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ABSTRACT
Background: Metastatic colorectal cancer (mCRC) is the main cause of CRC mortality, with limited treatment options. Although 
immunotherapy has benefited some cancer patients, mCRC typically lacks the molecular features that respond to this treatment. 
However, recent studies indicate that the immune microenvironment of mCRC may be modified to enhance the effect of immune 
checkpoint inhibitors. This study aimed to explore the metastatic tumor microenvironment (TME) by comparing cell popula-
tions in colorectal liver (CLM), lung (mLu), and peritoneal (PM) metastases.
Methods: RNA isolated from 20 CLM, 15 mLu, and 35 PM samples was subjected to mRNA sequencing and explored through 
TME deconvolution tools, consensus molecular subtyping (CMS), and differential gene expression and gene set enrichment 
analysis, with respect to the metastatic sites. Clinical data and KRAS/BRAF hotspot mutation status were also obtained for all 
the cases.
Results: The cell type fractions in the TME were relatively similar between the metastatic sites, except for cancer-associated 
fibroblasts (CAFs), B cells, endothelial cells, and CD4+ T cells. Notably, PM showed enrichment for CAFs and endothelial cells, 
consistent with distinct pathways associated with metastatic growth and progression in the peritoneal cavity. PM with the mes-
enchymal subtype, CMS4, had increased CAFs, endothelial cells, and macrophages, along with up-regulated genes related to 
TNF-α signaling via NF-κB, EMT, and angiogenesis.
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Conclusions: Tumor samples from different metastatic sites exhibited a broadly similar TME in terms of immune cell composi-
tion, with some intriguing differences. Targeting CAF-associated pathways, macrophages, and TNF-α signaling through NR4A 
could represent potential novel therapeutic approaches in CMS4 PM.

1   |   Introduction

Colorectal cancer (CRC) is one of the most frequent cancers world-
wide, with over 1.93 million new cases and more than 940,000 
deaths in 2020 [1]. While patients with localized primary cancers 
(pCRC) may be cured by surgical resection, only a limited propor-
tion of patients with metastatic progression (mCRC) are eligible for 
curative surgical interventions. Palliative systemic chemotherapy 
is the most important treatment option in mCRC, which remains 
the main cause of CRC mortality [2]. Over the last decade, the in-
troduction of immune checkpoint inhibition (ICI) has dramatically 
changed the outlook for large groups of patients with metastatic 
cancer [3]. However, mCRC rarely exhibits molecular features 
typically associated with response to ICI, with only 4%–5% being 
microsatellite instable (MSI), and responses to ICI have been poor 
in microsatellite stable (MSS) CRC [4].

Although MSS CRC is considered to be “immunologically cold,” 
the importance of the immune microenvironment in pCRC has 
been strongly supported by previous studies [5–7]. In seminal 
work, Galon and coworkers showed that a high density of cyto-
toxic T cells (CD8+) in the center of the tumor and in the tumor 
invasive margin was associated with a favorable overall survival 
(OS) in pCRC [5]. In the metastatic setting, however, much less 
is known, partly because of the limited availability of metastatic 
samples for analysis. We previously showed that in resectable MSS 
colorectal liver metastases (CLM), administration of cytotoxic che-
motherapy was associated with a transient increase in tumor T cell 
infiltration [8]. The finding suggests that chemotherapy-induced 
tumor cell death may trigger an immune response, in accordance 
with the theory of immunogenic cell death, and that the immune 
microenvironment of mCRC may be modified, possibly to improve 
responses to ICI [9]. In order to improve treatment responses and 
survival in mCRC, studies to improve our understanding of the 
metastatic tumor immune microenvironment are warranted.

