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Abstract

Comprehensive functional genome annotation is crucial to elucidate

the molecular mechanisms of agronomic traits in livestock, yet systematic

functional annotation of the sheep genome is lacking. Here, we generated 92

transcriptomic and epigenomic data sets from nine major tissues, along with

whole‐genome data from 2357 individuals across 29 breeds worldwide, and

4006 phenotypic data related to tail fat weight. We constructed the first multi‐
tissue epigenome atlas in terms of functional elements, chromatin states, and

their functions and explored the utility of the functional elements in inter-

preting phenotypic variation during sheep domestication and improvement.

Particularly, we identified a total of 753,723 nonredundant functional
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elements, with over 60% being novel. We found tissue‐specific promoters and

enhancers related to sensory abilities and immune response that were highly

enriched in genomic regions influenced by domestication, while longissimus

dorsi tissue‐specific active enhancers and tail fat tissue‐specific active pro-

moters were highly enriched in genomic regions influenced by breeding

and improvement. Notably, a variant, Chr13:51760995A>C, located in an

enhancer region, was identified as a causal variant for tail fat deposition based

on multi‐layered data sets. Overall, this research provides foundational

resources and a successful case for future investigations of complex traits in

sheep through the integration of multi‐omics data sets.
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Highlights

• Generated 92 transcriptomic and epigenomic data sets from nine sheep

tissues, establishing the first multi‐tissue epigenome atlas for functional

genomic elements.

• Identified 753,723 nonredundant functional elements, with over 60% being

novel, including tissue‐specific promoters and enhancers linked to sensory

abilities, immune response, and tail fat deposition.

• Discovered a novel variant, Chr13:5176099A>C, located in an enhancer

region, pinpointed as a causal variant for tail fat deposition using multi‐
layered data sets.

INTRODUCTION

Sheep (Ovis aries), one of the most important agricul-
tural animals, is an essential resource of meat, milk,
and wool for humans [1]. Despite their economic
importance, the genetic and molecular mechanisms
underlying adaptive evolution and essential agronomic
traits in sheep remain poorly understood. Genome‐
wide association studies (GWAS) have been widely
used to understand the genetic architecture of diseases
and complex traits in humans and other livestock spe-
cies [2–5]. However, a major challenge in interpreting
GWAS results is that many candidate loci associated
with complex traits are located in noncoding regions of
the genome, with many variants showing strong link-
age disequilibrium (LD) [6, 7]. These factors severely
hinder the understanding of the molecular mechanisms
of phenotypic variation, adaptive evolution, and
important agronomic traits in sheep.

By following the Encyclopedia of DNA Elements
(ENCODE) and Epigenome Roadmap projects [8, 9], the
Farm Animal Genotype‐Tissue Expression (FarmGTEx)
project and the Functional Annotation of Animal

Genomes (FAANG) initiative have significantly advanced
the annotation of functional elements across various tis-
sues in multiple livestock species, providing a rich
resource for understanding the genetic mechanisms of
complex agronomic traits [10]. However, the currently
available annotations of regulatory elements in the sheep
genome are limited to only a few tissues [11, 12], and the
comprehensive annotation of functional elements in the
sheep genome is lagging behind that of other animal
species, such as pigs [13–15], cattle [16], chickens [17, 18],
and model organisms [19, 20]. This limited annotation
hinders our understanding of the molecular mechanisms
underlying complex agronomic traits in sheep. Conse-
quently, there is an urgent need to construct a compre-
hensive atlas of functional elements in the sheep genome
to identify the candidate causative variants for economi-
cally important traits. Tail fat deposition, a major eco-
nomic trait of fat‐tailed sheep breeds, has been under-
studied. Reducing tail fat deposition is essential for
increasing the economic benefits of sheep farming. How-
ever, only a few key genes and functional mutations
associated with tail fat deposition have been identified for
us in breeding programs. Current research focuses
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primarily on easily measurable traits, such as tail size and
configurations, but neglects the key indicator—tail fat
weight [1, 21, 22]. Additionally, large quantitative trait loci
regions identified through selection signals and GWAS are
difficult to interpret due to the high number of variants.
An integrated multi‐omics approach is needed to pinpoint
causative variants for complex traits in livestock [23, 24],
but such strategies have not yet been employed to study
tail fat deposition in sheep.

In this study, we generated multiple layers of data
sets, including 92 transcriptomic and epigenomic (Assay
for transposase‐accessible chromatin using sequencing:
ATAC‐seq, cleavage under targets and tagmentation:
CUT&Tag and high‐throughput chromosome conforma-
tion capture: Hi‐C) data sets from nine major tissues,
2357 whole genome sequence samples from 29 breeds
around the world and 4006 phenotypic data related to tail
fat weight traits. We aimed to (1) build the multi‐tissue
epigenome atlas, (2) explore the utility of functional
elements in interpreting adaptive evolution and complex
traits in sheep, and (3) identify candidate causal variants
and their target gene contributing to tail fat deposition
through integrated multi‐omic data. In summary, our
research enriches the annotation of functional elements
in the sheep genome and identifies causal variant
affecting tail fat deposition, which provides foundational
resources and a successful case study for future research
on the biological mechanisms underlying complex eco-
nomic traits in sheep.

RESULTS

Data summary

To advance the functional annotation of the sheep
genome and explore the utility of enhanced genome
annotation to explain the complex traits in sheep, we
generated 92 epigenomic data sets of nine major tissues
(cartilage, cecum, pituitary gland, hypothalamus, liver,
longissimus dorsi, rumen, spleen, and tail fat) using
the following methods: RNA sequencing (RNA‐seq),
ATAC‐seq, CUT&Tag for two histone modifications
(H3K27ac and H3K4me3), and Hi‐C (Figure 1A). We
obtained 14.9 billion clean reads, with an average mapping
rate of 93.16% (Table S1). The fraction of reads in peaks
(FRiP), relative strand cross‐correlation coefficient (RSC),
and normalized strand cross‐correlation coefficient (NSC)
showed that our sequencing data were of sufficient quality
for downstream analyses (Table S2).

To explore the utility of enhanced genome annotation
to explain the complex traits in sheep, we integrated 364
whole‐genome sequencing (WGS) data for 29 breeds

around the world for population structure and selection
signal analysis. We also obtained carcass and tail fat
weight phenotype data as well as WGS data from 2003
sheep. After variant calling and filtration, 21,741,684
single nucleotide polymorphisms (SNPs) were identified
for further GWAS analysis (Table S3).

Overview of sheep multi‐tissue epigenome
atlas

In all nine tissues, we identified an average of 258,403,
20,945, and 52,552 peak sequences in the ATAC‐seq,
H3K27ac, and H3K4me3 data; with average lengths
of 692.92, 2479.90, and 2029.79 bp, respectively
(Figure S1A–D), these peak sequences accounted for
3.38%, 1.82%, and 3.72% of the entire sheep genome,
respectively (Table S2 and Figure S1E), and ATAC
peaks were annotated to noncoding regions, while
H3K27ac and H3K4me3 peaks were mainly annotated
to the promoter region of the genes (Figure S1F). In
addition, we identified a total of 753,723 nonredundant
regulatory elements, including 40,606 putative pro-
moters, 158,677 putative enhancers, and 846,058 open
chromatin regions (OCRs) (Figure 1B), and over 84%
and 64% of enhancers and promoters were newly
identified in this study (Figure 1C), and we also vali-
dated that over 50.51% and 31.35% of our detected
promoters and enhancers overlapped with promoters
and enhancers identified from previously published
data in the liver [25] (Figure S1G).

