ma: Writing—original draft; visualization; data curation; investigation, project administration. Chun-Lin Shi, Ren-You Gan, Fangqing Zhao, Jun Yu, Tong Chen, Xin Hong, Hua Yang, Bangzhou Zhang, Shifu Chen, Xiaodong Li, Yunyun Gao, Yong-Xin Liu: Conceptualization, supervision, funding acquisition, project administration. All authors: Writing—review & editing.

ACKNOWLEDGMENTS

The authors would like to express our sincere gratitude to the organizers of the *iMeta* Conference 2024 for their dedication and effort in bringing together a diverse group of researchers and professionals from around the world. Special thanks go to the keynote speakers, presenters, and session chairs for sharing their invaluable insights and knowledge, which enriched the discussions and contributed to the success of the event. The authors also wish to acknowledge the co-organizing institutions-Southern University of Science and Technology (Department of Biochemistry and Key University Laboratory of Metabolism and Health of Guangdong), Xianghu Laboratory, TreatGut, and HaploX-for their support and collaboration. The authors are also deeply grateful to the Nanshan District People's Hospital for hosting the event and to the dedicated volunteers and staff members whose hard work ensured the smooth operation of the conference. Finally, the authors thank all the attendees for their active participation and engagement, which made the iMeta Conference 2024 a truly collaborative and impactful experience. The authors look forward to continuing the dialogue and fostering future scientific advancements through this community. This study was financially supported by the National Natural Science Foundation of China (32470055, U23A20148), the China Postdoctoral Science Foundation (2024M753580), the Agricultural Science and Technology Innovation Program (CAAS-ZDRW202308), and the design and cultivation of the new breed in pigs with high-quality meat (2023ZD04046). The figures were created in BioRender https://BioRender.com/k73b828.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available in meeting website: http://www.imeta.science/meeting/2024. Supplementary materials (Supporting file, graphical abstract, slides, videos, Chinese translated version and update materials) may be found in the online DOI or iMeta Science http://www.imeta.science/.

Yao Wang¹ Puiyu Hou¹
Hao Luo¹
Jiani Xun¹
Chuang Ma²
Haifei Yang³
Defeng Bai¹
Salsabeel Yousuf¹
Hujie Lyu^{1,4}
Tianyuan Zhang¹
Xiulin Wan¹
Xiaofang Yao⁵
Tengfei Ma⁶

Yuanping Zhou⁷ Zhihao Zhu⁷ Meiyin Zeng¹ Sanqi An⁸ Qing Bai⁹ Yao Bai¹⁰ Guodong Cao¹¹ Tingting Cao¹² Yongkai Cao¹³ Chihmin Chang¹⁴ Lijia Chang¹⁵ Bo Chen¹⁶ Dai Chen¹⁷ Dijun Chen¹⁸ Hanqing Chen¹⁹ Jiali Chen²⁰ Jinfeng Chen²¹ Wei-Hua Chen²² Xinhai Chen²³ Yue Chen²⁴ Zhangran Chen²⁵ Cheng Cheng²⁶ Quan Cheng²⁷ Xi-Jian Dai²⁸ Chaowen Deng²⁹ Feilong Deng³⁰ Jingwen Deng³¹ Chang-Sheng Dong³² Lei Dong³³ Lianhui Duan³⁴ Yi Duan³⁵ Qingjie Fan³⁶ Chao Fang³⁷ Tingyu Fang³⁵ Wensheng Fang³⁸ Zhencheng Fang³⁹ Min Fu⁴⁰ Minjie Fu⁴¹ Cong Gao²⁴ Hao Gao⁴² Weiwei Gao⁴³ Xinrui Gao⁴⁴ Yi-Zhou Gao⁴⁵ Yan Geng⁴⁶ Wenping Gong⁴⁷ Shaohua Gu⁴⁸ Xia Gu⁴⁹ Zhengquan Gu⁵⁰ Jian-Wei Guo⁵¹ Junjie Guo⁵² Qiuyan Guo⁵³ Xiang Guo⁵⁴ Xiaoqian Guo⁵⁵