With information from a cellular level based on methods such as 
flow cytometry, immunohistochemistry staining, or single-cell 
sequencing often being unavailable, computational methods to 
estimate the immune-cell composition from transcriptomic data 
generated from analysis of bulk tissue have been developed. In 
a recent benchmarking study, the capabilities and limitations of 
available methods were evaluated systematically by simulating 
bulk tissue from single-cell RNA-seq datasets of known cell 
types from the tumor microenvironment [10]. Deconvolution 
methods were benchmarked on predictive accuracy against 
ground-truth datasets, demonstrating that computational de-
convolution performed at high accuracy for well-defined cell-
type signatures.

The study aimed to investigate the TME of mCRC, comparing 
samples from liver, lung, and peritoneal metastases obtained 
during curatively intended surgery. Next-generation RNA 
sequencing data were explored using TME deconvolution, 

differential gene expression, and gene set enrichment analysis 
(GSEA), to assess differences in immune infiltration and cell 
signaling pathways between the metastatic sites. Associations 
with metastatic location and consensus molecular subtypes 
(CMS) were also performed.

2   |   Materials and Methods

2.1   |   Patient Samples

Metastatic tumor samples from surgical resection specimens 
were collected during curatively intended surgery for mCRC. 
Patients were included after written informed consent in three 
studies that were approved by the Regional Ethics Committee 
of South-East Norway. CLM samples (n = 20) were collected as 
part of the OSLO-COMET trial (NCT01516710). This was a ran-
domized controlled trial comparing laparoscopic and open liver 
surgery for patients with resectable CLM, as described in [8]. 
Patients with peritoneal (PM, n = 35; NCT02073500) and lung 
metastases (mLu, n = 15; REC ID# S-06402b) were included in 
observational studies [11]. PM samples were selected to equally 
represent key hotspot mutations in KRAS and BRAF oncogenes, 
or KRAS/BRAF wild-type (Table  1). Tissue samples were col-
lected at the time of surgery, immediately snap-frozen in liquid 
nitrogen, and stored at −80°C.

2.2   |   Tissue Processing, mRNA Sequencing, 
and Bioinformatics Pipeline

Frozen sections were generated from the collected metastatic 
tumor tissue and hematoxylin and eosin-stained slides were 
evaluated by a pathologist. Samples with a minimum of 25% 
tumor tissue (median 50%; full range 25%–100%) were pro-
cessed as described in [12]. Total DNA and RNA were extracted 
using the Allprep DNA/RNA/miRNA Universal Kit (Qiagen, 
Düsseldorf, Germany; Cat. No. 80224), using 20–30 mg tissue 
per sample as input. RNA concentration and purity were mea-
sured using the Nanodrop 2000 spectrophotometer (Thermo 
Fisher, Waltham, Massachusetts, USA). RNA integrity num-
bers (RIN) were estimated with Bioanalyzer RNA 6000 Nano 
kit (Agilent Technologies, Santa Clara, California, USA). Total 
RNA was diluted to 50 ng/μL in 20 μL, and mRNA sequencing 
libraries were prepared using the TruSeq Stranded mRNA kit 
(Illumina, San Diego, California, USA) following the vendor's 
protocol. The mRNA sequencing data was generated from 
two sequencing runs: GCF0506 and GCF0620. GCF0506 was 
sequenced on a NextSeq500 machine, while GCF0620 was 
sequenced on a NovaSeq6000 machine (both from Illumina, 
San Diego, California, USA). Transcription quantification was 
carried out using Salmon v = 1.4.0 [13] in selective alignment 
mode with a decoy-aware transcriptome using the default k-mer 
length of 31. The transcriptome of genome reference consortium 
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human build 38 patch release 13 (GRCh38p13) including al-
ternative loci was used for building the transcriptome index. 
For optimizing the abundance estimates, Salmon's variational 
Bayesian EM algorithm was used. In addition, Salmon's built-in 
models to correct for the sequence-specific biases and fragment-
level GC biases were used.