We assessed the relationships across different tissues
and assays using gene expression and epigenetic marks
data sets, the hierarchical clustering and principal com-
ponent analysis (PCA) results clearly mirrored the
sequencing assays, followed by tissue types and biological
replicates (Figure 1D, Figure S2). The ATAC‐seq,
H3K4me3, and H3K27ac data sets demonstrated a
strong positive correlation with each other (mean
R= 0.68), and three active regulatory marks peak were
distributed in the regions around the transcription start
sites (TSSs) of the genes, whereas they showed a weak
positive correlation with the RNA‐seq data set (Figure 1E
and Table S4). In addition, to profile the three‐
dimensional genome architecture of the sheep genome,
we performed in situ Hi‐C on tail fat tissue, as a repre-
sentative tissue, of two sheep, and constructed a genome‐
wide interaction map at the resolution 25 kb. The result
indicated the closer the spatial distance between chro-
mosomes, the higher was the degree of interaction, par-
ticularly in the same chromosome (Figure 1F). Overall,
we used the aforementioned data sets to generate a high‐
resolution, multi‐tissue epigenome map (Figure 1G),
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FIGURE 1 (See caption on next page).
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which enrich the annotation of functional elements in
the sheep genome.

Definition and characterization of
chromatin states across multi‐tissues and
species

We defined six chromatin states by integrating three
epigenetic datasets (ATAC‐seq, H3K4me3, and H3K27ac)
across nine tissues using the default parameters
ChromHMM software. These chromatin states were
mainly categorized promoter (TssA and TssW), enhancer
(EnhA and EnhAW), ATAC island and quiescent/
repression regions (Figure 2A,B). In general, we identi-
fied 1,936,312 nonredundant chromatin states across the
nine tissues, the average lengths ranged between 906.88
and 25,332.1 bp, covering between 5.9% and 94.6% of the
entire genome, respectively (Figure S3, and Table S5).
The promoter states (TssA and TssW) exhibited the
highest enrichment at TSS (Figure 2C), and also showed
the highest average levels of gene expression than other
chromatin states (Figure S4). In addition, we investigated
the relationship between DNA methylation and
chromatin states in matched tissues using publicly
available DNA methylation data [25]. We found that
activated promoter showed the lowest methylation level
(Figure 2D), which confirms the well‐known negative
correlation between gene expression and promoter
methylation level [26, 27]. Simultaneously, a genome‐
wide map of chromatin states was plotted on the basis
of six nonredundant chromatin states across nine
tissues. As expected, the repression regions are distrib-
uted in most regions of the entire genome, whereas
the distribution of other chromatin states were similar
(Figure 2E). In addition, we also examined the distribu-
tion of chromatin states in different tissues. The result

showed that the activity of the promoter states (TssA and
TssW) were less variable, while the activity of the en-
hancer states (EnhA and EnhAW) were highly variable
between tissues (Figure 2F).

To further explore the conservation of chromatin
states between the sheep, cattle, and pigs, we predicted six
chromatin states from matched tissue types in these spe-
cies using the same set of epigenetic marks, leveraging
data from the FAANG and pig epigenome projects [14, 28].
Our analysis showed that the corresponding chromatin
states across the three species exhibited similar emission
probabilities for individual epigenetic marks (Figure S5).
Additionally, we compared the sequence conservation of
activate promoters (TssA) and strong active enhancers
(EnhA) between the genomes of sheep, cattle, and pigs
using LiftOver software (minMatch = 0.95). The results
revealed that 80.45% of TssA and 81.99% of EnhA regions
in the sheep genome were conserved in the cattle genome,
while only 25.87% of TssA and 30.66% were conserved in
the pig genome (Figure 2G). Moreover, both conserved
and non‐conserved TssA and EnhA regions were observed
near the orthologous CD86 gene in sheep, cattle, and pigs,
where consistent patterns of H3K4me3 and H3K27ac his-
tone modifications were seen across the three species
(Figure 2H). These findings suggest that regulatory ele-
ments tend to be more conserved between species with
closer evolutionary relationships, and highly conserved
regulatory elements may play similar functional roles
across different species.

Tissue‐specific analysis of genes and
chromatin states

Regulatory elements are important regulators for tissue‐
specific gene expression. To investigate the relationship
between functional elements and tissue‐specific gene

FIGURE 1 A multi‐tissue sheep epigenome atlas. (A) Schematic overview of tissues and data sets assayed in this study. Diagram of nine
major tissue types from Hu sheep sampled (left), illustrations of tissue types, experiment population and representative breed (middle),
sample number of epigenomic, phenotype, and genomics for the study (right). (B) The radar plot of promoters and enhancers across nine
different sheep tissues. The red and blue lines represent the number of promoters and enhancers, respectively. (C) Percentages of promoters
and enhancers were newly annotated in this study (blue) and overlapped with the previously published data for the sheep liver tissue
(orange). (D) Heatmap for Pearson correlation of assays, tissues, and two biological replicates based on the normalized signal in 500 bp
windows across the entire genome. (E) The distribution of average epigenetic mark signal around TSSs of genes. TSS, transcription start site;
TES, transcription end site. (F) Heatmap of genome‐wide Hi‐C interaction matrices in sheep tail fat tissue. The rectangle in the upper right
corner represents a magnification of chromosome 11, and the cyan dot and blue rectangle represent the identified loop and TAD,
respectively. (G) Circos plot summarizing the chromosomal distribution of epigenetic marks. The outermost to innermost tracks represent
ideograms of gene density, SNP density, RNA‐seq, ATAC‐seq, and CUT&Tag (H3K4me3 and H3K27ac) data for each chromosome.
ATAC‐seq, assay for transposase‐accessible chromatin using sequencing; CUT&Tag, cleavage under targets and fragmentation; Hi‐C,
high‐throughput chromosome conformation capture; RNA‐seq, RNA sequencing; SNP, single‐nucleotide polymorphism; TAD, topologically
associating domain.
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expression, we detected a total of 8334 tissue‐specific genes
across all nine tissues (Figure 3A,B and Table S6). The
predicted functions of these tissue‐specific genes accurately
reflected the specific biology processes of various tissues
(Figure 3C and Table S7). Moreover, the quantitative
real‐time reverse transcription PCR (qRT‐PCR)‐based
gene expression analysis of representative examples of

tissue‐specific genes verified the accuracy of our analysis
(Figure 3D, Figure S6). We also observed that tissue‐
specific genes exhibited a stronger enrichment of active
chromatin states and a greater depletion of repressed
regions in the corresponding tissues, compared to other
tissues (Figure 3E,F). Simultaneously, we categorized
genes into three groups based on the number of

FIGURE 2 Genome‐wide chromatin state landscape across nine tissues. (A) Names, abbreviations, and emission probabilities of the
chromatin states. (B) Genomic coverages of the chromatin states. (C) Average enrichment of different chromatin states in genome
annotations. TSS/TES_1k, upstream and downstream 1 kb region of TSS and TES. (D) Average methylation level of chromatin states in liver.
(E) Genome‐wide landscape of each chromatin state. TssA, activate promoters/transcripts; TssW, weak promoters/transcripts; EnhA, strong
activate enhancer; EnhAW, weak activate enhancer; ATAC_Is, ATAC island; Quies, quiescent/repression. (F) Chromatin state variability
based on cumulative genome coverage fraction. Dashed line = 0.75. (G) Sequence conservation and utilization of TssA and EnhA in the
genomes of cattle and pigs, compared with sheep. (H) An example illustrating the conserved usage of TssA and EnhA at the CD86 gene
locus in sheep, cattle, and pigs. Numbers in brackets in the H3K4me3 and H3K27ac CUT&Tag tracks denote signal intensities.
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FIGURE 3 (See caption on next page).
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overlapping EnhA regions. Our analysis revealed that
genes overlapping with a greater number of EnhA regions
had higher expression levels and showed less pronounced
tissue‐specific expression patterns compared to genes
with fewer overlapping EnhA regions (Figure S7A). Gene
ontology (GO) enrichment analysis demonstrated that
genes with only one overlapping EnhA were associated
with tissue‐specific functions, such as lysosome activity
and phagocytosis in the spleen. In contrast, genes with
multiple overlapping EnhA regions were enriched for
more general biological functions (Figure S7B and
Table S8).