Dongfei Han⁵⁶ Ziyi Han⁵⁷ Yanan Hao^{58,59} Jiale He⁶⁰ Jianquan He⁶¹ Jianyu He⁶² Ruolin He⁴⁸ Guosen Hou⁴² $Bin\ Hu^{63}$ Haibo Hu⁶³ Yi Hu⁶⁴ Yongfei Hu⁶⁵ Yucan Hu⁶⁶ Guanyin Huang³⁴ Haiyun Huang⁶⁷ Jiaomei Huang⁶⁸ Shenghui Huang⁶⁹ Baolei Jia²⁴ Xingxing Jian⁷⁰ Chao Jiang⁷¹ Kun Jiang⁷² Lanyan Jiang⁶⁷ Shuaiming Jiang⁷³ Jian-Yu Jiao⁵² Hao Jin⁷⁴ Jiajia Jin⁷⁵ Siyuan Kong⁷⁶ Xinxing Lai⁷⁷ Yuxin Leng⁷⁸ Bang Li⁷⁹ Bing Li⁸⁰ Fang Li⁸¹ Hao Li⁸² Huanjie Li⁸³ Jing Li⁸⁴ Kai Li⁸⁵ Lanqi Li⁸⁶ Leyuan Li⁸¹ Minghan Li⁸⁷ Pengsong Li⁸⁸ Wei Li⁸⁴ Wei Li⁸⁹ Xianyu Li⁹⁰ Li Xuemeng⁷ Yafei Li⁹¹ Yuantao Li⁶¹ Zhi Li⁶⁰ Liqin Liang⁹² Rong Liang⁹³ Zhuobin Liang⁹⁴ Qingya Liu⁹⁵ Dejian Liu⁹⁶ Huiheng Liu⁹⁷

Jinchao Liu ⁹⁸	
Li Liu ⁹⁹	
Lihui Liu ¹⁰⁰	
Moyang Liu ¹⁰¹	
Ran Liu ¹⁰²	
Shuai Liu ¹⁰³	
Tianyang Liu ¹⁰⁴	
Wei Liu ¹⁰⁵	
Wenjuan Liu ⁶³	
Xiaomin Liu ¹⁰⁶	
Yang Liu ¹⁰⁷	
Yichen Liu ¹⁰⁸	
Yina Liu ¹⁰⁹	
Yuan Liu ¹¹⁰	
Zhe Liu ¹¹¹	
Zhipeng Liu ¹¹²	
Zhiquan Liu ¹¹³	
Chunhao Long ³⁴	
Yun Long ¹¹¹	
Changying Lu ¹¹⁴	
Chao Lu ¹¹⁵	
Cheng Lu ¹¹⁶	
Qi Lu ¹¹⁷	
Yaning Luan ¹¹⁸	
Peng Luo ¹¹⁹	
Sheng Luo ⁹⁸	
Ning Ma ¹⁰³	
Xiao-Ya Ma ¹²⁰	
Yan Ma ¹²¹	
Wenjun Mao ¹²²	
Yuanfa Meng ¹²³	
Yan Ni ¹²⁴	
Yawen Ni ¹²⁵	
Kang Ning ¹²⁶	
Dongze Niu ¹²⁷	
Kai Peng ¹²⁸	
Zhengwu Peng ¹²⁹	
Xubo Qian ¹³⁰	
Zhiguang Qiu ¹³¹	
Hui Qu ¹²³	
Tur Qu	
Zepeng Qu ⁶⁶ Yan Ren ¹³²	
Zhigang Ren ¹³³	
Youming Shen ¹³⁴	
Lin Shi ¹³⁵	
Linlin Shi ¹¹⁴	
Wenxuan Shi ¹³⁶	
Yongpeng Shi ³⁵	
Tianyuan Song ¹³⁷	
Xiaohui Song ⁹⁹	
Xiaoming Song ¹³⁸	
Xiaowei Song ¹³⁹	
Qi Su ¹⁴⁰	

Yufan Su¹⁴¹ Lifang Sun¹⁴² Qiang Sun¹⁴³ Tiefeng Sun¹⁴⁴ Yunke Sun⁶⁰ Hua Tang¹⁴⁵ Wenjing Tang¹⁴⁶ Tao Yu¹⁴⁷ Simon Tian¹⁴⁸ Shuo Wang¹⁴⁹ Bowen Wang¹⁵⁰ Cheng Wang²⁴ Wang Jin¹⁵¹ Leli Wang¹⁵² Liangliang Wang¹⁵³ Lixiao Wang¹⁵⁴ Mingbang Wang¹⁵⁵ Ming-Ke Wang¹⁵⁶ Pingyi Wang¹⁵⁷ Shaolin Wang¹⁵⁸ Shaopu Wang¹⁵⁹ Xinxia Wang¹⁶⁰ Xueqiang Wang¹⁶¹ Mi Wei¹³⁶ Yan Wei¹⁶² Yanxia Wei¹⁶³ Yongjun Wei¹⁶⁴ Chaoliang Wen¹⁰³ Xin Wen¹⁶⁵ Linkun Wu¹⁶⁶ Shengru Wu¹⁶⁷ Yuting Wu⁶¹ Shuting Xia¹⁰⁹ Xiaodong Xia¹⁶⁸ Yu Xia⁶⁰ Xionggen Xiang⁴³ Chuanxing Xiao⁶¹ Weihua Xiao¹⁶⁹ Yingping Xiao¹⁷⁰ Ruohan Xie¹³⁶ Rui Xing¹⁷¹ Hui Xu¹⁷² Wei Xu⁶¹ Zhimin Xu¹⁵² Hongliang Xue¹⁷³ Chao Yan⁷⁶ Qiu-Long Yan^{174,175} Shaofei Yan¹⁰ Xiuchuan Yan¹⁷⁶ Mengli Yang¹⁷⁷ Yufan Yang³⁴ Zhipeng Yang¹⁷⁸ Ziyuan Yang¹⁷⁹