2.3   |   Analysis of Technical Variation Between 
Gene Expression From Two Sequencing Runs

Of the two sequencing runs, GCF0506 included only PM sam-
ples (n = 30), while GCF0620 included CLM (n = 20), mLu 
(n = 15), and PM (n = 5). Principal component analysis (PCA) 
plots were made using the FactoMineR PCA() function. To as-
sess the presence of any technical variation in gene expression 
and cell composition derived from the samples being analyzed 
in different sequencing runs, the PM samples (30 + 5 sam-
ples analyzed in separate runs) were used. Count matrices of 
~20,000 protein-coding genes were normalized with the varian-
ceStabilizingTransformation (VST) function from the DESeq2 
v1.30.1 Bioconductor package [14]. Differential gene expression 
comparison between PM samples from batches GCF0620 and 
GCF0506 was conducted using DESeq2 v = 1.30.1 [14].

2.4   |   Comparison of Deconvolution Methods 
for Assessment of TME Cell Composition

Several tools, based on different underlying algorithms, are 
available for cell deconvolution, and a concordance analysis was 
performed to compare estimated cell fractions between three 

commonly used tools EPIC [15], quanTIseq [16], and CIBERSORT 
(absolute mode) [17] using the datasets in this study. Concordance 
between rank transformed cell fraction estimates of EPIC and 
quanTIseq showed moderate concordance between Β cell, CD4+ 
cell, and NK cell estimated fractions, but no concordance between 
CD8+ cell and macrophage estimated fractions (Figure  S1A), 
while there was poor concordance between CIBERSORT and the 
two other methods. A previously published benchmarking study 
simulating analysis of bulk tissue recommended the EPIC tool for 
general deconvolution tasks based on the predictive correlation 
with single-cell sequencing data  [10]. For subsequent analyses, 
EPIC was chosen as the main tool. All cell deconvolution meth-
ods were run through the immunedeconv R package v = 2.0.3 [10], 
with EPIC v = 1.1.0, using RNA-seq TPM files as input.

2.5   |   CMS Classification

CMS classification of samples from GCF0620 was performed 
using the CMSclassifier package [18] provided by [19]. CMS data 
for samples included in GCF0506 were available from [11].

2.6   |   Analysis of Hotspot Mutations in KRAS 
and BRAF

DNA-based hotspot mutation data of PM samples and five CLM 
samples were available from [11] and [20], respectively. Tumor 
DNA was analyzed by targeted next-generation sequencing with 
either Ion AmpliSeq Cancer Hotspot panel v2 (HS, n = 24) or 
Oncomine Comprehensive panel v3 (Onc, n = 16) (Thermo Fisher 
Scientific), both covering hotspot mutations in KRAS and BRAF. 

TABLE 1    |    Clinical and molecular characteristics of patients.

Variable CLM mLu PM***

Gender (n, (%)) Male 8 (40) 9 (60) 24 (69)

Female 12 (60) 6 (40) 11 (31)

Age*; years (median, min-max) 65 (48–80) 59 (34–76) 62 (31–76)

Overall survival**; months (median, min-max) 61 (12–95) 85 (17–110) 28 (2–96)

Primary tumor location (n, (%)) Right colon 4 (20) 0 (0) 15 (43)

Left colon 7 (35) 8 (53) 17 (49)

Rectum 9 (45) 7 (47) 3 (8)

Consensus molecular subtype (CMS) (n, (%)) CMS1 0 (0) 0 (0) 8 (23)

CMS2 19 (95) 15 (100) 12 (34)

CMS3 0 (0) 0 (0) 2 (6)

CMS4 1 (5) 0 (0) 11 (31)

Not determined 0 (0) 0 (0) 2 (6)

Mutation status (n, (%)) KRAS mutated 8 (40) 7 (47) 12 (34)

BRAF mutated 1 (5) 0 (0) 13 (37)

WT 11 (55) 8 (53) 10 (29)