To further explore the biological functions of active
chromatin states, we identified 184,019 tissue‐specific
EnhA across the nine tissues (Figure 3G) and found a
significant positive correlation between tissue‐specific
EnhA regions and tissue‐specific gene expression
(p< 0.05) (Figure S8 and Table S9). The GO enrichment
analysis results indicated that all genes overlapping with
tissue‐specific EnhA showed known functions of the
corresponding tissue (Table S10). Additionally, the genes
overlapping with tissue‐specific EnhA were strongly ex-
pressed in not only the corresponding tissues but also the
hypothalamus tissue (Figure 3H). We also conducted an
enrichment analysis of motifs within tissue‐specific
EnhA sequences and found the motif's expression lev-
els were higher in the corresponding tissues compared to
other tissues (Figure 3I,J). This indicates that tissue‐
specific EnhA regions may regulate gene expression
through the modulation of interactions between tissue‐
specific transcription factors (TFs) and motifs, thereby
influencing gene expression specificity. In addition, we
explored the biological functions of tissue‐specific pro-
moters. As expected, the number of TssA regions shared
among all tissues exceeded the number of tissue‐specific
TssA regions in most tissues, and the promoters also
exhibited tissue‐specific functions (Figure S9), although
to a lesser extent compared to EnhA regions, further
support the crucial role of active chromatin states in
regulating tissue‐specific functions. Overall, these results
illustrate that the systemic analysis of chromatin states is

important for downstream integration of epigenomic
data to understand the genetic mechanisms underlying
variation agronomic traits in sheep.

Chromatin state predictions that enhance
the understanding of phenotypic variation
during sheep domestication and
improvement

To explore whether genomic regions influenced by
domestication and improvement are significantly
enriched in functional elements. We first performed a
population structure analysis based on the maximum
likelihood estimation using 364 sheep from different
counties (Figure 4A). The results showed that all in-
dividuals were classified into three separate clusters:
Asian Mouflon, Chinese native sheep breeds, and im-
proved breeds (Figure 4B,C, Figure S10). To dissect sheep
domestication, we calculated the fixation index (FST),
population extended haplotype homozygosity (XP‐EHH),
and the nucleotide diversity ratio (π ratio) between wild
and domesticated sheep. In total, we identified 46 can-
didate genomic regions based on the top 5‰ windows
across all three statistics (Figure 4D and Tables S11, S12).
We found that TssA, TssW, and EnhA regions were
highly enriched in genomic regions affected by domes-
tication (Figure 4E). In our tissue‐specific chromatin
state enrichment analysis, we observed the highest
enrichment in spleen‐specific TssA and EnhA, followed
by cecum‐specific TssA, both of which were linked to
immune‐related functions, as well as hypothalamus‐
specific TssA, linked to sensory functions (Figure 4F).
This result is consistent with the fact that perceptual
ability and survivability are preferentially selected in the
earlier domestication process of sheep.

Additionally, we examined whether tissue‐specific
TssA and EnhA were enriched in regions under selec-
tion by conducting pairwise comparisons of FST, XP‐EHH,
and π ratio between three sheep groups: Asian Mouflon vs
Chinese native sheep breeds (WN), Asian Mouflon vs

FIGURE 3 Functional characterization of tissue‐specific genes and chromatin states. (A–C) Gene numbers, expression pattern, and
Gene Ontology (GO) enrichment terms of tissue‐specific genes (Tau > 0.8) across nine tissues. TPM, transcripts Per Million. (D) Example of
chromatin state atlas in the context of tissue‐specific gene expression. For each gene locus, RNA‐seq signal tracks are shown across nine
major tissues, with the vertical scale representing the normalized signal ranging from 0 to 500 for RNA‐seq. (E) Enrichment of longissimus

dorsi‐specific genes in six chromatin states across nine tissues. The red dots represent chromatin states in longissimus dorsi tissue.
(F) Enrichment of tissue‐specific genes for active chromatin states (TssA and EnhA) across nine tissues. The dots represent enrichments
from matching tissues. The blue dashed lines indicate enrichment fold = 1. (G) Number of tissue‐specific (TS) EnhA, and GO enrichment of
genes overlapping tissue‐specific EnhA. (H) Heatmap of expression patterns of genes overlapping tissue‐specific EnhA. (I) Motif enrichment
in tissue‐specific EnhA of different tissues, and logos of their sequences. (J) Heatmap of transcription factor expression patterns
corresponding with enriched motifs in different tissue‐specific EnhA.
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FIGURE 4 (See caption on next page).
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improved breeds (WI), and Chinese native sheep breeds vs
improved breeds (NI). We identified 49, 53, and 13 can-
didate genomic regions in the WN, WI, and NI compari-
sons, respectively (Figure S11 and Tables S13–S18).
Our analysis revealed significant enrichment of cecum,
tail fat‐specific TssA, and longissimus dorsi‐specific EnhA
in the NI group, while spleen, rumen, and tail fat‐specific
EnhA were highly enriched in the WN and WI groups
(Figure 4G,H). This is consistent with the breeding goals
of improved sheep breeds, which focus on faster growth
and reduced tail fat deposition, while native breeds pri-
oritize adaptability and resilience. Overall, these results
indicate the role of functional elements in explaining the
adaptive evolution and complex agronomic traits in sheep.

Identification of genomic regions
associated with tail fat deposition in sheep

To identify the potential genomic regions associated with
tail fat deposition in sheep, we compared the genomes of
168 fat‐tailed and 170 thin‐tailed sheep using the pairwise
genetic differentiation (FST) test (Figure 5A). The top
5‰ of windows with atypically high FST values (n= 189)
were defined as the candidate selective regions. The two
strongest signals were located on Chr13 (51.15–52.05Mb)
and Chr15 (3.67–4.50Mb; Figure 5B and Table S19).
We also performed pairwise population differentiation
analysis by comparing long fat‐tailed, short fat‐tailed, fat‐
rumped, short thin‐tailed, and long thin‐tailed breeds and
assessed the same selected regions of Chr13 and Chr15 in
a comparative analysis of the different fat‐ and thin‐tailed
sheep populations (Figure 5C,D and Table S20).
Further investigation of the allele frequencies in the two
selected chromosome regions demonstrated that genotype
patterns significantly differed between the thin‐ and fat‐
tailed populations (Figure 5E,F), suggesting that these two
regions possibly influence tail fat deposition.

To further narrow the genomic regions that influence
tail fat deposition in sheep, we performed large‐scale
GWAS for tail fat weight and relative weight of tail fat

(tail fat weight/carcass weight) traits from the cohort of
2003 sheep (Figure 6A). On the basis of a threshold of
−log10 (0.05/total SNPs) = 8.63, tail fat weight and relative
weight of tail fat traits were linked to 984 and 1,086 sig-
nificant SNPs, respectively, on Chr7, Chr9, and Chr13
(Figure 6B and Tables S21, S22), Of them, 981 SNPs over-
lapped and located in the selection sweep region of Chr13
(Table S23). Notably, these SNPs were located in intron and
intergenic regions in a strong LD state (Figure S12), making
it necessary to integrate multi‐omics data to determine the
causal variant contributing to tail fat deposition.

