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ABSTRACT
Background: Metastasis is the major cause of cancer-related mortality. The premetastatic niche is a promising target for its pre-
vention. However, the generality and cellular dynamics in premetastatic niche formation have remained unclear.
Aims: This study aimed to elucidate the generality and cellular dynamics in premetastatic niche formation.
Materials and Methods: We performed comprehensive flow cytometric analysis of lung and peripheral immune cells at three 
time points (early premetastatic, late premetastatic, and micrometastatic phases) for mice with subcutaneous implants of three 
types of cancer cells (breast cancer, lung cancer, or melanoma cells). The immuno-cell profiles were then used to predict the 
metastatic phase by machine learning.
Results: We found a common pattern of changes in both lung and peripheral immune cell profiles across the three cancer types, 
including a decrease in the proportion of eosinophils in the early premetastatic phase, an increase in that of regulatory T cells 
in the late premetastatic phase, and an increase in that of polymorphonuclear myeloid-derived suppressor cells and a decrease 
in that of B cells in the micrometastatic phase. Machine learning using immune cell profiles could predict the metastatic phase 
with approximately 75% accuracy.
Discussion: Validation of our findings in humans will require data on the presence or absence of micrometastases in patients 
and the accumulation of comprehensive and temporal information on immune cells. In addition, blood proteins, extracellular 
vesicles, DNA, RNA, or metabolites may be useful for more accurate prediction.
Conclusion: The discovery of generalities in premetastatic niche formation allow prediction of metastatic phase and provide 
a basis for the development of methods for early detection and prevention of cancer metastasis in a cancer type-independent 
manner.
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1   |   Introduction

About two-thirds of deaths from solid tumors are due to can-
cer metastasis [1]. Prevention of metastasis is therefore a key 
approach to the elimination of such deaths. Metastatic cancer 
cells at sites of metastasis are surrounded by various immune-
suppressive cells such as tumor-associated macrophages 
(TAMs), polymorphonuclear myeloid-derived suppressor cells 
(PMN-MDSCs), monocytic myeloid-derived suppressor cells 
(M-MDSCs), and regulatory T cells (Tregs). This microenviron-
ment, which promotes metastatic tumor growth, is known as 
the metastatic niche [2]. TAMs, PMN-MDSCs, and M-MDSCs 
promote tumor development and metastasis by inhibiting T cells 
in a manner dependent on various cytokines and membrane-
associated molecules [3–6]—including interleukin (IL)–10, 
transforming growth factor (TGF)–β, and CD40—that induce 
the differentiation of CD4 T cells into Tregs [7, 8]. These cells 
also produce arginase 1, which lowers the levels of L-arginine, 
an amino acid essential for T cell responses [9, 10]. Furthermore, 
through the action of indoleamine 2,3-dioxygenase, they metab-
olize tryptophan to kynurenine, which inhibits T cell prolifer-
ation [11, 12]. In addition, these cells express programmed cell 
death–ligand 1 (PD-L1) and cytotoxic T lymphocyte-associated 
antigen–4 (CTLA-4), both of which inhibit T cells through cell–
cell interaction [4, 6].

The premetastatic niche, defined as a supportive microenviron-
ment already formed in distant organs before cancer metastasis, 
has attracted attention as a potential target for metastasis pre-
vention [13, 14]. In mice transplanted with LLC (lung cancer) 
or B16 (melanoma) cell lines, both the expression of S100A8 and 
S100A9, a ligand of Toll-like receptor 4 (TLR4), and the number 
of MDSCs were found to be increased in the lungs before me-
tastasis. Administration of antibodies to S100A8/A9 attenuated 
such MDSC accumulation in the premetastatic lung, resulting 
in suppression of lung metastasis [15]. Prior treatment of mice 
with LLC cell-derived exosomes resulted in a marked increase 
in the number of Tregs in the lungs, apparent before metastasis 
of transplanted LLC cells [16]. In addition, GW4869, an inhibitor 
of exosome generation and secretion, suppressed Treg differenti-
ation and LLC cell metastasis in the lungs. The number of mac-
rophages was found to be increased in the premetastatic lung 
of mice transplanted with the 4 T1 breast cancer cell line, and 
macrophage-derived S100A4 induced fibroblast activation and 
deposition of extracellular matrix protein through activation of 
the ERK (extracellular signal–regulated kinase) signaling path-
way [17]. Depletion of macrophages with clodronate liposomes 
inhibited such lung fibroblast activation and metastatic growth. 
These various studies thus implicate the premetastatic niche as 
a promising target for prevention of cancer metastasis. However, 
two key aspects of the premetastatic niche remain unclear: (i) Its 
generality. The described studies were performed with different 
cancer types and cell lines, but it remains unknown whether 
the cells that form the premetastatic niche differ among can-
cer types and cell lines. (ii) Its temporal progression. Although 
TAMs, M-MDSCs, PMN-MDSCs, and Tregs are known compo-
nents of the premetastatic niche, the order in which these cells 
accumulate is uncharacterized.

