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Pangenome and genome variation analyses of pigs unveil
genomic facets for their adaptation and agronomic
characteristics

To the Editor,
The pig is one of the most important domestic animals
[1]. Pig breeds show distinct advantageous traits,
including adaptation to high‐altitude environments [2],
tolerance to extreme temperatures [3], and excellent
meat quality [4]. This genetic diversity provides signifi-
cant potential for improvement in breeding. The pig
reference genome (a Duroc pig) has undergone contin-
uous improvements since its initial release [5], which
provided critical insights into the genetic traits. However,
the genetic divergence between Asian and European pig
breeds restricts us from comprehensively studying
genomic variation across diverse pig populations.
Although short‐read sequencing has accelerated the
discovery of genetic variants, it introduces an inherent
bias: the characterized variants are disproportionately
skewed toward single‐nucleotide polymorphisms (SNPs)
and small insertions/deletions (Indels) [6]. Studies have
shown that structural variations (SVs) play crucial roles
in the agronomical traits of plants and the economic
traits of domestic animals [7]. Recently, pangenome
analysis has evolved from detecting genomic variations to
an efficient method for SV genotyping, enabling com-
prehensive identification of SVs and aiding the develop-
ment of new breeding varieties [8].

Pig pangenome studies have the potential to answer
this scientific question, but their limitations in terms of
sample size and genome quality have hindered com-
prehensive analyses [9]. To address this, we constructed
a pangenome (27 genomes) incorporating four newly
assembled pig genomes and we identified 295.97 Mb of
novel sequences and 276,032 nonredundant SVs. The
analysis of environmental association showed that SVs
have a stronger correlation compared with SNPs and
Indels, and SV analysis identified two soil silt‐
associated genomic hotspots. Additionally, BTF3, a
candidate gene that impacts intramuscular fat (IMF)

deposition, was revealed through SV and gene function
analyses. Our study demonstrated pangenome and SVs
as crucial determinants of characteristics, which pro-
vided a valuable data resource for domestic animals'
genomic research.

RESULTS AND DISCUSSION

Genome assembly and annotations

To address the gap in pig genetic resources, we generated
genome assemblies for three Asian pig breeds (Bamei
(BM), Juema (JM), and Hanjiang Black (HJB)), and one
commercial breed (Large White (LW)). The contig N50 of
the four genomes ranges from 48.2 to 81.2 Mb, and the
benchmarking universal single‐copy orthologs (BUSCO)
are 97.8− 98.0%, which are comparable to the quality of
the pig reference genome (Sscrofa11.1) (96.9%)
(Table S1). The genomic collinearity analysis showed that
these genomes have high consistency with Sscrofa11.1
(Figure S1A). We further ordered and arranged the
contigs of HJB, LW, and 10 genomes from our previous
study (BUSCO: 95.5−97.7%) into chromosomes based on
their synteny to the reference genome (Figure S1C,
Table S1). Although the 14 new genomes contained more
gaps (115−668) in autosomal regions than Sscrofa11.1
(108 gaps), their contig N50 values (20.19−81.24Mb)
were comparable to the reference genome (48.23Mb)
(Table S1), and the repeat content in these pig genomes
(41.83%−42.73%) was comparable to Sscrofa11.1
(41.87%). The total repeat length varied substantially
(860.29−1217.99Mb) (Table S2), but the length of non‐
repeat sequences was similar (1469.46−1676.22Mb)
(Figure S1B). We annotated 25,586 and 25,406 protein‐
coding genes in the BM and JM pig genomes, respec-
tively; a pipeline was used to annotate other genomes
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without annotation. BUSCO analysis showed that our
annotations achieved an average completeness of 94.49%
(Table S3). The genomes contained 1023–2260 noncoding
RNAs (ncRNAs), predominantly small nuclear RNAs
(snRNAs) (42.46%–57.30%) (Table S4). These high‐
quality genome assemblies and annotations present a
robust resource in future genomic studies.