Prioritization of candidate causative
mutations associated with tail fat
deposition using multiple layers of
datasets

To determine candidate causal variant and investigate
the contributions of genomic variants to tail fat deposi-
tion, we integrated the results of the selective sweep
analysis of different tail configurations, the GWAS results
of the tail fat weight trait, and the epigenomic data
(i.e., ATAC‐seq, H3K27ac, H3K4me3, and Hi‐C data) of
sheep tail adipose tissue (Figure 6C). The results demon-
strated that 71.3% of GWAS SNPs were located in the
selected region on Chr13, whereas only 3.59% and 3.14%
of the SNPs were located in the OCR and H3K27ac peaks
of at least one individual. Notably, we only found that two
SNPs (Chr13:51760995A>C and Chr13:51825895G>A)
were located in the OCR and the H3K27ac peak. These
two SNPs were also located in the same topologically
associating domain (TAD) as the bone morphogenetic
protein 2 (BMP2), LOC101117953, and LOC101118027
genes (Figure 6C). These results demonstrated that these
two SNPs may be related to sheep tail fat deposition.

To further explore how the candidate variants affect
sheep tail fat deposition, we counted the allele frequencies
at Chr13:51760995A>C and Chr13:51825895G>A SNPs in
338 domestic sheep with different tail configurations. The
reference alleles Chr13:51760995 A and Chr13:51825895 G

FIGURE 4 Enrichment of chromatin status for selected regions during sheep domestication and improvement. (A) Geographic
distribution of Asian mouflon, Chinese native breeds, and improved breeds. The green circles, red triangles, and blue squares indicated
Asian mouflon, Chinese native breeds, and improved breeds, respectively. The size of each point represents the number of samples.
(B) Neighbor‐joining tree was constructed using p‐distance between individuals. (C) The population genetic structure of 364 individuals was
inferred using ADMIXTURE. (D) Selective signature analysis comparing Asian mouflons with all the domestic sheep. The x‐axis shows
fixation index (FST values), while the y‐axis represents nucleotide diversity ratios (θπ). XP‐EHH values are displayed using a color gradient.
The threshold for significant selection signatures was set at the top 5‰ of outliers for each test. Black dashed lines in the upper‐right
quadrant indicate the top 5‰ quantiles for all three statistics. (E) Enrichment of chromatin states within domestication selection signatures.
(F) Enrichment of domestication selection signatures within tissue‐specific enhancers (EnhA) and promoters (TssA). (G, H) Enrichment of
TssA and EnhA in selection signatures during domestication and breeding. Red dashed lines represent an enrichment fold of 1.
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demonstrated higher frequencies in the thin‐tailed
sheep breeds compared to the fat‐tailed sheep breeds
(Figure 7A,B). The tail fat weight and relative weight of
tail fat (tail fat weight/carcass weight) were significantly
lower in the individuals with the reference allele (A/G)
than in the individuals with the mutant alleles (C/A,
p< 0.01, Figure 7C–F). Furthermore, tail fat transcriptome
analysis of sheep with different genotypes demonstrated

that only BMP2 expression differed significantly between
the individuals carrying the mutant alleles C allele
and those carrying the reference allele A allele at
Chr13:51760995A>C (p< 0.05). In contrast, the mutation
in Chr13:51825895G>A did not affect the expression of
BMP2 and its nearby genes (Figure 7G,H). These results
indicate that the alteration at the Chr13:51760995A>C
SNP influences the expression of the BMP2 gene.

FIGURE 5 Genome‐wide selection sweep test of sheep with distinct tail morphology. (A) Illustrations of five distinct tail morphologies:
long fat‐tailed, short fat‐tailed, fat‐rump, long thin‐tailed, and short thin‐tailed sheep. (B) Whole‐genome selective signals of thin‐ and
fat‐tailed sheep breeds by FST analysis. The red dashed line indicates the top 5‰ threshold. (C, D) FST values plotted for selected regions
using pairwise comparison of five tail morphologies on Chr13 C and Chr15 D. The different colored lines represent the FST values from
pairwise comparisons of sheep with distinct tail morphology, with the black lines representing the FST values between the thin‐ and fat‐
tailed sheep. (E, F) Haplotype differentiation patterns of different tail morphologies for the two most selected regions. Each row indicates
one individual, and each column indicates one SNP. Red indicates homozygous variants, orange for heterozygous variants, yellow for
homozygous reference and gray for missing data.
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To validate the effects of BMP2 gene on sheep tail
fat deposition, we isolate the primary preadipocytes from
the tail adipose tissue and induced the differentiation
into mature white adipocytes. We constructed an over-
expression vector pcDNA3.1‐BMP2 and tested the over-
expression efficiency, proliferation, and the differentiation
potential. The results showed that the BMP2 over-
expression did not affect cell proliferation, while enhanced
adipogenic potential, as indicated by the increased lipid
accumulation and triglyceride content, as well as the ele-
vated expression of adipocyte marker genes (Figure 7I–K,
Figure S13A–C). In contrast, the lipid accumulation and
triglyceride content in the transfected cells with siRNAs
targeting the BMP2 gene were significantly lower com-
pared to those in the negative control group (p< 0.05)
(Figure 7L–N, Figure S13D–F). Taken together, these
results indicated that Chr13:51760995A>C, located in an
enhancer region, is a compelling candidate causal variant
that influences tail fat weight trait.

DISCUSSION

Here, we generated and characterized the epigenomic
landscape of functional elements across nine tissues. This
represents the most comprehensive reference epigenomic
data set for sheep reported to date, including 753,723
nonredundant regulatory elements and 8334 tissue‐
specific genes. Notably, over 84% of the enhancers and
64% of the promoters identified were newly discovered
compared to previous data [25]. Furthermore, we defined
and characterized the chromatin states across nine tis-
sues and performed the chromatin state comparisons
among sheep, cattle, and pig. In addition, by integrating
functional elements with selection signatures and large‐
scale GWAS results, we explored the role of functional
elements in understanding adaptive evolutions and tail
fat deposition in sheep. This epigenomic landscape will
provide essential resources for the annotation of the
functional genome, comparative analysis across species,
annotate and validate GWAS results, genome selection,
and editing.