We have now performed a comprehensive flow cytometric anal-
ysis at various time points for immune cells in the lungs and 

peripheral blood of mice transplanted with the breast cancer cell 
line E0771, the lung cancer cell line LLC or the melanoma cell 
line B16F10. We present three key findings: (i) The dynamics of 
immune cell composition show a common pattern during meta-
static progression. (ii) The pattern of such changes in peripheral 
blood is similar to that in the lung. (iii) Each metastatic phase 
is characterized by a distinct immune cell profile independent 
of cancer type. On the basis of our findings and with the use 
of machine learning and deep learning, we predicted metastatic 
phase from immune cell profiles with approximately 75% accu-
racy. Our results provide the basis for the development of new 
approaches to the early detection and prevention of cancer me-
tastasis across various cancer types.

2   |   Material and Methods

2.1   |   Mice

Experiments were performed with 7–16-week-old female mice 
on the C57BL/6J background, with the exception of those shown 
in Figure S4E, which were performed with 9–14-week-old male 
mice on the same background. C57BL/6J mice were obtained 
from The Jackson Laboratory. Generation of CCR2 knockout 
mice was described previously [18].

2.2   |   Cell Culture

B16F10 and LLC cells (both provided by the Cell Resource 
Center of Tohoku University, Japan) and E0771 cells (CH3 
BioSystems) were maintained at 37°C in RPMI 1640 medium 
(Wako) supplemented with 10% fetal bovine serum (NICHIREI), 
1 mM sodium pyruvate (Gibco), penicillin (100 U/mL, Gibco), 
streptomycin (100 μg/mL, Gibco), 2 mM L-glutamine (Gibco), 
nonessential amino acids (10 mL/L, Gibco), and 10 mM HEPES 
(Sigma-Aldrich).

2.3   |   Tumor Cell Transplantation

Tumor cells (1 × 106 LLC or B16F10 cells, or 2.5 × 105 E0771 cells) 
were injected into the right back (LLC or B16F10) or the fourth 
mammary fat pad (E0771) of C57BL/6J mice.

2.4   |   Flow Cytometry

Flow cytometric analysis was performed as described previously 
[19]. A 25G winged needle was inserted into the right ventricle, 
and the lung was perfused with PBS (heparin 10 U/mL) until 
the lung was no longer bloody. Single-cell suspensions were ob-
tained from lung tissue by digestion for 60 min at 37°C with col-
lagenase (1 mg/mL, Wako) followed by passage of the digested 
material through a 70-μm cell strainer and lysis of red blood 
cells in the filtrate by treatment with 0.14 M NH4Cl in 0.01 M 
Tris–HCl (pH 7.5) for 5 min at room temperature. For sorting 
of peripheral blood cells, ~600 μL of peripheral blood was col-
lected from the right ventricle into a tube containing 90 μL of 
0.5 M EDTA, and red blood cells were lysed by treatment with 
0.14 M NH4Cl in 0.01 M Tris–HCl (pH 7.5) for 30 min at room 
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temperature. The Fc receptor of isolated cells was blocked by 
incubation for 15 min with antibodies to CD16/32 (2.4G2, BD 
Biosciences) before staining of the cells for 30 min with antibod-
ies to CD45.2 (104, BioLegend), to CD11b (M1/70, BioLegend), 
to F4/80 (BM8, BioLegend), to Ly6G (1A8, BioLegend), to Ly6C 
(AL-21, BD Biosciences), to CD11c (N418, BioLegend), to Siglec-F 
(E50-2440, BioLegend), to CX3CR1 (SA011F11, BioLegend), 
to CD3ε (145-2C11, BD Biosciences), to CD4 (RM4-5, BD 
Biosciences), to CD8α (53–6.7, BD Biosciences), to CD19 (6D5, 
BioLegend), to NK1.1 (PK136, BD Biosciences), to CD25 (PC61, 
BD Biosciences), to CCR2 (SA203G11, BioLegend), to TIGIT 
(1G9, BD Biosciences), to LAG-3 (C9B7W, BioLegend), to CD73 
(TY/11.8, BioLegend), to CTLA-4 (UC10-4B9, BioLegend), 
and to PD-1 (29F.1A12, BioLegend). For intracellular staining, 
cells were treated with fixation and permeabilization solutions 
(Invitrogen) and stained with antibodies to Foxp3 (FJK-16 s, 
Invitrogen) and to TGF-β (TW7-16B4, BioLegend). The stained 
cells were treated with 7-aminoactinomycin D (7-AAD, BD 
Biosciences) to exclude dead cells and were then analyzed with 
a FACSVerse, FACSAria, or FACSymphony A1 flow cytometer 
(Becton Dickinson).