Note: Colorectal liver metastasis (CLM); lung metastasis (mLu); peritoneal metastasis (PM); *, at the time of metastasis surgery; WT, wild-type KRAS and BRAF; 
**, from the time of metastasis surgery; ***, PM cases were selected to numerically equally represent mutated KRAS, BRAF, and WT cases. CMS status for two PM 
patients was not determined.
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Variants were called, annotated, and filtered using Torrent Suite 
Variant Caller/ANNOVAR based in-house pipeline (HS) and 
Ion Reporter Software V.5.10 (Onc) (Thermo Fisher Scientific) 
and manually reassessed using Integrative Genomics Viewer. 
Variant detection from RNA sequencing reads was conducted 
for mLu and CLM samples (GCF0620) in the absence of DNA 
mutation data. Human genome release 38 (GRCh38.p13) refer-
ence genome was used for generating genome index for STAR 
alignment tool [21] with corresponding annotation version from 
GENCODE (gencode 38). STAR was further used for mapping 
the reads from RNA-seq libraries to the indexed genome to gen-
erate BAM files that are sorted by coordinate. The generated 
BAM files were uploaded to Integrative Genomics Viewer (IGV) 
for assessment of hotspot mutations in KRAS (codon12/13) and 
BRAF (V600E). Variants were detected with an allelic fraction 
ranging from 30% and 100% and an average coverage of 42×.

2.7   |   Gene Set Enrichment Analysis (GSEA)

Differentially expressed genes (DEGs) between PM, CLM, and 
mLu samples that were tissue-specific for liver and lung (from 
gene expression signatures in The Human Protein Atlas) were 
excluded prior to analysis. The remaining DEGs were subjected 
to GSEA using the web-based tool Enrichr [22] and the Hallmark 
gene set 2020 from the molecular signatures database (MSigDB).

2.8   |   Statistical Analyses

Fisher's exact test (R v = 4.2.2) was used to compare the distribu-
tion of gender, primary tumor location, and CMS status between 
CLM, mLu, and PM. Spearman correlation was used for con-
cordance analysis of TME cell types using different deconvolu-
tion tools. Wilcox ranked sum test was used when comparing 
cell fractions. Benjamini-Hochberg (BH) correction for multi-
ple testing was used to identify cell types with robust variation 
between tissue type and CMS class, with an adjusted p-value 
threshold of 0.05 considered statistically significant. DESeq2 
v = 1.30.1 Bioconductor package [14] was used for differential 
expression analysis, with BH adjusted p-value threshold < 0.1. 
Student's t-test was used for comparison of gene expression be-
tween PM CMS4 and CMS1-3. OS was calculated from date of 
resection to date of death, with censoring time set at 5 years. The 
Kaplan–Meier method was used to analyze OS, and the log-rank 

test was used to compare survival between metastatic sites with 
p-values < 0.05 being considered significant.

3   |   Results

3.1   |   Clinical and Molecular Parameters

Key clinical and molecular parameters are summarized in Table 1. 
The age and gender distributions were relatively similar between 
the three metastatic locations. The majority of the primary tumors 
were located in the left colon and rectum for the CLM and mLu 
groups, while for PM, a large proportion of the primaries were 
in the right colon, and only two in the rectum (p-value < 0.001). 
Major differences were also observed regarding CMS status, where 
CMS2 was the dominating subtype in CLM and mLu, while a third 
of the PM cases were CMS4 (p-value < 0.001). A large proportion 
(55% and 53% of the CLM and mLu cases, respectively) did not har-
bor hot-spot mutations in either KRAS or BRAF (p-value = 0.01), 
and only one of the CLM cases was BRAF mutated. OS from the 
time of metastasis surgery was median 85, 61, and 28 months for 
mLu, CLM, and PM patients, respectively (p-value < 0.001).