Elucidating the genetic mechanisms of adaptive evo-
lution and complex traits in domestic animals is an active
research area. Functional regulatory elements are crucial
in the genetic regulation of adaptive evolution and
complex traits [14, 15, 17]. Hence, we first explored the
potential role of functional elements on sheep domesti-
cation and selection by focusing on the early stage of
domestication. The results indicated that the genomic
regions influenced by domestication are significantly
enriched in functional regulatory elements, consistent
with previously reported results [15]. Moreover, during
domestication, the spleen specific TssA and EnhA were
noted to be most enriched, followed by TssA specific to
the cecum, and hypothalamus tissues. This result is
consistent with previous findings that immunity and
sensory ability may be important physiological pheno-
types, preferentially selected during early domestication
[29, 30]. In addition, during the improvement and
breeding processes, the cecum‐specific TssA, rumen, and
longissimus dorsi‐specific EnhA demonstrated the high-
est enrichment in the candidate selection signatures
during the comparison of wild sheep or Chinese native
breeds with improved breeds. This may be the result of
the intensive selection of improved sheep breeds for
growth rate and feed efficiency traits, native sheep breeds
could be more adaptability and resilience. The rumen, a
specialized organ found only in ruminants, is primarily
responsible for digestion and nutrient absorption, and
thus it is closely associated with feed efficiency in rumi-
nants [31]. In addition, we found that the tail fat‐specific
TssA was highly enriched in the candidate selection sig-
natures during the comparison of Chinese native sheep
with improved breeds. This result may reflect the observed
distinct tail phenotypic differences between Chinese
native sheep and improved breeds. Approximately 60% of
Chinese native sheep breeds are fat‐tailed, whereas the
improved sheep are mainly thin‐tailed. Tail fat deposition
is a major economic trait that undergoes intensive selec-
tion during the improvement and breeding. Excessive
tail fat deposition affects not only the mating and normal
locomotion but also the meat quality, feed efficiency,
and economic benefit in sheep [32, 33]. Thus, to

FIGURE 6 Integrating genome‐wide association studies (GWAS) and epigenomes data to locating candidate variant significantly
associated with tail fat deposition in sheep. (A) Diagram of the tail fat weight (right) and carcass weight (middle) at 180 days of age in male
Hu sheep (n= 2003). (B) Manhattan plots of GWAS for the tail fat weight and the relative weight of tail fat (tail fat weight/carcass weight) in
the Hu sheep population (n= 2003). The dashed red line indicates the genome‐wide significance threshold [i.e., –log10 (0.05/total SNPs) =
8.63]. (C) Integrative analysis of multi‐omics data of tail fat deposition in sheep, showing the Hi‐C interaction heatmap of chr13:51,175,000–
51,900,000 region at 10 Kb resolution, and the epigenetic signal of ATAC‐seq, CUT&Tag (K3K27ac and H3K4me3) in tail fat tissue, two
replicates for each assay. The values in brackets (left) indicate ATAC‐seq and CUT&Tag (K3K27ac and H3K4me3) signal intensities. The
track view of the variant, showing the selection region, GWAS region, lead SNP, ATAC‐seq, and CUT&Tag peaks, candidate SNPs, and
nearby genes for the 51,175,000–51,900,000 bp region on Chr13.
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determine the molecular mechanisms underlying tail fat
deposition, researchers have exerted great efforts to iden-
tify candidate genomic regions or genes related to tail fat
deposition [34–38]. However, these studies reported
inconclusive results, possibly because they mainly used
indirect indicators such as tail lengths and types and tail
vertebra numbers as target traits with RNA‐seq, genome‐
wide scans, and GWAS methods [1, 39–41]. Although a
few studies have included tail fat weight as the target trait,
they have used small sample sizes and considered small
effect sizes for most candidate variants and high LDs
between variants.

In the present study, we first performed a compre-
hensive selection signature analysis of 168 fat‐tailed and
170 thin‐tailed sheep worldwide. Then, for the first time,
we performed GWAS on tail fat weight traits by using a
large‐scale experimental population (n= 2003) and nar-
rowed down the genomic region associated with tail fat
deposition to Chr13. Despite narrowing down the geno-
mic regions using comparative population genomics and
GWAS, we could not identify causal variants and their
target genes. Finally, through integrated analysis of
selection signatures, GWAS results, epigenomic data of
tail fat tissue, and RNA‐seq data, we found the A allele
of Chr13:51760995A>C to be favorable SNP because it
was associated with lower tail fat weight and decreased
BMP2 expression in tail fat tissues. BMP2, a transforming
growth factor beta superfamily member, has important
roles in adipogenic differentiation [42, 43]. Our func-
tional verification results confirmed that BMP2 over-
expression can increase adipogenic potential, but its
inhibited expression prevents adipogenesis. These results
corroborate previously reported results [44, 45]. These
results further suggest that the SNP Chr13:51760995A>C
is a compelling candidate causal variant that influences
tail fat weight trait.

Overall, this resource could assist identify candidate
causal variants underlying agronomic traits in sheep,
accelerating biology‐driven selective breeding to meet
the demands of a growing global population. Notably,
the SNP Chr13:51760995A>C, identified through the
integration of multiple omics resources, could be of great
interest, particularly in fat‐tailed sheep breeds. This
result provides valuable molecular markers that could
facilitate the breeding of sheep with reduced tail fat
deposition or thin tail sheep through genomic selection
or marker‐assisted selection, contributing to reduced
animal suffering for tail docking and enhanced health
and welfare. Despite the significant findings of this
study, several limitations should be acknowledged. First,
while we generated a multi‐tissue epigenome atlas from
nine major tissues, it may not fully cover all biologically
relevant tissues in sheep. Second, although the
SNP Chr13:51760995A>C was identified as a candidate
causal variant associated with tail fat deposition through
integrative multi‐omics analysis, further functional
validation—such as gene knockout or gene inhibition
experiments—is needed to elucidate the precise role of
Chr13:51760995A>C and BMP2 in tail fat regulation.
Additional validation across other sheep breeds or pop-
ulations is also necessary to assess the generalizability of
these findings.

CONCLUSION

Our study established the first multi‐tissue epigenomic
blueprint of sheep to fill a knowledge gap in existing sheep
atlas datasets. This provides foundational data resources for
understanding the adaptive evolution and complex eco-
nomic traits of sheep. Simultaneously, through integration
analysis of our multi‐layered data sets, we identified a novel

FIGURE 7 Identification of causal variant and verification of target genes. (A, B) Spectrum of allele frequencies at the
Chr13:51760995A>C and Chr13:51825895G>A loci in 28 domestic sheep breeds. The type of reference allele is indicated in blue, while the
mutant alleles in red. AL, Altay sheep; Ht, Hetian sheep; LH, Large‐tailed Han sheep; LL, Lanzhou Large‐tailed sheep; Cele, Qira Black
sheep; STH, Small‐tailed Han sheep; ST, Short tail sheep; TY, Tan sheep; UJ, Ujimqin sheep; BAR, Barag sheep; BAY, Bayinbuluke sheep;
MG, Mongolian sheep; OL, Tibetan sheep (Oula); Va, Tibetan sheep (Valley); PT, Tibetan sheep (Prairie); AW, Australian white; TE, Texel;
BL, Border leicester; DP, Dorper; EF, East friensian milk sheep; SA, SA mutton merino; ML, Australian Merino; PD, Poll Dorset; WS, White
suffolk; Bs, Black suffolk. (C–F) Tail fat weight and relative weight of tail fat of different genotypes at the Chr13:51760995A>C and
Chr13:51825895G>A loci in the male Hu sheep population (n= 2003), respectively. (G, H) Expression level of candidate genes in different
genotypes of the Chr13:51760995A>C and Chr13:51825895G>A loci. The red, blue, and orange dots are expressed as homozygous variants,
heterozygous variant, and homozygous reference, respectively. (I) Overexpression efficiency of the pcDNA3.1‐BMP2 plasmid.
(J) Triglyceride levels in preadipocytes transfected with the overexpression vector. (K) Adipogenesis marker gene expression levels in
preadipocytes transfected with the overexpression vector. (L) Interference efficiency after the transfection of tail preadipocytes using the
BMP2‐targeting siRNAs. (M) Triglyceride levels in preadipocytes transfected with the BMP2‐targeting siRNAs. (N) Adipogenesis marker
gene expression levels in preadipocytes transfected with the BMP2‐targeting siRNAs. Data are indicated as means ± standard errors of the
means; differences were analyzed by two‐tailed Student's t‐test. *p< 0.05, **p< 0.01.
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causal SNP (Chr13:51760995A>C) that could serve as
potential genetic marker for reducing tail fat deposition in
sheep breeding programs. Overall, these findings provide
valuable resources and molecular marker applicable to
sheep breeding, helping to accelerate genetic improvement.