Pig graph pangenome construction and
analysis

To better represent diverse pig breeds, including BM, JM,
HJB, and LW, we constructed a pangenome using 27
assemblies from Asian (17), European (9), and African
(1) pigs (Figure 1A). Mash analysis showed higher
genetic diversity in Asian breeds than in European
breeds. Some Asian breeds (Min, Anqingliubai, and
Laiwu) showing a closer relationship to European pigs;
the largest genetic distance was between Wuzhishan and
Duroc (0.005826) (Figure 1B). The Minigraph–Cactus
(MC) pangenome has 178,175,328 nodes and 253,272,873
edges, with 295.97Mb of a non‐reference sequence
(Table S5). MC generated the longest non‐repeat
sequence (133.11Mb) with the lowest repeat ratio
(55.03%) (Figure S1E, Table S6). BM contributed the
highest additional sequence (189.1Mb), while HJB con-
tributed as little as 9.4 Mb (Figure S1D). Gene Ontology
(GO) enrichment and Kyoto Encyclopedia of Genes and
Genomes (KEGG) analyses showed that genes were en-
riched in wound healing and immune effector processes,
which may relate to pigs' strong disease resistance and
adaptability to harsh environments (Figure S2A, S2B).
MC revealed two novel genes, OR9G1 and OR1A1, which
are absent from the Sscrofa11.1 (Tables S7, S8). Given
their established role in human olfaction, these genes
represent promising new targets for investigating pig
olfactory [10, 11]. Additionally, UQCRFS1 is involved in
the mitochondrial respiratory chain [12] and CFAP57 is
associated with multiple morphological abnormalities
[13]. These pangenome genes provide insights into spe-
cific pig traits, including plateau adaptation and
reproduction.

Among 23,915 gene families, 36.09% were core genes,
while 32.58% were dispensable genes. Softcore families
represented 30.91%, and private gene sets accounted for
0.42% (Figure 1C,D). Core genes were enriched in es-
sential biological processes, including cellular processes,
cellular development, regulation of metabolic processes,
and lipid metabolic process (Figure S2C,S2D). Mean-
while, private genes showed enrichment in Estrogen
signaling, Staphylococcus aureus infection, Keratiniza-
tion and olfactory transduction.

Structural variations and population
genetic analysis

The Pangenie method identified 228,326 SVs (95,301
insertions (INS) and 133,025 deletions (DEL)). The
average lengths are 535 and 1160 bp and the median
lengths are 207 bp and 301 bp (Figure 1E). The Manta
method identified 276,032 SVs (78,846 INS and 197,186
DEL). The average lengths are 206 and 1251 bp and the
median lengths are 272 and 292 bp (Table S9). Unlike
Manta, Pangenie identified 57,444 INS > 1 kb, demon-
strating its superior detection of large INS (Figure S3A).
Manta and Pangenie showed similar distributions of SVs,
with most variants located in introns and intergenic
regions (81.3% and 86.3%, respectively) (Figure S3B,S3C).
In coding sequences, Manta identified 32,465 variants
(93.2%), while Pangenie detected 5237 variants (72.1%)
(Table S10). Phylogenetic analysis of Pangenie (Fig-
ure S4) revealed two major groups of pig accessions:
group I (predominantly European pigs) and group II
(predominantly Asian pigs); principal component analy-
sis (PCA) and genetic structure analysis further sup-
ported this clustering (Figure 1F−I, and Figure S3D).
However, the clustering results of the SVs detected by
Manta are poor, highlighting the method's limitations
and leading to its exclusion from further analysis (Fig-
ure S5). 1,019,330 SNPs (Figure S6) and 353,917 Indels
(Figure S7) were used in population genetic analysis; the
results corroborated our Pangenie findings. The SV
analyses distinguished breed‐specific patterns in Asian
and European pigs, highlighting their potential for
identifying breed‐associated traits.