3.2   |   Principal Component Analysis (PCA) 
and Assessment of Technical Variation

Ideally, one would attempt to pool data from different sequenc-
ing runs to increase the sample size and facilitate comparison 
of gene expression between different metastatic sites. As can 
be seen from Figure S1B, there were clear differences between 
the GCF0506 and GCF0620 sequencing runs. To analyze the 
potential impact of technical variation, the PM samples from 
both sequencing runs were explored. With PCA analysis we 
found that the five GCF0620 PM samples tended toward being 
outliers along the first two principal components relative to the 
30 GCF0506 PM samples (Figure S1C). In addition, differential 
gene expression analysis comparing the two sequencing runs 
(Figure S1D) resulted in the identification of 396 differentially 
expressed genes. When comparing estimated TME cell fractions 
between PM samples from different sequencing runs based on 
gene expression data, although the differences did not reach sta-
tistical significance, discernible variations in the distributions of 
several cell types were evident (Figure 1). These findings collec-
tively suggest that technical variation between sequencing runs 

FIGURE 1    |    TME cell fractions for PM across datasets. Boxplots showing estimated TME cell fractions for PM samples between the two datasets, 
GCF0506 (n = 30) in black and GCF0620 (n = 5) in red. The “Uncharacterized” category represents the fraction of all characterized cells relative to 
the total number of non-characterized cells present.
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may introduce spurious signals in the analysis. Therefore, sub-
sequent comparative analyses of cell fractions were conducted 
within each batch to mitigate potential batch effects.

3.3   |   Associations Between TME Cell Composition 
and Metastatic Location

When comparing TME cell composition in samples from the 
different metastatic sites (GCF0620), the cell fractions were 

relatively similar, with the exception of four cell types for which 
a significant difference was retained after adjusting for multiple 
testing (Figure 2A). The B cell fraction was higher in mLu and 
PM compared to CLM (p-value = 0.004 and 0.03, respectively), 
while the fraction of CAFs was higher in PM compared to CLM 
and mLu (p-value < 0.004 and 0.02, respectively), and the endo-
thelial cells fraction was higher in mLu and PM relative to CLM 
(p-values < 0.001 and 0.002, respectively). An increased fraction 
of CD4+ T cells was also detected in PM compared to CLM and 
mLu (p-value < 0.05 and 0.03, respectively).

FIGURE 2    |    Cell composition in the TME of metastatic CRC. (A) Boxplot showing key findings from analysis of TME cell composition comparing 
different metastatic sites (GCF0620 dataset). y-axis is the cell fractions, scaled according to individual cell type. (B) Boxplot showing key differences 
in the TME cell composition when comparing consensus molecular subtype (CMS) 1–3 to CMS4 in PM samples from the GCF0506 dataset. CAFs, 
cancer-associated fibroblasts; CLM, colorectal liver metastasis; mLu, lung metastasis; PM, peritoneal metastasis; CMS, consensus molecular sub-
types. ns, p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001; ****, p ≤ 0.0001.
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3.4   |   Associations Between TME Cell Composition 
and CMS Subtypes

The majority of the CLM samples and all the mLu samples were 
classified as CMS2, while the PM samples were more diversely 
distributed between CMS1, CMS2, and CMS4 (Table  1). The 
CMS4 group has emerged as a particularly interesting subgroup 
in PM [23], and when comparing the cell composition of PM 
samples classified as CMS1-3 with CMS4 (from GCF0506), the 
CMS4 subtype was shown to be enriched for CAFs, endothelial 
cells, and macrophages (p-value < 0.0001, < 0.001 and 0.02, re-
spectively, Figure 2B).