METHODS

Sample collection and data sources

To construct the multi‐tissue epigenome atlas, we
collected 18 tissue samples (from the cartilage, cecum,
pituitary gland, hypothalamus, liver, longissimus dorsi,
rumen, spleen, and tail fat) from two half‐sib male Hu
lambs aged 6 months.

For population structure and selection signature
analysis, we obtained 364 genomic data sets, including
the newly produced WGS data for 50 sheep from five
breeds in this study (10 individuals from the population
used for GWAS analysis), and WGS data of 314
individuals (26 Asiatic mouflons, 167 individuals from
13 Chinese native sheep breeds, and 121 individuals from
10 improved breeds) from our previous study [29] and
publicly available databases (Table S24).

For GWAS, we constructed a comprehensive cohort
comprising 2003 male Hu lambs and divided it into seven
annual batches (from 2018 to 2022) for animal perform-
ance measurement and sample collection. All lambs of
similar age were selected randomly from the National
Core Breeding Farms of Sheep and Goats, as well as a
substantial Hu sheep farm, right after they were weaned;
they were transferred to the Minqin Experimental Farm
of Lanzhou University and raised under the same man-
agement conditions and diet. When the lambs were aged
6 months, we collected their whole blood samples via
jugular venipuncture; the blood samples were stored at
−20°C until genomic DNA isolation. Next, each lamb
was slaughtered to measure their carcass and tail
fat weights. All tissue samples in this study were washed
with ice‐cold phosphate‐buffered saline (PBS) and
collected within 30min post‐slaughter. The samples were
immediately immersed in liquid nitrogen and trans-
ported to the laboratory. Finally, the samples were stored
at −80°C in an ultralow‐temperature freezer until fur-
ther use.

Library construction and sequencing

For RNA‐seq, total RNA was isolated from nine tissues
(two replicates for each tissue) using the FastPure Cell/
Tissue Total RNA Isolation Kit V2 (RC112‐00, Vazyme),

following the manufacturer's instructions. RNA purity
and concentration were evaluated with a NanoDrop 2000
spectrophotometer (Thermo Fisher Scientific, USA), and
only high‐quality RNA samples were used to construct
strand‐specific RNA‐seq libraries. Library quality was
assessed using an Agilent 2100 Bioanalyzer (Agilent
Technologies), and sequencing was performed on the
Illumina NovaSeq 6000 platform at Wuhan Yingzi Gene
Technology.

For ATAC‐seq, approximately 5 mg of the frozen
tissue sample was pulverized in liquid nitrogen and
homogenized into cell suspensions in 1mL of ice‐cold
PBS. Following the previously described method with
minor modifications [14], we extracted the nuclei and
incubated them with the Tn5 transposase reaction mix at
37°C for 1 h; this was followed by purification using
a DNA Purification and Concentration Kit (TD413;
Genstone Biotech). The transposed DNA fragments were
then amplified through PCR using a NEBNext High‐
Fidelity 2X PCR Master Mix (M0541L; NEB), followed
by purification using Kapa Pure Beads (KS8002; Kapa
Biosystems) and sequencing on the Illumina NovaSeq.
6000 platform at Wuhan Yingzi Gene Technology.

For CUT&Tag, nuclei were extracted from each
flash‐frozen tissue sample using the same method used
for ATAC‐seq. The extracted nuclei were mixed with
concanavalin A‐coated magnetic beads (BP531; BioMag
Plus) and incubated at room temperature for 20min.
This was followed by incubation with the primary
antibodies (anti‐H3K27ac, anti‐H3K4me3, and IgG).
After incubation at room temperature for 1 h, the excess
primary antibodies were washed off and incubated with
a secondary antibody (goat anti‐rabbit IgG; ab6702;
Abcam) at room temperature for 1 h, followed by
three washes with DIG Wash Buffer. Next, protein
G–Tn5 complex (Hyperactive pG‐Tn5 Transposase for
CUT&Tag; S602; Vazyme) was added to the above sys-
tem. After incubation at room temperature for 1 h, the
reaction system was washed three times with 1× Dig‐300
Buffer (TD901‐TD902; Vazyme) and incubated in an
Mg2+ activation system (AM9530G; Invitrogen) at 37°C
for 1 h. Finally, sodium dodecyl sulfate (SDS) Buffer
(15553‐027; Invitrogen) was used to stop the tagmenta-
tion reaction, and DNA was extracted using Tagment
DNA Extract Beads (N245; Novoprotein) and then
amplified using NEBNext High‐Fidelity 2X PCR Master
Mix (M0541L; NEB). Finally, the libraries were purified
using Kapa Pure Beads (KS8002; Kapa Biosystems) and
then sequenced on the Illumina NovaSeq 6000 platform
by Wuhan Yingzi Gene Technology.

For Hi‐C sequencing, the tail fat tissue samples
were selected and processed according to a previously
described method with minor modifications [14].
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Briefly, approximately 1 g of a sample was pulverized and
fixed with 1% formaldehyde (252549; Sigma‐Aldrich) at
room temperature for 20min. The reaction was then
quenched with 0.125M glycine solution (V900144;
Sigma) by incubating at room temperature for 5 min. The
crosslinked tissue samples were mixed with Hi‐C lysis
buffer and incubated on ice for 15min. Subsequently, 0.3%
SDS was added, and the mixture was incubated at 62°C
for 10min, The reaction was then halted by adding Triton
X‐100 (28314; Thermo Fisher Scientific). Next, chromatin
was digested with AluI endonuclease (R0137L; NEB) at
37°C for 7 h, followed by the addition of dATP (N0440s;
NEB) and incubation at 37°C for 1 h. DNA ligation was
performed using T4 DNA ligase containing a biotin linker
(M0202L; NEB), followed by incubation at 16°C overnight.
Finally, DNA was extracted, purified, and sequenced on
Illumina NovaSeq. 6000 platform.

For WGS, genomic DNA of the sequenced samples
was extracted from 2053 blood samples by using an
EasyPure Blood Genomic DNA Kit (TransGen Biotech)
following the manufacturer's instructions. DNA integrity
and quality were assessed through agarose gel electro-
phoresis and a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific), respectively. Paired‐end
sequencing libraries were constructed for each DNA
sample and sequenced on the Illumina NovaSeq. 6000
platform (Novogene Co., Ltd.).

Raw sequencing data analysis

In total, 2135 new data sets—including data sets from
RNA‐seq (n= 18), ATAC‐seq (n= 18), CUT&Tag
(H3K27ac, H3K4me3, and IgG) for nine tissues (n= 54),
Hi‐C from tail fat tissue (n= 2), and whole‐genome
sequences (n= 2043)—were generated and analyzed.
We also uniformly analyzed another 314 whole‐genome
sequence data sets and three liver whole‐genome
bisulfite sequencing (WGBS) data from a previous
study [25]. The detailed analysis method is as follows:

For RNA‐seq data, we used TopHat (version 2.1.1) [46]
for alignment with default parameters; then, we applied
Samtools (version 1.12) to sort the BAM file and quantified
the read numbers mapped onto each gene by using
featureCounts (version 2.0.3) [47]. Next, we normalized the
raw count matrix to transcripts per million (TPM) for
subsequent analysis. Tissue‐specific expressed genes among
these were identified according to the previously described
tau index method [48]; genes with tau values > 0.8 were
defined as tissue‐specific genes [49].