Genome and environmental association
analysis

Breeding domestic animals with climate resilience is cur-
rently an important goal for sustainable livestock produc-
tion [14]. Redundancy analysis (RDA) identified 1162 SVs,
7522 SNPs, and 8126 Indels associated with 16 environ-
mental variables (Figure S8, Table S11). SVs showed
stronger environmental correlations (82.53%, exceeding 0.3)
compared to SNPs (64.58%) and Indels (12.29%) (Figure 1J).
UV‐B irradiance had the highest correlation with SVs
(0.451), while soil silt showed the lowest correlation with
Indels (0.17) (Figure 1L). We identified environment‐
associated genes within 100 kb of SVs (1560), SNPs (2581),
and Indels (4189). 245 shared “core adaptive genes” en-
riched in metabolic processes and stimulus–response reg-
ulation, suggesting their crucial role in environmental
adaptation (Figure 1K, Figure S9). Mean temperature, ele-
vation, and soil silt showed the strongest genomic
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FIGURE 1 Construction of the pig pangenome and structural variation (SV) analysis. (A) Geographic distribution of 27 pig genomes.
(B) Mash‐based phylogenetic tree derived from 27 pig assemblies. (C) Simulated increase in the pangenome size and decrease in core‐
genome size. (D) Composition of the pig pan‐genome. (E) SV genotyping pipeline for the pangenome. (F) Geographic distribution of 598 pig
accessions in SV analysis. AW, Asian wild pigs; AD, Asian domestic pigs; ED, European pigs; EW, European wild pigs. (G) Principal
component analysis (PCA) of 598 pig accessions, with the results for European and Asian pig populations shown in (a) and (b), respectively.
The group details are provided in Table S23. (H) Neighbor‐joining (NJ) phylogenetic tree of 598 pig accessions. (I) Admixture analysis of 598
pig accessions (K= 4) using single‐nucleotide polymorphisms (SNPs), insertions/deletions (Indels), and SVs sets detected by Pangenie and
Manta. (J) Stacked bar plot showing the redundancy analysis (RDA) percentage of associated SNPs, Indels, and SVs. The x‐axis shows the
RDA scores of SNPs, SVs, and Indels, reflecting their association with environmental variables. (K) Venn diagram showing overlaps of
candidate genes among associated SNPs, Indels, and SVs. (L) Box plots of RDA results for associated SNPs, Indels, and SVs across Eco1–
Eco16 variables. Statistical significance was evaluated through post‐hoc analysis using the Bonferroni correction for multiple comparisons.
The y‐axis shows the RDA scores of SNPs, SVs, and Indels, reflecting their association with environmental variables. Adjusted p‐values were
considered significant at *p< 0.05 and **p< 0.01. (M). Plots of log10 (p) from genome‐wide association mapping between SVs and Eco16
variables: the top shows SNPs versus Eco16 variable, the middle shows SVs versus Eco16 variable, and the bottom shows a closer look at the
hotspot region on chromosome 17.
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associations (Figure S10A,S10B). SNPs and SVs demon-
strated stronger environmental correlations compared to
Indels, indicating their greater potential for studying en-
vironmental adaptation. Known high‐altitude adaptation‐
related genes were identified (KIT, EPAS1, and EGLN1),
and the newly identified gene HAMP (erythropoiesis and
iron homeostasis) and SYK (fat deposition) results showed
that RDA revealed significant associations between geno-
mic variations and environmental factors. However, the
numerous candidate genes identified through RDA analysis
hinder the precise identification of adaptive genes.

Latent factor mixed model (LFMM) analysis identified 97
SVs, 29 SNPs, and 35 Indels (Table S12), which were asso-
ciated with 116, 15, and 28 genes, respectively (Table S13).
GO enrichment and PigBiobank data analyses revealed that
these genes were involved in stimulus–response, cellular
homeostasis, and adaptation (Figure S15). Although SVs
represent less than 5% of the total variations (SNPs and In-
dels), SVs detected more candidate genes than SNPs and
Indels. Seven genes (ASIC2, ETNK2, MYO10, PTPRT, RE-
TREG1, SOX13, and PLPPR1) were detected by LFMM and
RDA (SNPs, Indels, and SVs). Among these, ASIC2 and
RETREG1 are involved in stimulus–response and stress
adaptation, PTPRT plays a role in maintaining body size and
fat deposition, and SOX13 is crucial for early hair follicle
development (Table S14). Furthermore, we identified a 73 bp
INS (chromosome (chr) 9: 64,794,429 bp) significantly asso-
ciated with pig adaptation to different environmental tem-
peratures (Eco3−5) (Figure S10C, Table S12). Notably, this
INS is within the intronic region of ETNK2, potentially
regulating its expression. ETNK2 is involved in lipid trans-
port and metabolism, which is essential for thermoregulation
(Table S14). Two genes in this candidate region, KISS1 and
SOX13, have been previously linked to circadian and ultra-
dian rhythms of body temperature and hair follicle devel-
opment, respectively, both crucial for temperature adapta-
tion (Table S14). While the LFMM method currently
provides limited information, it shows promising potential
for accurately identifying environmentally adaptive genes
(Figures S11−S14).

The combined analysis of SNPs and SVs results
revealed two hotspots associated with soil silt content at
15 cm depth (Eco16) (Figure 1M, Table S15). The first
hotspot (chr8: 90−92Mb) primarily contains genes with
unclear functions, which needs further investigation. The
second hotspot (chr17: 38.5−41.5Mb), identified ex-
clusively through SV analysis, encompasses several func-
tionally significant genes. These include EIF6, a metabolic
regulator that drives glycolysis and fatty acid synthesis;
UQCC, linked to height; CEP250, related to visual and
auditory functions; and LBP, which influences body
weight and fat storage. Additionally, TAS2R9, a gene for a
bitter taste receptor, was identified. The genome–soil

association study uncovered genes essential for pig adap-
tation, notably those associated with fat storage, neuro-
modulation, vision, hearing, and taste (Table S14).