2.5   |   ELISAs

Cytokine levels were quantified with a Mouse IL-5 ELISA Kit 
(KE10018), Mouse CCL17/TARC ELISA Kit (KE10096), Mouse 
CCL22 ELISA Kit (KE10053), and Mouse MCP-1 ELISA Kit 
(KE10006), all of which were obtained from Proteintech. The 
Mouse IL-5 ELISA Kit was used to quantify serum IL-5, and the 
Mouse CCL17/TARC ELISA Kit, Mouse CCL22 ELISA Kit, and 
Mouse MCP-1 ELISA Kit were used to quantify CCL17, CCL22, 
and CCL2 in serum and lung.

2.6   |   UMAP

Normalized flow cytometry data (% of viable cells) were used for 
UMAP analysis with the UMAP function (n_components = 2, 
n_neighbors = 15, min_dist = 0.1, metric = ‘euclidean’) of umap-
learn library.

2.7   |   Machine Learning

Three machine learning (ML) classifiers (logistic regression, 
random forest, and support vector machine) were adopted to 
predict metastatic phase. Normalized flow cytometry data (% of 
viable cells) were cross-validated with each ML classifier (num-
ber of splits was 5 and data were shuffled), and a mean accuracy 
score was calculated.

2.8   |   Deep Learning

Deep learning was performed with the use of the Keras library. 
Normalized flow cytometry data were split (training data: test-
ing data = 4:1), and 20% of the training data were used as valida-
tion data for hyperparameter tuning. The model was constructed 
with the use of the Sequential() function, with two hidden layers 
(units of 10 and 5, respectively; the activation function was the 

ReLu function). The activation function for the output layer was 
softmax, and a dropout layer was placed before the output layer. 
Categorical_crossentropy was used for the loss function, Adam 
for the optimization algorithm, and categorical_accuracy for 
the evaluation function. An EarlyStopping (patience = 10, ver-
bose = 0) function was applied to train the model (epochs = 500, 
batch_size = 30) so as to prevent overtraining.

2.9   |   Statistical Analysis

All statistical analyses were performed with EZR (Saitama 
Medical Center, Jichi Medical University, Saitama, Japan), 
which is a graphical user interface for R (The R Foundation for 
Statistical Computing, Vienna, Austria) [20]. More precisely, it 
is a modified version of R commander designed to add statisti-
cal functions frequently used in biostatistics. Quantitative data 
were compared between two or among three or more groups 
with the unpaired two-sided Student's t test or Tukey–Kramer 
test, respectively. EZR software was used for correlation anal-
ysis. A p value of < 0.05 was considered statistically significant.