For ATAC‐seq and CUT&Tag data, the sequencing
reads were aligned using Bowtie2 (version 2.2.4) [50];
moreover, Samtools (version 1.12) [51] and Picard

(version 3.1.1) were used to remove low‐quality mapped
reads, unmapped reads, and PCR duplicates. The mito-
chondrial reads were removed using bedtools (version
2.26.0) [52]. Then, the peak for each replicate was called
individually using MACS2 (version 2.2.6) [53], and the
significant peak (p< 0.00001) was used for further anal-
ysis. Each significant peak was further annotated to the
sheep reference genome (Oar_rambouillet_v1.0) using
the R package ChIPseeker (version 1.34.1) [54]. In addi-
tion, the BAM files for two biological replicates were
merged using Samtools, and the merged BAM files were
further converted to bigWig files by bamCoverage (in
deepTools), followed by visualization with the Integrative
Genomics Viewer browser and deepTools (version 3.5.0).
Finally, to analyze the correlation of read distributions
among RNA‐seq, ATAC‐seq, and CUT&Tag data across
different tissues, we converted the BAM files to BED files
using bedtools (version 2.27.1). Whole sequences were
partitioned into 500‐bp windows, followed by correlation
analysis using Pearson coefficients. The results were
visualized with the R package ComplexHeatmap.

For Hi‐C data, the clean reads from different libraries
were aligned and filtered with the HiC‐Pro (version 3.1.0)
[55] pipeline. Then, we merged the multiple libraries,
generated contact matrices, and performed matrix‐
balancing iterative correction and eigenvector decomposi-
tion (ICE) normalization. To investigate genome‐wide
chromatin interactions, Juicebox (version 1.11.08) was
used to build and visualize the contact matrices with 25‐kb
resolution. HiCExplorer (version 3.7.2) [56] was applied for
detecting significant TADs, with a significance threshold
set to a false discovery rate of 0.05, and the corresponding
interaction heatmaps and TAD boundaries were visualized
using fancplot function of fanc (version 0.9.28).

For the WGBS data, raw reads were filtered using the
trim_galore with default parameters (version 0.6.10). The
clean reads were aligned to the reference genome using
Bismark (version 0.24.2) and PCR duplicates were
removed using picard MarkDuplicates (version 2.27.5).
The methylation level of CpG site were extracted with
the bismark_methylation_extractor function of bismark
(version 0.24.2). The average methylation level for dif-
ferent chromatin state was then calculated with the
bedtools map function (version 2.27.1).

For the WGS data, the filtered reads were mapped
onto the sheep genome (Oar_rambouillet_v1.0) by using
Burrows–Wheeler aligner (version 0.7.15) with default
parameters. We converted the obtained mapping files to
BAM files and sorted them by using Samtools (version
1.10) and removed PCR duplicates by using both Sam-
tools and Picard. SNP calling was performed using the
HaplotypeCaller function in Genome Analysis Toolkit
(GATK), and the genomic variant call format (gVCF) file
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for each individual was obtained. Next, all the gVCF files
were combined using CombineGVCFs, and SNPs were
joint‐called using GenotypeGVCFs in GATK. Subse-
quently, VCFTools (version 0.1.16) was used to filter the
SNP data sets by using the following parameters:
–remove‐indels, –minDP 5, –min‐alleles 2, –max‐alleles
2, –maf 0.05, and –max‐missing 0.8. After all SNPs were
filtered, they were annotated using ANNOVAR based on
the gene annotations of the sheep reference genome
(Oar_rambouillet_v1.0) and classified as variations in the
exonic (i.e., synonymous or nonsynonymous SNPs), in-
tronic, intergenic, upstream, and downstream regions, as
well as those in splicing sites.

Chromatin state partitioning

ChromHMM (version 1.24) [57] was used to perform
an integrated analysis of CUT&Tag (H3K27ac and
H3K4me3) and ATAC‐seq data set across nine tissues;
the chromatin state of the sheep genome was annotated
based on a multivariate hidden Markov model [58, 59].
Because six states can represent the most combinations
of three epigenetic marks, we predicted six chromatin
state models based on the enrichment of epigenetic
modifications: active promoters (TssA), weak promoters
(TssW), strong activate enhancer (EnhA), weak activate
enhancer (EnhAW), ATAC island (ATAC_Is), and qui-
escent/repression (Quies). The fold enrichment degree
of different chromatin state and genomic region was
calculated with the OverlapEnrichment parameter [15].

Conservation analysis of chromatin states
across species

We downloaded the H3K27ac and H3K4me3 ChIP‐seq,
and ATAC‐seq data for cattle (liver, spleen, fat, hypo-
thalamus) and pig (skeletal muscle, liver, spleen, fat) from
FAANG [28] and published articles [14]. The cattle and pig
data were mapped to the susScr11 and bosTau9 reference
genomes, respectively. All data processing and chromatin
state partitioning were carried out following the same
methods described above for sheep. To explore chromatin
state conservation across species, the TssA and EnhA in
cattle/pig genomic (bosTau9/susScr11) were converted
to sheep genomic locations (Oar_rambouillet_v1.0) by
using the LiftOver tool with the default parameter (min-
Match= 0.95) [60]. The TssA and EnhA successfully con-
verted sheep genomic coordinates were regarded as
sequence‐conserved. Additionally, they were classified as
usage‐conserved if their corresponding pig/cattle homolo-
gous sequences overlapped with pig/cattle TssA and EnhA.

Identification of tissue‐specific chromatin
states

To explore the tissue specificity of chromatin states, we
used the merge parameter in bedtools and generated
nonredundant chromatin states in nine sheep tissues.
Then, we mainly performed the specific analysis of TssA
and EnhA, overlapping the chromatin states of different
tissues with nonredundant chromatin states. If the inter-
secting region was ≥ 1, the nonredundant chromatin state
of the tissue was calculated as 1; otherwise, it was con-
sidered 0. A nonredundant chromatin state of 1 in a single
tissue was considered a tissue‐specific chromatin state,
and a nonredundant chromatin state of 1 in all tissues
was regarded as a common chromatin state [61]. GO
functional enrichment analysis was performed on genes
overlapping with tissue‐specific regulatory elements.
HOMER (version 4.11) was employed to identify motifs
that are significantly enriched in tissue‐specific regulatory
elements, and the motifs with the highest p‐value were
demonstrated using the R package ComplexHeatmap.
Motif‐binding TF expression was analyzed according to
the expression matrix obtained using RNA‐seq.

Tissue‐specific gene expression analysis

To identify tissue‐specifically expressed genes, we
determined the tissue specificity of genes by calculating
the Tau value of each gene according to the method
described in the previous literature [48]. The calculation
method of Tau value is as follows, where x represents the
TPM value of tissue gene expression and n refers to the
number of tissues.
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The tissue‐specific gene clusters were visualized
using the R package ComplexHeatmap (version 2.14.0),
and GO enrichment analyses for tissue‐specific genes
were performed on the DAVID website (https://david.
ncifcrf.gov/).

Population structure analysis

To investigate the population structure of all wild and
domestic sheep, we converted the VCF files to the PLINK
files by using VCFTools (version 0.1.16) and implemented
pruning of autosomal SNPs using the –indep‐pairwise 50 5
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0.2 parameters in PLINK (v. 1.9). The unlinked SNPs were
used for phylogenetic tree reconstruction, population
genetic structure, and PCA. The pairwise genetic distance
matrix was calculated using PLINK and employed for
constructing and visualizing a neighbor‐joining tree with
the online tool iTOL (https://itol.embl.de/). Population
structure analysis was performed using ADMIXTURE
with the default settings. The numbers of assumed
ancestral populations (K) were set at 2 and 3. Further-
more, PCA was performed using PLINK, and the plots of
the first and second eigenvectors were created using the R
package ggplot.