3.5   |   Increased EMT, TNF-⍺ Signaling, 
and Angiogenesis in PM, Particularly in the  
CMS4 Subtype

GSEA analysis of DEGs between the metastatic sites 
(GCF0620) revealed up-regulation of genes involved in EMT 
(80 genes, Figure 3A,B), TNF-⍺ signaling via NF-kB (45 genes, 
Figure 3A,C), and angiogenesis (10 genes, Figure 3A,D) in PM 
compared to both CLM and mLu. The same genes were found to 
be enriched in the CMS4 subtype of PM (GCF0506) compared 
to CMS1-3. Among the top up-regulated genes involved in EMT 
were IL6, SFRP1/4, FBLN1, FBN1, MFAP5, ADAM12, and sev-
eral collagens (Figure 3B). The transcription factors NR4A2/3 
and EGR1/3, PTGS2 (COX2), OLR1 in addition to IL6, were 
among the top up-regulated genes involved in TNF-⍺ signaling 
(Figure 3C). Angiogenic factors that were enriched in CMS4 PM 
were VCAN, FGFR1, FSTL1, OLR1, and collagen (Figure  3D). 
Well-known CAF markers, such as FAP and ACTA2 (⍺-SMA), as 
well as additional CAF secreted factors (CXCL12, CCL2, TGFβ2, 
VCAM1, PTGER2/ PEG2) were also found enriched in the PM 
CMS4 subgroup (Figure 4A,B). Finally, we also found increased 
expression of the immune checkpoint molecules TIGIT and 
PD-L2 (PDCD1LG2; Figure  4C) and M2 macrophage markers 
(CD163 and CD206) in this patient subgroup (Figure 4D).

4   |   Discussion

Only four cell types exhibited significant differences when 
comparing the three metastatic sites, CAFs, B cells, endothelial 
cells, and CD4+ T cells, giving the impression of a quantitatively 
similar metastatic tumor microenvironment, independent of 
the metastatic site. This is somewhat surprising, given that the 
liver, lungs, and peritoneum are very different in tissue compo-
sition and biological function and face different challenges in 
generating effective immune responses against pathogens [24]. 
However, although the estimated immune cell fractions were 
similar, there might be important differences in phenotypic 
properties, differentiation status, longevity, turnover rate, and 
regulatory mechanisms that cannot be addressed by the decon-
volution tools. Thus, to fully understand the immune contex-
ture of the different metastatic locations, additional studies are 
needed.

CMS classification showed that CLM and mLu were dominated 
by the canonical CMS2 subtype, while only one third of the PM 
tumors were CMS2. Resectable CLM were previously shown to 

be enriched for CMS2 by us and others [20, 25] while mLu have, 
to our knowledge, not been specifically characterized with re-
spect to CMS. The PM cohort exhibited more diverse findings 
with a substantial proportion of the tumors classified as CMS1, 
which originally in pCRC were typically enriched for MSI, CpG 
island methylator phenotype, high frequency of BRAF muta-
tions, and immune cell infiltration [19]. The PM tumors in our 
cohort were frequently BRAF mutated, but only 4 out of 35 tu-
mors were MSI, and immune cell enrichment was observed in 
CMS4 rather than in the CMS1-3 categories. Interestingly, a 
third of the PM tumors were classified as CMS4, which in pCRC 
was associated with mesenchymal features, TGF-β activation, 
and angiogenesis [19]. High frequency of the CMS4 subtype in 
PM is in line with previous findings and may contribute to the 
poor prognosis and inferior treatment response associated with 
PM compared to CLM and mLu cohorts [23, 26].

The most distinctive finding separating the metastatic locations 
was the observed enrichment of CAFs in PM compared to CLM 
and mLu, and CAFs were also enriched in the CMS4 subset of 
the PM tumors. Mesothelial-derived CAFs have been shown to 
be crucial for the establishment and metastatic progression in 
the peritoneum [27]. This represents a metastatic pathway that 
is distinct from the tumor cell seeding through the lymphatic or 
systemic circulation, which is the main mechanism for develop-
ment of liver and lung metastases. Cancer cells reprogram nor-
mal fibroblasts into CAFs, initiating tumor-favorable signaling, 
including pro-EMT signaling through secretion of TGF-β [28], 
as well as remodeling of extracellular matrix to make it more 
favorable for tumor escape and invasion and creating a barrier 
to immune cell infiltration and penetration of anticancer drugs 
[29]. This is in line with our findings of increased EMT signaling 
in PM, specifically in the CMS4 subgroup, where several pro-
teins involved in this process are known to be secreted by CAFs 
(Figure 3) [30–35]. CAF markers, such as FAP and ACTA2 (⍺-
SMA) [33], were also elevated in this subgroup, confirming the 
TME deconvolution findings (Figure 4).