Hubing Shi²¹⁵

iMeta-Wiley

Guixiang Yao⁷⁵ Yanlai Yao²⁴ Xianfu Yi¹⁸⁰ Chong Yin¹⁸¹ Mingliang Yin¹⁸² Shicheng Yu¹⁸³ Ying Yu⁴⁴ Yongyao Yu¹⁸⁴ Fusong Yuan¹⁸⁵ Shao-Lun Zhai¹⁸⁶ Bo Zhang¹⁷ Chen Zhang⁶⁸ Fang Zhang¹⁸⁷ Feng-Li Zhang¹⁸⁸ Hengguo Zhang⁷⁹ Jinping Zhang 189 Junya Zhang¹⁹⁰ Kun Zhang⁶⁶ Li Zhang¹⁹¹ Lin Zhang¹⁹² Lingxuan Zhang⁹¹ Meng Zhang⁷⁴ Qian Zhang¹⁹³ Runan Zhang⁶³ Tongtong Zhang¹⁹⁴ Tongxue Zhang⁷⁵ Weipeng Zhang¹⁹⁵ Yong Zhang¹⁹⁶ Yuchao Zhang¹⁹⁷ Yujun Zhang¹⁸⁴ Zeng Zhang⁷³ Zhengxiao Zhang¹⁹⁸ Zhi-Feng Zhang¹⁹⁹ Boxi Zhao³⁴ Yanyan Zhao¹⁰³ Yibing Zhao²⁰⁰ Ziwei Zhao²⁰¹ Diwei Zheng²⁰² Ying Zheng⁸⁴ Wenqiang Zhi²⁰³ Jixin Zhong²⁰⁴ Xiangjian Zhong⁶³ Wei Zhou²⁰⁵ Xin Zhou²⁰⁶ Zhemin Zhou¹⁰⁹ 🕞 Zhichao Zhou²⁰⁷ Congmin Zhu²⁰⁸ Feiying Zhu²⁰⁹ © Xiaodie Zhu²¹⁰ Yutian Zou²¹¹ Hongling Zhou²¹² Lei Lei²¹³

Yanliang Bi²¹⁴

Bangzhou Zhang⁶¹

Hui-Zeng Sun²¹⁶ Shuangxia Jin²¹⁷ Wenkai Ren²¹⁸ Lei Dai⁶⁶ Xin Wang²¹⁹ Canhui Lan^{219,220} Hongwei Liu²⁰⁶ Shuang-Jiang Liu⁷² Yulong Yin¹⁵² Chun-Lin Shi²²¹ Ren-You Gan²²² Fangging Zhao²²³ Jun Yu²²⁴ Tong Chen⁵³ Xin Hong³⁴ Hua Yang²⁴

> Yunyun Gao¹ Yong-Xin Liu¹

Xiaodong Li⁶⁷

Shifu Chen^{115,225}

¹Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ²School of Horticulture, Anhui Agricultural University, Hefei, China ³College of Life Sciences, Qingdao Agricultural University, Qingdao, China ⁴Department of Life Sciences, Imperial College of London, London, UK ⁵Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China ⁶State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Centre for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China

⁷Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, China ⁸Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning, Guangxi, China ⁹Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China

¹⁰China National Centre for Food Safety Risk Assessment, Beijing, China ¹¹The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China ¹²Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, China ¹³Department of Neurology, Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen, China ¹⁴Guangdong Magigene Biotechnology Co., Ltd., China ¹⁵Basic Medicine Research Innovation Center for Cardiometabolic Diseases. Ministry of Education. Southwest Medical University, Luzhou, China ¹⁶Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education). Institute for Viral Hepatitis. Department of Infectious Diseases, the Second Affiliated Hospital, Chongging Medical University, Chongging, China ¹⁷NovelBio Bio-Pharm Technology Co., Ltd., Shanghai, China ¹⁸Department of Gastroenterology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China ¹⁹Department of Nutrition and Food Hygiene, School of Public Health, Capital Medical University, Beijing, China ²⁰Department of Food Science and Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China ²¹Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ²²College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China ²³Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China ²⁴Xianghu Laboratory, Hangzhou, China ²⁵Shenzhen Wedge Microbiology Research Co., Ltd., Shenzhen, China ²⁶Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China ²⁷Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China ²⁸Department of Radiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University/Jiangxi Provincial Key Laboratory of Intelligent Medical Imaging, Nanchang, China