3   |   Results

3.1   |   A Common Pattern of Changes in Lung 
Immune Cell Composition During Metastasis

To examine the pattern of changes in immune cell types in 
the lungs associated with metastasis, we first developed ex-
perimental mouse models for the study of premetastatic to 
early metastatic phases. We injected mice subcutaneously with 
tdTomato-labeled E0771 breast cancer cells, tdTomato-labeled 
LLC lung cancer cells, or EGFP-labeled B16F10 melanoma cells, 
subsequently collected lung cells, and checked for spontaneous 
metastasis (tdTomato+ or EGFP+ cells) by flow cytometric analy-
sis (Figure 1A–D). Based on these results, we defined three time 
points (early premetastatic, late premetastatic, and micrometa-
static phases) (Figure 1E). Spontaneous metastasis to the lungs 
was not observed for any of the injected mice in the early premet-
astatic phase or in the late pre-metastatic phase, except for one 
mouse, whereas it was apparent for all mice in the micromet-
astatic phase. Comprehensive flow cytometric analysis of lung 
immune cells revealed distinctive profiles of cell composition at 
each metastatic phase that were common among E0771, LLC 
and B16F10 models (Figure 2A,B and Figures S1 and S2). The 
proportion of eosinophils was decreased in the early premet-
astatic phase, that of Tregs was increased in the late premeta-
static phase, and that of PMN-MDSCs was increased and that 
of B cells and natural killer (NK) cells was each decreased in 
the micrometastatic phase (Figure 2C). Although IL-5 is a cy-
tokine that specifically induces differentiation of eosinophils 
[21], an enzyme-linked immunosorbent assay (ELISA) showed 
no change in serum IL-5 levels in the early premetastatic phase 
(Figure S3), suggesting that the decline in eosinophil numbers 
during this phase is independent of IL-5.

Tregs are classified into two separate cell types according to 
whether they express CD25 or not, with CD25− Tregs being 
predominant in the lung [22]. We found that CD25+ Tregs 
and CD25− Tregs were predominant in peripheral blood and 
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the lungs, respectively, of control mice (Figure  3A), and that 
CD25− Tregs in the lungs expressed lower levels of immune 
checkpoint molecules (TIGIT, LAG-3, and CTLA-4) but higher 
levels of TGF-β compared with corresponding CD25+ Tregs 
(Figure 3B). We also confirmed that the numbers of both CD25− 
Tregs and CD25+ Tregs in the lungs were increased in the late 

premetastatic phase (Figure  3C). These results suggested that 
CD25− Tregs and CD25+ Tregs might contribute to the forma-
tion of the premetastatic niche by different mechanisms. To 
elucidate the mechanism responsible for the increase in Tregs 
in the late premetastatic phase, we performed ELISAs for the 
chemokines CCL17, CCL22, and CCL2. CCL17 and CCL22 

FIGURE 1    |    Development of experimental mouse models for the study of premetastatic to early metastatic phases. (A) Schematic representation 
of flow cytometric analysis to determine the timing of spontaneous metastasis to the lungs of tumor-bearing mice. Mice were injected in the fourth 
mammary fat pad or the right back with tdTomato-labeled E0771, tdTomato-labeled LLC or EGFP-labeled B16F10 cells, respectively, and the lungs 
were removed after perfusion at 7, 10, 14, 18, or 22 days. (B–D) Analysis of spontaneous metastasis for tdTomato-labeled E0771 (B), tdTomato-labeled 
LLC (C), or EGFP-labeled B16F10 cells (D). Representative flow cytometric analysis of lung cells is shown, with cells corresponding to metastases (td-
Tomato+ or EGFP+ cells) being outlined by black boxes. (E) Summary of results for the timing of spontaneous metastasis. Day 5 after LLC or B16F10 
cell transplantation or day 7 after E0771 cell transplantation is defined as the early premetastatic phase, day 7 after LLC or B16F10 cell transplan-
tation or day 14 after E0771 cell transplantation as the late premetastatic phase, and day 14 after LLC or B16F10 cell transplantation or day 21 after 
E0771 cell transplantation as the micrometastatic phase.
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promote the homing of Tregs to the lungs [23], whereas CCL2 
is required for the recruitment of Tregs to tumor sites [24]. No 
common changes in the levels of CCL17 and CCL22 were appar-
ent in the lung or peripheral blood, with the concentration of 

CCL17 being increased only in the peripheral blood of B16F10 
cell-transplanted mice (Figure  S4A). In contrast, an increase 
in CCL2 levels was observed in lung and peripheral blood of 
LLC cell-transplanted mice and in peripheral blood of E0771 

FIGURE 2    |     Legend on next page.
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cell-transplanted mice. We confirmed by flow cytometric anal-
ysis that ~10% of both CD25− Tregs and CD25+ Tregs in both 
peripheral blood and lung of control mice expressed the CCL2 
receptor CCR2 (Figure S4B). However, an increase in the pro-
portion of Tregs in the late premetastatic phase was also ob-
served in the lungs of mice deficient in CCR2 (Figure S4C–E). 
Collectively, these findings thus suggested that the accumula-
tion of Tregs in lung during the late premetastatic phase is inde-
pendent of CCL17, CCL22, and CCL2.