To the best of our knowledge, such a rigorous and
comprehensive analysis of pig adaptability has not been
conducted to date. It may seem counterintuitive to con-
sider pig adaptation as soil‐dependent, given that pigs use
wallowing in soil primarily to regulate body temperature
due to their lack of functional sweat glands [15]. How-
ever, by integrating soil data with genomic analysis, we
aimed to gain novel insights into their adaptation
mechanisms to high temperatures and diverse environ-
mental conditions. Despite these findings, the absence of
supporting molecular evidence underscores the need for
further molecular studies to validate and expand upon
these results.

Selection signature analysis of pig
body size

Pigs are valuable resources due to their efficient meat
production, enabled by their size and their potential
medical applications. We analyzed 87 pig accessions,
categorizing them into Normal and Mini groups
(Table S16). Fixation index (Fst) analysis of SVs revealed
average and maximum values of 0.13 and 0.90, respec-
tively, with the top 1% threshold at 0.56 (Figure S16A,
Table S17). Within the highest selective region (chr5:
85.6−85.65Mb), we identified TRNAD‐GUC and
MIR135‐2, suggesting potential roles of transfer‐RNA and
micro‐RNA in skeletal development. CDKAL1, which
showed the second highest Fst value (0.89), has previ-
ously been linked to body mass regulation. Other key
genes identified included PTPRT (associated with feed
intake and size), PLPPR1 (involved in phospholipid
metabolism), and NFIA (implicated in glucose
homeostasis and skeletal development). Nucleotide
diversity (π) analysis showed lower diversity in the
Normal group (9.3 × 10−6) compared to the Mini group
(9.6 × 10−6) (Figure S16B). Interestingly, genes like
APLP2 and PTPRT were detected by both methods
(Table S18). Pig quantitative trait loci (PigQTL)
(Figure 2D), GO enrichment, and PigBiobank data
revealed that these genes were associated with growth
and developmental processes (Figure S16C,S16D and
Figure S17). We identified 36 colocalized selective
regions, GO enrichment indicating these gene associa-
tions with ossification and bone trabecula formation
(Table S19). Notably, OPA1 showed differences between
Normal and Mini pigs (Figure 2A−C). PigBiobank
analyses further validated OPA1 associations with body
weight and feed intake (Figure 2E and Figure S16E).
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Selection signature and function analysis
of IMF

156 pig samples were classified into high‐ and low‐IMF
groups according to the public resources (Table S16). Anal-
ysis of high‐ and low‐IMF groups revealed significant

genetic differentiation (average Fst = 0.16, max=0.92)
(Figure S18A). Among the genes with high Fst values, KIT,
traditionally linked to coat color, was also associated with
fresh meat color and overall meat quality. Additional sig-
nificant genes includedWWOX (linked to lipid metabolism),
SND1 (involved in cholesterol regulation), and ROCK1

(K) (L) (M) (N)

(O) (P) (Q)

(A)

(B) (C) (G) (H)

(D) (I)(E) (J)

(F)

FIGURE 2 (See caption on next page).
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(influencing myogenesis and meat quality) (Table S14). π
was notably higher in the high‐IMF group (π=9.6 × 10⁻⁶)
than in the low‐IMF group (π=7.9 × 10⁻⁶) (Figure S18B).
We identified seven colocated selective regions through
Fst and π analyses, primarily associated with lipid transport
and localization (Table S19). Further pangenome and hap-
lotype analyses of WWOX and SND1 (Figure S18C–D,S18D)
highlighted that these genes may influence IMF deposition
(Figure S19C,S19D). GO enrichment, PigBiobank, and
PigQTL results showed that these genes were associated with
meat quality traits (Figure 2I, Figure S19A,S19B, and S20).
Expression analysis of 12 selected genes showed significant
differential expression between high‐ and low‐IMF samples
(p<0.05) (Figure S21A), supporting their potential regula-
tory roles in IMF development.

BTF3, identified in Fst analysis (0.81) (Figure 2F),
showed a distinct haplotype between Asian and European
pigs (Figure 2G), with a 414 bp variation upstream of its
CDS, suggesting that a 20 bp deletion event might influ-
ence IMF differences between Asian and European pigs
(Figure 2H). The PigBiobank database demonstrated that
BTF3 is associated with meat quality traits across diverse
pig populations, indicating its potential as a key regulator
of IMF deposition (Figure 2J, Figure S19E). BTF3 showed
significantly higher expression in high‐IMF pigs compared
to low‐IMF pigs (p< 0.05) (Figure 2K). To investigate
BTF3's role in intramuscular adipocyte proliferation and
differentiation, we generated overexpression (pcDNA3.1‐
BTF3) and inhibition (si‐BTF3) plasmids.