CAFs may also promote tumor angiogenesis through several 
molecular mechanisms [36], which would be supported by the 
observed increase in endothelial cell fraction, notably in PM 
compared to CLM, and particularly within the CMS4 subgroup. 
Additionally, elevated levels of CAF-secreted pro-angiogenic 
factors, specifically in the CMS4 subgroup (Figure  2), further 
corroborate this association. Furthermore, CAFs may alter the 
anti-tumor immune response through secretion of several im-
mune modulators such as IL6, CCL2, CXCL12, and TGFβ2 [37], 
which we found to be up-regulated in CMS4 PM. These fac-
tors may recruit and modulate CD4+ T cells, which also had 
higher levels in PM tissue, into Th2, Th17, or Tregs with tumor-
promoting responses, and may also increase the expression of 
immune checkpoint molecules on T cells/tumor cells, causing 
T cell exhaustion. In fact, the immune checkpoint molecules 
TIGIT and PD-L2 were found up-regulated in the same subset 
of patients, supporting this scenario. The same CAF-secreted 
factors (CCL2, CXCL12, and IL-6) could also promote recruit-
ment and differentiation of monocytes into M2 macrophages 
[38] which corresponds well with increased fractions of mac-
rophages in the PM CMS4 subgroup. Macrophages exhibit a 
broad range of phenotypes, where M1 (anti-tumor) and M2 (pro-
tumor) represent the polar ends of the spectrum [7]. Although 
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EPIC does not distinguish between macrophage phenotypes, we 
do see an up-regulation of M2 markers in PM CMS4 subgroup, 
which might indicate increased presence of the pro-tumorigenic 
phenotype that may contribute to angiogenesis and immune 
suppression.

In addition to EMT signaling and angiogenesis, TNF-⍺ sig-
naling via NF-kB was enriched in the CMS4 subgroup of PM. 
This signaling pathway includes the up-regulated transcrip-
tion factors NR4A3 and EGR1/3, which are known regulators 
of cancer progression, EMT, angiogenesis, and inflamma-
tion [39–41]. The pathway may be activated by cytokines and 
growth factors secreted by CAFs, such as COX2 (PTGS2)/
PEG2 (PTGER2) [42] or IL6 which were up-regulated in PM 
CMS4, or through pathway-related genetic mutations in the 

cancer cells, such as KRAS mutations [40]. NR4A is also 
known to promote CAF activity [39]. Thus, these results sug-
gest that CAFs and TNF-⍺ signaling play a prominent role in 
the CMS4 subgroup of PM-CRC, modulating the tumor cells 
into a mesenchymal-like phenotype to facilitate intraperito-
neal spread, as well as creating an immunosuppressive and 
chemotherapy-resistant TME (Figure 5). Interestingly, associ-
ations between CAFs and TNF-⍺ signaling in CMS4 primary 
CRC have also been observed in a recent study by Leonard 
et al. [43].

As CAFs play an essential role in forming the PM-CRC microen-
vironment, targeting CAFs and CAF-signaling could be a ther-
apeutic option, particularly in the CMS4 PM subtype. Potential 
interventions for CAFs include targeting surface markers such 