²⁹Department of Infectious Diseases and Microbiology, The University of Hong Kong - Shenzhen Hospital, Shenzhen, China ³⁰College of Animal Science and Technology, Foshan University, FoShan, China ³¹Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China ³²Cancer Institute of Traditional Chinese Medicine/ Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China ³³State Key Laboratory of Biocontrol, Guangdong Provincial Kev Laboratory of Plant Stress Biology and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, China ³⁴Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, University of Science and Technology, Shenzhen, China ³⁵Department of Infectious Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China ³⁶Department of Immunology, College of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China ³⁷BGI Research, Beijing, China ³⁸State Key Laboratory of Integrated Management of Plant Diseases and Insect Pests. Institute of Plant Protection. Chinese Academy of Agricultural Sciences, Beijing, China ³⁹Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China ⁴⁰Anhui Province Key Laboratory of Integrated Pest Management on Crops, College of Plant Protection, Anhui Agricultural University, Hefei, China ⁴¹School of Biological Sciences, Seoul National University, Seoul, Korea ⁴²College of Computer Science and Technology, Oingdao University, Oingdao, China ⁴³Institute of Weishi Biotechnology Research, Changsha, China ⁴⁴Shenzhen Key Laboratory of Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China ⁴⁵The Center for Microbes, Development and Health. Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China ⁴⁶School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China ⁴⁷Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis,

The Eighth Medical Center of PLA General Hospital, Beijing, China ⁴⁸Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ⁴⁹College of Environmental Science and Engineering, Donghua University, Shanghai, China ⁵⁰Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China ⁵¹College of Agronomy and Life Sciences/Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China ⁵²State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Stress Biology, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University. Shenzhen. China ⁵³State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China ⁵⁴Institute of Tropical Medicine, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangdong Provincial Key Laboratory of Tropical Disease Research, Key Laboratory of Prevention and Control for Emerging Infectious Diseases of Guangdong Higher Institutes, Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Guangzhou, China ⁵⁵School of Public Health, Southern Medical University, Guangzhou, China ⁵⁶School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China ⁵⁷Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China ⁵⁸Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China ⁵⁹Shandong Institute of Brain Science and Brain-inspired Research, Jinan, China ⁶⁰School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China ⁶¹Xiamen Treatgut Biotechnology Co., Ltd, Xiamen, China ⁶²Marine Science and Technical College, Zhejiang Ocean University, Zhoushan, China ⁶³Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, National Engineering

Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacv. Gannan Medical University, Ganzhou, China ⁶⁴Department of Gastroenterology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China ⁶⁵State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China ⁶⁶CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China ⁶⁷Department of Neonatology, Nanshan District People's Hospital, Shenzhen, China ⁶⁸School of Marine Biology and Fisheries, Hainan University, Hakou, China ⁶⁹Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy ⁷⁰Bioinformatics Center, National Clinical Research Center for Geriatric Diseases, Xiangva Hospital, Central South University, Changsha, China ⁷¹MOE Kev Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China ⁷²State Key Laboratory of Microbial Technology, Shandong University, Oingdao, China ⁷³School of Food Science and Engineering, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Hainan University, Haikou, China ⁷⁴Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China ⁷⁵State Key Laboratory for Innovation and Transformation of Luobing Theory/Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences/ Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China ⁷⁶Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China ⁷⁷Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China ⁷⁸Intensive Care Unit,

Peking University Third Hospital, Beijing, China

Anhui Medical University, Key Laboratory of Oral Diseases

⁷⁹College & Hospital of Stomatology,

Research of Anhui Province, Hefei, China ⁸⁰Kev Laboratory of Microorganism Application and Risk Control, Ministry of Ecology and Environment, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China ⁸¹State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing). Beijing Institute of Lifeomics, Beijing, China ⁸²Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, China 83Cheeloo College of Medicine, Shandong University, Jinan, China ⁸⁴Zhejiang A&F University, Hangzhou, China ⁸⁵Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China ⁸⁶Department of Nutrition and Food Hygiene, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China ⁸⁷College of Veterinary Medicine, Jilin Agricultural University, Changchun, China ⁸⁸Beijing Key Lab for Source Control Technology of Water Pollution/Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China ⁸⁹AxbioBiotechnology (Shenzhen) Co., Ltd., Shenzhen, China ⁹⁰Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China ⁹¹Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, China 92School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, China ⁹³Department of Digestive Oncology, Guangxi Medical University Cancer Hospital, Nanning, China ⁹⁴Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China 95 Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China