3.2   |   Changes in Immune Cell Composition in 
Lung Are Similar to Those in Peripheral Blood

We next performed comprehensive flow cytometric analysis of 
immune cells in the peripheral blood of tumor-bearing mice 
(Figure  4A). We found that the proportion of eosinophils was 
decreased in the early premetastatic phase, that of Tregs was 
increased in the late premetastatic phase, and that of PMN-
MDSCs or interstitial macrophages was increased and that of B 
cells or CD8 T cells was decreased in the micrometastatic phase 
(Figure  4B,D and Figure  S5). The proportions of both CD25− 
Tregs and CD25+ Tregs were also increased in the late premeta-
static phase (Figure 4C).

Given the similar patterns of the changes in immune cell com-
position in both lung and peripheral blood, we calculated cor-
relation coefficients for these changes. In most instances, the 
numbers of eosinophils, Tregs, PMN-MDSCs, or B cells showed 
a significant positive correlation or tended to show such a cor-
relation between lung and peripheral blood (Figure 5A). We also 
calculated correlation coefficients for all immune cells and found 
that the percentages of most cell types in the peripheral blood at 
the various phases were positively correlated with those in the 
lung (Figure 5B). These results suggested that the numbers of 
immune cells in the lung from premetastatic to early metastatic 
phases were determined by the numbers of these cells circulat-
ing in blood, and that the numbers of lung immune cells can be 
predicted from the numbers of peripheral blood immune cells.

3.3   |   Metastatic Phase Can be Predicted From 
Immune Cell Profiles

We performed a uniform manifold approximation and projec-
tion (UMAP) analysis to observe differences in immune cell 
profiles for the various metastatic phases (Figure 6A). Each met-
astatic phase was found to have a distinct immune cell profile, 
with these differences being especially prominent in the lung 

(Figure  6B). We therefore examined whether flow cytometric 
data for immune cells are able to predict metastatic phase with 
the use of machine learning (logistic regression, random forest, 
or support vector machine) or deep learning (neural network) 
(Figure 7A). All methods showed an accuracy of ~75%, with lo-
gistic regression having the highest accuracy of 81.8% for lung 
and 76.4% for peripheral blood (Figure  7B). The accuracy for 
the different phases was highest for late premetastatic and mi-
crometastatic phases in the lung (92.7% and 87.7%, respectively) 
(Figure 7C), consistent with the UMAP results (Figure 6B).

4   |   Discussion

The premetastatic niche has been considered a promising tar-
get for prevention of cancer metastasis. However, temporal in-
formation regarding which cell types accumulate in what order 
in the premetastatic niche has been lacking, and the generality 
of such accumulation patterns has remained unclear. Organ 
thin sections and HE staining are typical methods for evalu-
ating cancer metastasis. However, it is impractical to prepare 
thin sections of the entire organ and examine all sections using 
HE staining to detect a small number of tumor cells. To address 
this limitation, we adopted flow cytometric analysis to detect 
micrometastases at the few cell level. We identified common 
changes in immune cell profiles (decrease in eosinophils in the 
early premetastatic phase, increase in Tregs in the late premet-
astatic phase, and increase in PMN-MDSCs and decrease in B 
cells in the micrometastatic phase) that were independent of 
cancer type.