FIGURE 3    |    GSEA of differentially expressed genes. (A) GSEA showing signaling pathways that are affected by genes up-regulated in PM com-
pared to CLM (dark blue) and mLu (light blue). DEGs involved in EMT (B), TNF-⍺ signaling (C), and angiogenesis (D) were enriched in PM, specif-
ically the CMS4 subgroup. Heatmaps showing relative average gene expression levels of the top DEGs.
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as FAP [44], DNA vaccines inducing CD8+ killing of CAFs, and 
CAR T cells engineered to target FAP [45, 46]. Targeting CAF 
signaling molecules, such as CXCL12 and IL-6 [47–49], CAF-
associated pathways that regulate angiogenesis [36], and combi-
nation therapy of VEGF receptor inhibitors with mutated BRAF 
inhibitors are also promising strategies [50]. Another strategy 
is reprogramming immunosuppressive M2 macrophages into 

the immunoactive M1 phenotype through nanoparticle delivery 
of toll-like receptor agonists [51]. Targeting TNF-⍺/NF-kB sig-
naling and inhibiting NR4A or EGR1 receptors is another op-
tion [39, 52]. Therefore, targeting CAFs, M2 macrophages, and 
TNF-⍺ signaling alone or with other anti-tumor drugs could 
represent therapeutic strategies in PM, especially for the CMS4 
subtype, as indicated by this work.

FIGURE 4    |    Differentially expressed genes related to CAFs, immune checkpoints, and macrophages in CMS4 vs CMS1-3 PM-CRC (GCF0506). 
Enrichment of additional CAF-specific markers (A) and secreted factors (B), immune checkpoint molecules (C), and M2 macrophage markers (D) in 
PM CMS4 compared to CMS1-3. Boxplots of selected genes indicating median, 25 and 75 percentiles. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

FIGURE 5    |    Graphical overview. CAFs and TNF-⍺ signaling play a prominent role in the CMS4 subgroup of PM-CRC, modulating the tumor 
cells into a mesenchymal-like phenotype which could contribute to facilitate intraperitoneal spread, as well as creating an immunosuppressive and 
chemotherapy-resistant TME. Created by BioRe​nder.​com.

http://biorender.com
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The main limitation of this study relates to the limited number 
of PM samples available in the comparison with CLM and mLu, 
due to observed batch effects when attempting to merge the two 
RNA seq datasets. Batch correction tools [53–55] are typically 
used to address such imbalances, but their application may intro-
duce additional systematic biases into the data and should be per-
formed cautiously [56]. Randomization of potential confounding 
factors for equal distribution across groups is a recommended ap-
proach [53, 57], but this was not feasible in this study, as the two 
sequencing runs were planned for separate projects. While cell 
deconvolution methods for bulk tissue can be reliable under ideal 
circumstances [10], the technical challenges associated with 
RNA-seq remain limiting. While more recent cell deconvolution 
tools using single-cell data as a reference are available [58], le-
veraging their full potential would necessitate having single-cell 
reference data specific to the immune contexture in CLM, mLu, 
and PM. Alternative methods allowing spatial analysis at the 
transcriptomic or protein level may therefore be more appropri-
ate for further investigations. Ongoing studies in our group using 
imaging mass cytometry aim to build upon the findings from this 
study, which provide a promising starting point for further re-
search. Finally, this study does not investigate CAF subtypes as 
their classification is quite complex and controversial, and more 
advanced techniques such as single-cell transcriptomics and spa-
tial proteomics would be more suited to address this issue.

In conclusion, this study revealed insights into the tumor micro-
environment of mCRC comparing different metastatic sites. TME 
deconvolution analysis of mRNA-seq data generated from CRC 
liver, lung, and peritoneal metastases revealed broadly similar 
immune cell composition, but with some apparent differences, 
specifically enrichment of CAFs in the CMS4 PM microenvi-
ronment. CAF-related secreting factors involved in EMT, angio-
genesis, and immune modulation along with TNF-⍺ signaling 
through NF-kB were specifically enriched in PM exhibiting the 
CMS4 subtype, collectively promoting intraperitoneal spread, 
immune suppression, and chemotherapy resistance. Targeting 
CAF-associated pathways, M2 macrophages, and TNF-⍺ signal-
ing could represent potential novel therapeutic approaches in PM-
CRC, a metastatic site that carries a particularly poor prognosis.
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