⁹⁶State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ⁹⁷Zhongshan Hospital Xiamen University, Xiamen, China 98Chi-Biotech Co. Ltd., Shenzhen, China 99 Chinese Center for Disease Control and Prevention, Beijing, China ¹⁰⁰Guangdong Pharmaceutical University, Guangzhou, China ¹⁰¹School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China ¹⁰²School of Public Health. Guangdong Pharmaceutical University, Guangzhou, China ¹⁰³College of Animal Science and Technology, China Agricultural University, Beijing, China ¹⁰⁴College of Life Sciences, Shandong Agricultural University, Tai'an, China ¹⁰⁵School of Plant Protection, Anhui Agricultural University, Hefei, China ¹⁰⁶BGI Research, Wuhan, China ¹⁰⁷Medical Research Center. Southern University of Science and Technology Hospital, Shenzhen, China ¹⁰⁸Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China ¹⁰⁹Cancer Institute, Suzhou Medical College, Soochow University, Suzhou, China ¹¹⁰Institute of Farmland Irrigation of Chinese Academy of Agricultural Sciences, Xinxiang, China ¹¹¹Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital/The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, China ¹¹²Biotree Metabolomics Technology Research Center, Shanghai, China ¹¹³School of engineering, Hangzhou Normal University, Hangzhou, China ¹¹⁴Suzhou Academy of Agricultural Sciences/Institute of Agricultural Sciences in Taihu Lake District, Suzhou, China ¹¹⁵HaploX Biotechnology, Shenzhen, China ¹¹⁶Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China ¹¹⁷Children's Hospital of Chongqing Medical University, Chongging, China

¹¹⁸The Key Laboratory for Silviculture and Conservation of

Ministry of Education, College of Forestry,

Beijing Forestry University, Beijing, China

¹¹⁹Department of Oncology, Zhujiang Hospital of Southern Medical University. Guangzhou, China ¹²⁰Center for Energy Metabolism and Reproduction, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences/Department of Cardiology, Shenzhen Guangming District People's Hospital, Shenzhen, China ¹²¹Research Center for High Altitude Medicine, Qinghai University, Xining, China ¹²²The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center. Nanjing Medical University, Wuxi, China ¹²³Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, China ¹²⁴Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, China ¹²⁵Peking Union Medical College, Chinese Academy of Medical Sciences/Changping Laboratory/National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China ¹²⁶Huazhong University of Science and Technology, Wuhan, China ¹²⁷National-Local Joint Engineering Research Center of Biomass Refining and High-Ouality Utilization. Institute of Urban and Rural Mining, Changzhou University, Changzhou, China ¹²⁸Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China ¹²⁹Department of Psychiatry, Xijing Hospital, Xian, China ¹³⁰Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China ¹³¹Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China ¹³²School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China ¹³³Department of Infectious Diseases, State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China ¹³⁴Research, Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China

¹³⁵Shaanxi Normal University, Xi'an, China ¹³⁶School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University. Shenzhen. China ¹³⁷School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China ¹³⁸School of Life Sciences, North China University of Science and Technology, Tangshan, China ¹³⁹College of Software Engineering, Chengdu University of Information Technology. Chengdu, China ¹⁴⁰Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China ¹⁴¹College of Food Science and Engineering. Inner Mongolia Agricultural University, Hohhot, China ¹⁴²Shenzhen Children's Hospital, Shenzhen, China ¹⁴³Center for RNA Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, China ¹⁴⁴Shandong Academy of Chinese Medicine, Jinan, China ¹⁴⁵School of Basic Medical Sciences, Southwest Medical University, Luzhou, China ¹⁴⁶Neurology Department. Chinese PLA General Hospital, Beijing, China ¹⁴⁷Center for Pan-third Pole Environment, Lanzhou University, Lanzhou, China ¹⁴⁸College of Life Sciences, Southern University of Science and Technology. Shenzhen, China ¹⁴⁹School of Environment and Ecology, Jiangnan University, Wuxi, China ¹⁵⁰School of Food and Health, Beijing Technology and Business University, Beijing, China ¹⁵¹Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing, Jiangsu, China ¹⁵²Yuelushan laboratory, Changsha, China ¹⁵³The Laboratory of Microbiome and Microecological Technology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ¹⁵⁴School of Life Sciences, Zhengzhou University, Zhengzhou, China ¹⁵⁵Department of Neonatology, Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, China ¹⁵⁶Naval Medical Center of PLA, Naval Medical University, Shanghai, China ¹⁵⁷Engineering Research Center of Tibetan Medicine