BTF3 overexpression significantly increased the
expression of proliferation marker genes (p< 0.05)
(Figure 2L,M and Figure S21B), whereas its inhibition led
to significant decreases (p< 0.01) (Figure S21D,S21E),
indicating that BTF3 promotes adipocyte proliferation.
CCK‐8 assays confirmed that BTF3 overexpression en-
hances adipocyte proliferation, with the opposite effect
observed upon BTF3 inhibition (Figure S21C,S21F).

Additionally, EdU incorporation assays demonstrated
that BTF3 overexpression promotes adipocyte prolifera-
tion, while its interfered inhibits adipocyte proliferation
(Figure 2N, Figure S21G,S21H). In contrast, analysis of
adipogenic differentiation markers showed that BTF3
overexpression significantly reduced their expression
(p< 0.05) (Figure 2O,P), while inhibition increased it
(p< 0.05) (Figure S21I,S21G, and S21K). Oil Red O
staining further validated that BTF3 overexpression in-
hibits lipid droplet formation, while its suppression pro-
motes lipid accumulation (Figure 2Q, Figure S21L). These
findings suggest that BTF3 enhances cell proliferation
while inhibiting differentiation in pig intramuscular adi-
pocytes, underscoring its pivotal role in IMF deposition.
While we identified BTF3's association with IMF, its reg-
ulatory mechanism remains to be elucidated. We propose
that BTF3 plays dual roles in adipogenesis: promoting
early adipose tissue proliferation while preventing ex-
cessive fat accumulation through negative feedback when
overexpressed. This balance suggests that BTF3 maintains
adipogenic potential while preserving cellular plur-
ipotency, though its precise regulatory mechanisms war-
rant further investigation.

While pangenome analysis highlights SVs' importance
in identifying candidate genes [16], our pipeline has lim-
itations in analyzing complex SVs [17], particularly in
regions with segmental duplications, tandem repeats, and
copy number variations [18]. Although effective for SV
genotyping within the constructed graph, its accuracy lags
behind SNP and Indel detection. High‐quality genome
assemblies currently offer better complex SV detection,
but emerging unified pangenome tools and reference‐
grade assemblies should address these limitations. In
conclusion, our study demonstrates the prevalence of SVs
in pig genomes and their utility in population genetics,
and trait association studies, providing a valuable resource
for genetic improvement and biological discovery.

FIGURE 2 Selection signature analysis of pig body size and intramuscular fat (IMF). (A) Manhattan plots showing selected regions
(Normal/Mini groups) based on the fixation index (Fst) (top) and nucleotide diversity (π) (bottom) for SVs. (B) Haplotype analysis of OPA1.
(C) Pangenomic analysis of OPA1. (D) Pig quantitative trait loci (PigQTL) analysis of selected genes associated with production traits.
(E) Phenome‐wide association (PheWAS) analysis of OPA1 with the top 10 production traits. (F) Manhattan plots showing selected regions
(high/low‐IMF groups) based on Fst (top) and π (bottom) for SVs. (G) Haplotype analysis of BTF3. (H) Pangenomic analysis of BTF3.
(I) PigQTL analysis of selected genes associated with IMF. (J) PheWAS analysis of BTF3 with the top 10 meat and carcass traits. (K) BTF3
mRNA expression in the longissimus dorsi muscle of Laiwu and Large White pigs. (L) RT‐qPCR results for BTF3, Ki67, CDK4, and CDK6

mRNA expression after BTF3 overexpression. (M) Western blot analysis showing the protein expression of Ki67, CyclinD, and CyclinE after
BTF3 overexpression. (N) EdU staining to detect the proliferation of primary pig IMF cells after BTF3 transfection. Cells in the S phase were
stained with EdU (green), while nuclei were stained with Hoechst (blue) and counted using ImageJ. (O) RT‐qPCR analysis showed the
mRNA expression levels of BTF3, PPARγ, C/EBPβ, and FABP4 after BTF3 overexpression. (P) Western blot analysis detected the protein
expression of differentiation‐related genes following BTF3 overexpression. (Q) Oil Red O staining was performed to detect lipid
accumulation following BTF3 overexpression, indicating the formation of lipid droplets. The above results were representative of
means ± SD of three independent experiments. Student's t‐test was used to determine significance *p< 0.05; **p< 0.01.
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METHODS

Detailed procedures for biological sample collection,
sequencing protocol, data processing techniques for
sequencing data, and bioinformatic and statistical anal-
ysis approaches are available in the Supplementary
Information.
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