Selection signature enrichment analysis
of chromatin states

To identify putative selective regions during domestication
and breeding, we performed fixation index (FST), cross‐
population extended haplotype homozygosity (XP‐EHH),
and nucleotide diversity ratio (π ratio) analysis with a 150‐
kb sliding window and 75‐kb step. First, FST values were
calculated using VCFTools (version 0.1.16) for population
pair comparisons (Asian mouflon vs domestic sheep,
Asian mouflon vs Chinese native breed, Asian mouflon vs.
improved breed, Chinese native breed vs improved breed).
π values were calculated for each population using
VCFTools (version 0.1.16), and the π ratio was calculated
with an R script. XP‐EHH analysis was performed using
Beagle (version 5.3) for haplotype inference, and XP‐EHH
values between population pairs were calculated using
Selscan (version 2.0.3) [62]. The results were normalized
to obtain average XP‐EHH scores. The top 5% overlapping
windows from all three methods were considered candi-
date selection signatures and subsequently used for chro-
matin state enrichment analysis. Fold enrichment of
selection signatures for different chromatin state was
calculated using a previously reported method [15]. We
also implemented selective sweep tests between specific
populations of domestic sheep with varied tail configura-
tions; we specifically compared populations with fat‐ and
thin‐tailed sheep, followed by pairwise comparisons of five
tail configurations.

GWAS

GWAS of tail fat weight and the relative weight of tail fat
(tail fat weight/carcass weight) traits were performed in a
cohort of 2003 sheep by using the mixed linear model
method in the R package rMVP (https://github.com/xiaolei-
lab/rMVP). In the association model, the birthplace, batch,
rearing season, and top 3 principal components were

considered fixed effect and covariates, the additive genetic
effect was considered random effect. After Bonferroni
correction, the genome‐wide significant threshold was set at
–log10 (0.05/total SNPs) = 8.63.

Transcriptome sequencing and analysis

In total, 74 tail tissue samples were randomly obtained from
a comprehensive cohort comprising 2,003 male Hu lambs
according to the genotypes at the Chr13:51760995A>C and
Chr13:51825895G>A loci (Oar_rambouillet_v1.0). By using
the method mentioned above, we extracted total RNA
from each tissue and evaluated the RNA quality. Then,
RNA‐seq libraries were prepared and sequenced on the
Illumina NovaSeq 6000 platform by Shanghai Personal
Biotechnology. The TPM value for each individual
was obtained using the filtering and analysis methods
mentioned above, and the candidate gene expression for
the different genotypes at the Chr13:51760995A>C and
Chr13:51825895G>A loci were measured and visualized
using Prism (version 8.0.1; GraphPad).

BMP2 siRNA interference and
overexpression

Two pairs of small interfering RNAs (siRNAs), synthesized
by Maya Biotechnology, were used for BMP2 knockdown
(Table S25). Based on its efficiency, the si‐BMP2‐1 sequence
was selected for subsequent analysis. To construct a BMP2
overexpression vector, the forward and reverse primers
containing BamHI and EcoRI sites were designed based on
the BMP2‐coding region sequence obtained through clon-
ing, respectively. The amplified fragment was ligated with
linear pcDNA3.1. The siRNA and primer sequences used in
this study are listed in Table S25.

Cell isolation and cultivation

Sheep preadipocytes were isolated from the tail fat tissue
of 20‐day‐old Hu sheep and then purified and cultured
following a previously described method [63] with minor
modifications. Briefly, the tail fat tissue was cut into
approximately 1‐mm3 blocks and minced; next, pre-
adipocytes were obtained through digestion with type I
collagenase and maintained in a basal medium containing
10% fetal bovine serum (FBS; Hyclone) and a 1%
antibiotic–antimycotic solution. The cells were suspended
in a 25‐cm2 culture flask and incubated at 37°C under 5%
CO2. The medium was replaced with fresh medium after
24 h; thereafter, the medium was replaced with fresh
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medium every 48 h. When the primary preadipocytes
reached approximately 80% confluence, they were di-
gested with trypsin and passaged at a ratio of 1:3; finally,
the third generation of preadipocytes was utilized for
subsequent experiments.

Cell counting kit‐8 (CCK‐8) assay for
preadipocyte proliferation

Sheep tail preadipocytes were added at 1 × 103/well in
96‐well plates and then cultured for 24 h. Next, the cells
were treated with the BMP2 overexpression vector or
siRNA, followed by induction for differentiation in a
differentiation medium (10% FBS, 1 μM dexamethasone,
0.5 mM 3‐Isobutyl‐1‐methylxanthine, and 10mg/mL
insulin) for 48 h. Cell proliferation was detected using the
CCK‐8 kit at 450 nm on a microplate reader (Model 680).

Oil red O staining

After transfection with the BMP2 overexpression vector or
siRNA, the preadipocytes were washed three times with
PBS and fixed with 10% formaldehyde for 60min. Next,
we examined lipid accumulation by staining the cells with
an oil red O staining kit, according to the manufacturer's
instructions. Morphological changes in stained cells were
observed and imaged under an inverted fluorescent
microscope. Thereafter, isopropanol was added to extract
the lipid droplet contents; the optical density (OD) of the
developed color, reflecting the lipid droplet content, was
measured at 510 nm.

Cellular triglyceride content analysis

The preadipocytes were transfected with overexpression
vectors or siRNAs, collected after 48 h of differentiation,
and washed three times with precooled PBS. The cell
triglyceride contents were assessed using a triacylglycerol
assay kit (Nanjing Jiancheng Bioengineering Institute).
The OD of the developed color was measured on a mi-
croplate reader (Bio‐Rad); the values were then normal-
ized to the total protein contents (in µg/mg).

RNA extraction and quantitative real‐time
reverse transcription PCR (qRT‐PCR)

Total RNA was isolated using AG RNAex Pro Reagent
(Accurate Biotechnology (Hunan) Co., Ltd.), following the
manufacturer's protocol. RNA integrity and purity were

assessed through agarose gel electrophoresis and quantified
with a NanoDrop 2000 spectrophotometer (Thermo Fisher
Scientific). Next, cDNA synthesis was performed using an
Evo M‐MLV RT Kit with gDNA Clean for qPCR (Accurate
Biotechnology, Hunan, China), according to the manufac-
turer's instructions. qRT‐PCR was performed using syn-
thesized primers and an SYBR Green Premix Pro Taq HS
qPCR Kit (Accurate Biotechnology). PCR conditions were
similar to those described previously [64]. The relative ex-
pression levels of target genes were calculated using 2−ΔΔCt

method [65], with UXT and ACTB serving as the internal
control genes. The primer sequences used here are provided
in Table S25.

Statistical analysis

Statistical analyses and data visualization were con-
ducted using R software (version 4.2.1) and GraphPad
Prism 8.0.1 (GraphPad Software). Pearson correlation
between tissues, biological replicates, and assays was
calculated using the cor() function in R. Group differ-
ences were assessed using either two‐tailed Student's
t‐test or one‐way analysis of variance (ANOVA). Statis-
tical significance was denoted by the following symbols:
*p≤ 0.05; **p≤ 0.01; ***p≤ 0.001; ****p≤ 0.0001. Results
were presented as mean ± SEM.
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