Detection Technology, Ministry of Education,

School of Medicine, Xizang Minzu University, Xianyang, China ¹⁵⁸College of Veterinary Medicine. China Agricultural University, Beijing, China ¹⁵⁹Department of Pediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China ¹⁶⁰College of Animal Sciences, Zhejiang University, Hangzhou, China ¹⁶¹Yazhouwan National Laboratory, Sanya, China ¹⁶²Kev Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Kev Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, China ¹⁶³Jiangsu Kev Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China ¹⁶⁴School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China ¹⁶⁵College of Animal Science, South China Agricultural University, Guangzhou, China ¹⁶⁶College of JunCao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou, China ¹⁶⁷College of Animal Science and Technology, Northwest A&F University, Xianyang, China ¹⁶⁸State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China ¹⁶⁹Department of Pathology, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Ningbo, China ¹⁷⁰Zhejiang Academy of Agricultural Sciences, Hangzhou, China ¹⁷¹Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China ¹⁷²School of Public Health, Guangdong Medical University, Dongguan, China ¹⁷³School of Public Health, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China ¹⁷⁴Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China ¹⁷⁵Puensum Genetech Institute, Wuhan, China ¹⁷⁶Intestinal Microenvironment Treatment Center, Shenzhen Hospital, Beijing University of Chinese Medicine, Shenzhen, China

¹⁷⁷Institute of Horticulture. Henan Academy of Agricultural Sciences, Zhengzhou, China ¹⁷⁸Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China ¹⁷⁹Department of Emergency, Jishuitan Hospital, Capital Medical University, Beijing, China ¹⁸⁰Department of Bioinformatics. School of Basic Medical Sciences. Tianjin Medical University, Tianjin, China ¹⁸¹Department of Clinical Laboratory, Department of Rehabilitation Medicine. Affiliated Hospital of North Sichuan Medical College, Nanchong, China ¹⁸²College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China ¹⁸³Guangzhou National Laboratory, Guangzhou, China ¹⁸⁴College of Fisheris, Huazhong Agriculture University, Wuhan, China ¹⁸⁵Peking University School and Hospital of Stomatology, Beijing, China ¹⁸⁶Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangdong Province Key Laboratory of Livestock Disease Prevention. Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China ¹⁸⁷Center of Wastewater Resource Recovery, College of Resources and Environment. Fujian Agriculture and Forestry University, Fuzhou, China ¹⁸⁸Department of Aquaculture, Zhejiang Ocean University, Zhoushan, China ¹⁸⁹Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China ¹⁹⁰Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China ¹⁹¹Department of Dermatology, Shanghai Key Laboratory of Medical Mycology, Changzheng Hospital, Naval Medical University, Shanghai, China ¹⁹²Hubei Shizhen Laboratory, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, China ¹⁹³Department of Pharmacy, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, China ¹⁹⁴Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, Chengdu, China ¹⁹⁵MOE Key Laboratory of Evolution & Marine Biodiversity and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China

¹⁹⁶Department of Nephrology, Institutes for Systems Genetics, West China Hospital, Sichuan University, Chengdu, China ¹⁹⁷Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China ¹⁹⁸College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China ¹⁹⁹Institute for Advanced Study, Shenzhen University, Shenzhen, China ²⁰⁰The National Key Engineering Laboratory of Crop Stress Resistance Breeding, The School of Life Sciences, Anhui Agricultural University, China Center for Crop Pest Detection and Control. Anhui Agricultural University, Hefei, China ²⁰¹College of Resources, Hunan Agricultural University, Changsha, China ²⁰²State Kev Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China ²⁰³The Fifth Clinical Medical College, Shanxi Medical University, Taiyuan, China ²⁰⁴Department of Rheumatology and Immunology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ²⁰⁵Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health. National Children's Regional Medical Center, Hangzhou, China ²⁰⁶State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ²⁰⁷Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University/Synthetic Biology Research Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China ²⁰⁸School of Biomedical Engineering, Capital Medical University, Beijing, China ²⁰⁹Hunan Academy of Agricultural Sciences, Changsha, China ²¹⁰Xiamen Chengge Biotechnology Co., Ltd, Xiamen, China ²¹¹State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China ²¹²GigaScience Press, BGI Shenzhen Co. Ltd., BGI Center, Shenzhen, China

²¹³John Wiley & Sons, Inc., Beijing, China

Chinese Academy of Agricultural Sciences, Beijing, China

²¹⁴Institute of Feed Research,

²¹⁵Institute of Breast Health Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center. Chengdu, China ²¹⁶Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, China ²¹⁷Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China ²¹⁸State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, China ²¹⁹R-Institute Co. Ltd., Beijing, China ²²⁰School of Life Science and Technology, Wuhan Polytechnic University. Wuhan. China ²²¹ANGENOVO, Oslo, Norway ²²²Department of Food Science and Nutrition, Faculty of Science. The Hong Kong Polytechnic University, Hong Kong SAR, China ²²³Institute of Zoology, Chinese Academy of Sciences, Beijing, China ²²⁴Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China ²²⁵Faculty of Data Science, City University of Macau, Macau, China

Correspondence

Chun-Lin Shi, ANGENOVO, Oslo, Norway. Email: shichunlin@imeta.science

Ren-You Gan, Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Hong Kong SAR, China. Email: renyou.gan@poly.edu.hk

Fangqing Zhao, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Email: zhfq@ioz.ac.cn

Jun Yu, Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China.

Email: junyu@cuhk.edu.hk

Tong Chen, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.

Email: chentong_biology@163.com

Xin Hong, Department of Biochemistry, School of Medicine, Key University Laboratory of Metabolism and Health of Guangdong, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, China. Email: hongx@sustech.edu.cn

Hua Yang, Xianghu Laboratory, Xiaoshan District, Hangzhou, China.

Email: yanghua@xhlab.ac.cn

Bangzhou Zhang, Xiamen Treatgut Biotechnology Co., Ltd., Xiamen, China.

Email: geebzbz@163.com

Shifu Chen, HaploX Biotechnology, Shenzhen, China. Email: chen@haplox.com

Xiaodong Li, Department of Neonatology, Nanshan District People's Hospital, Shenzhen, China. Email: doclixiaodong@126.com

Yunyun Gao and Yong-Xin Liu, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of

Agricultural Sciences, Shenzhen, China.

Email: gaoyunyun@caas.cn and liuyongxin@caas.cn

Yao Wang, Huiyu Hou, Hao Luo, Jiani Xun, Chuang Ma, Haifei Yang, Defeng Bai, Salsabeel Yousuf, Hujie Lyu, Tianyuan Zhang, Xiulin Wan, Xiaofang Yao, and Tengfei Ma contributed equally to this study.

Yao Wang https://orcid.org/0000-0001-6824-8852

ORCID

Weipeng Zhang http://orcid.org/0000-0002-1231-8927
Yong Zhang http://orcid.org/0000-0003-0513-8941
Xin Zhou http://orcid.org/0000-0003-3143-2079
Zhemin Zhou http://orcid.org/0000-0001-9783-0366
Feiying Zhu http://orcid.org/0000-0003-2747-2836
Yutian Zou http://orcid.org/0000-0002-5205-9923
Yanliang Bi http://orcid.org/0000-0001-8183-8208
Shuangxia Jin http://orcid.org/0000-0002-1495-9154
Wenkai Ren http://orcid.org/0000-0002-8145-8907
Lei Dai http://orcid.org/0000-0002-5598-5308
Shuang-Jiang Liu http://orcid.org/0000-0002-7585-310X
Jun Yu http://orcid.org/0000-0001-5008-2153
Shifu Chen https://orcid.org/0000-0001-5799-653X
Yunyun Gao https://orcid.org/0000-0003-3389-9385

Yong-Xin Liu http://orcid.org/0000-0003-1832-9835

REFERENCES

- Shi, Chun-Lin, Tong Chen, Canhui Lan, Ren-You Gan, Jun Yu, Fangqing Zhao, and Yong-Xin Liu. 2024. "iMetaOmics: Advancing Human and Environmental Health Through Integrated Meta-Omics." iMetaOmics 1: e21. https://doi.org/10.1002/imo2.21
- Liu, Yong-Xin, Tong Chen, Danyi Li, Jingyuan Fu, and Shuang-Jiang Liu. 2022. "iMeta: Integrated Meta-Omics for Biology and Environments." iMeta 1: e15. https://doi.org/10.1002/imt2.15
- Li, Danyi, and CHINAGUT 2023 Organizing Committee. 2023.
 "Conference Report: CHINAGUT 2023." iMeta 2: e153. https://doi.org/10.1002/imt2.153
- Fan, Lijuan, Yaoyao Xia, Youxia Wang, Dandan Han, Yanli Liu, Jiahuan Li, Jie Fu, et al. 2023. "Gut Microbiota Bridges Dietary Nutrients and Host Immunity." Science China Life Sciences 66: 2466–514. https://doi.org/10.1007/s11427-023-2346-1
- Wong, Chi Chun, and Jun Yu. 2023. "Gut Microbiota in Colorectal Cancer Development and Therapy." Nature Reviews Clinical Oncology 20: 429–52. https://doi.org/10.1038/s41571-023-00766-x
- Wu, William K. K., and Jun Yu. 2024. "Microbiota-Based Biomarkers and Therapeutics for Cancer Management." Nature Reviews Gastroenterology and Hepatology 21: 72–3. https://doi.org/10.1038/s41575-023-00879-9
- Xiao, Liwen, and Fangqing Zhao. 2023. "Microbial Transmission, Colonisation and Succession: From Pregnancy to Infancy." Gut 72: 772–86. https://doi.org/10.1136/gutjnl-2022-328970
- Liu, Chang, Meng-Xuan Du, Li-Sheng Xie, Wen-Zhao Wang, Bao-Song Chen, Chu-Yu Yun, Xin-Wei Sun, et al. 2024. "Gut Commensal *Christensenella Minuta* Modulates Host Metabolism via Acylated Secondary Bile Acids." *Nature Microbiology* 9: 434–50. https://doi.org/10.1038/s41564-023-01570-0
- Chen, Meixu, Tianyue Xu, Linlin Song, Ting Sun, Zihan Xu, Yujie Zhao, Peixin Du, et al. 2024. "Nanotechnology Based Gas Delivery System: A 'Green' Strategy for Cancer Diagnosis and Treatment." *Theranostics* 14: 5461–91. https://doi.org/10.7150/ thno.98884
- Li, Bo, Hangping Rui, Yajun Li, Qiongqiong Wang, Muna Alariqi, Lei Qin, Lin Sun, et al. 2019. "Robust CRISPR/ Cpf1 (Cas12a)-Mediated Genome Editing in Allotetraploid Cotton (Gossypium hirsutum)." Plant Biotechnology Journal 17: 1862–4. https://doi.org/10.1111/pbi.13147
- Wang, Fuqiu, Sijia Liang, Guanying Wang, Tianyu Hu, Chunyang Fu, Qiongqiong Wang, Zhongping Xu, et al. 2024. "CRISPR-Cas9-Mediated Construction of a Cotton CDPK Mutant Library for Identification of Insect-Resistance Genes." *Plant Communications* 5: 101047. https://doi.org/10.1016/j.xplc.2024. 101047
- Zhai, Lin, Laiying Fu, Wei Wei, and Diwei Zheng. 2024.
 "Advances of Bacterial Biomaterials for Disease Therapy."
 ACS Synthetic Biology 13: 1400–11. https://doi.org/10.1021/acssynbio.4c00022
- Feng, Tao, Shufang Wu, Hongwei Zhou, and Zhencheng Fang. 2024. "MOBFinder: A Tool for Mobilization Typing of Plasmid Metagenomic Fragments Based on a Language Model." GigaScience 13: giae047. https://doi.org/10.1093/gigascience/ giae047
- 14. Jia, Minghui, Senlin Zhu, Ming-Yuan Xue, Hongyi Chen, Jinghong Xu, Mengdi Song, Yifan Tang, et al. 2024. "Single-Cell Transcriptomics Across 2,534 Microbial Species Reveals Functional Heterogeneity in the Rumen Microbiome." Nature

- Microbiology 9: 1884–98. https://doi.org/10.1038/s41564-024-01723-9
- Xu, Ziye, Yuting Wang, Kuanwei Sheng, Raoul Rosenthal, Nan Liu, Xiaoting Hua, Tianyu Zhang, et al. 2023. "Droplet-Based High-Throughput Single Microbe RNA Sequencing by Smrandom-Seq." *Nature Communications* 14: 5130. https:// doi.org/10.1038/s41467-023-40137-9
- Shi, Jialu, Youfa Wang, Lei Cheng, Jin Wang, and Vijaya Raghavan. 2024. "Gut Microbiome Modulation by Probiotics, Prebiotics, Synbiotics and Postbiotics: A Novel Strategy in Food Allergy Prevention and Treatment." Critical Reviews in Food Science and Nutrition 64: 5984–6000. https:// doi.org/10.1080/10408398.2022.2160962
- Zhu, Yinghong, Xingxing Jian, Shuping Chen, Gang An, Duanfeng Jiang, Qin Yang, Jingyu Zhang, et al. 2024. "Targeting Gut Microbial Nitrogen Recycling and Cellular Uptake of Ammonium to Improve Bortezomib Resistance in Multiple Myeloma." *Cell Metabolism* 36: 159–75.e8. https://doi.org/10.1016/j. cmet.2023.11.019
- 18. Qu, Li, Moyang Liu, Lingli Zheng, Xu Wang, and Hongwei Xue. 2023. "Data-Independent Acquisition-Based

- Global Phosphoproteomics Reveal the Diverse Roles of Casein Kinase 1 in Plant Development." *Science Bulletin* 68: 2077–93. https://doi.org/10.1016/j.scib.2023.08.017
- Zuo, Erwei, Yi-Jun Cai, Kui Li, Yu Wei, Bang-An Wang, Yidi Sun, Zhen Liu, et al. 2017. "One-Step Generation of Complete Gene Knockout Mice and Monkeys by CRISPR/Cas9-Mediated Gene Editing With Multiple sgRNAs." Cell Research 27: 933–45. https://doi.org/10.1038/cr.2017.81
- 20. Gao, Yunyun, Danyi Li, and Yong-Xin Liu. 2023. "Microbiome Research Outlook: Past, Present, and Future." *Protein & Cell* 14: 709–12. https://doi.org/10.1093/procel/pwad031

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

The online version contains supplementary files available. iMeta Conference 2024 Agenda.