Although a generalized decrease in neutrophils, eosinophils, 
and basophils (granulocytopenia) is common in patients with 
infectious diseases, autoimmune diseases, and those undergo-
ing drug or radiation therapy [25], a specific decrease in eosin-
ophils (eosinopenia) is uncommon. Eosinopenia is known to be 
seen in typhoid fever [26], but the mechanism is not understood. 
In the present study, we focused on the cytokine IL-5, which 
is known to specifically increase eosinophils but found no 
changes. The possibility of medication, cortisol or stress levels, 
inflammatory responses, or secondary effects of the experiment 
cannot be ruled out, but it is unlikely that these possibilities 
would cause only eosinophils to decrease specifically and not 
granulocytes in general. Cytokines such as GM-GSF, IL-3, and 
CCL11 might be involved, although they are less specific for eo-
sinophils than IL-5. Although M-MDSCs and PMN-MDSCs are 
well-characterized components of the premetastatic niche [27], 
we found that the numbers of these cells were not commonly in-
creased in the late premetastatic phase of mice transplanted with 

FIGURE 2    |    Generality of changes in lung immune cell composition associated with metastasis. (A) Schematic representation for flow cytometric 
analysis of lung immune cells from tumor-bearing mice. Mice were injected in the fourth mammary fat pad or the right back with E0771, LLC or 
B16F10 cells or with phosphate-buffered saline (PBS) as a control, and lung cells were isolated for analysis after 5–21 days. (B) Summary of changes 
in lung immune cell composition during the early premetastatic, late premetastatic, and micrometastatic phases. Significant (p < 0.05) increases or 
decreases relative to PBS-injected mice are indicated by red and blue squares, respectively (unpaired two-sided Student's t test or Tukey–Kramer test). 
The numbers in the squares indicate the ratio of the percentage of each cell type among viable cells for tumor-bearing mice to that for PBS-injected 
mice and are means from 6 to 41 mice. (C) Summary of the dynamics of lung immune cell types showing a decrease in the number of eosinophils in 
the early premetastatic phase, an increase in Tregs in the late premetastatic phase, and an increase in PMN-MDSCs and a decrease in B cells and NK 
cells in the micrometastatic phase.
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the three types of cancer cells. M-MDSCs and PMN-MDSCs also 
promote Treg differentiation [7]. but our results suggested that 
Tregs accumulated in the lung before each of these cell types. 

Tumor cell-derived TGF-β was shown to promote MDCSs dif-
ferentiation and proliferation [27]. We confirmed that Tregs 
produce TGF-β, and Tregs-derived TGF-β may contribute to 

FIGURE 3    |    Both CD25− Tregs and CD25+ Tregs accumulate in the lungs during the late premetastatic phase. (A) Representative flow cytometric 
analysis of CD25 expression in Tregs (Foxp3+CD4+ T cells) of peripheral blood or lung of control mice (left). Percentage of CD25+ or CD25− cells 
among Tregs (right). Data are means from 5 mice. (B) Flow cytometric quantification of TIGIT, LAG-3, CD73, CTLA-4, PD-1, and TGF-β expression 
in Tregs and Foxp3−CD4+ T cells isolated from the lung of control mice. MFI, mean fluorescence intensity. Data are means +95% confidence interval 
(n = 5 to 10 mice). *p < 0.05, **p < 0.01, ***p < 0.001; NS, not significant (Tukey–Kramer test). (C) Summary of changes in the numbers of CD25+ Tregs 
and CD25− Tregs in the lung during premetastatic to early metastatic phases. Significant (p < 0.05) increases or decreases relative to PBS-injected 
mice are indicated by red and blue squares, respectively (unpaired two-sided Student's t test or Tukey–Kramer test). The numbers in the squares in-
dicate the ratio of the percentage of each cell type among viable cells for mice injected with cancer cell lines to that for PBS-injected mice and were 
derived from 8 to 34 mice.
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the increase in MDSCs in the micrometastatic phase. The effect 
of the transient increase in Tregs apparent in the late premeta-
static phase on cancer metastasis remains unclear and warrants 

further study. Our results may provide a basis for the develop-
ment of more generalized methods to prevent cancer metastasis 
that are applicable to all solid tumors.

FIGURE 4    |    Changes in immune cell composition associated with metastasis for peripheral blood are similar to those for lung. (A) Schematic rep-
resentation for flow cytometric analysis of immune cells from peripheral blood of tumor-bearing mice. Mice were injected in the fourth mammary fat 
pad or the right back with E0771, LLC or B16F10 cells or with PBS (control), and peripheral blood was collected from the right ventricle of mice before 
perfusion at 5–21 days. (B) Summary of changes in immune cell composition for peripheral blood during premetastatic to early metastatic phases. 
Significant (p < 0.05) increases or decreases relative to PBS-injected mice are indicated by red and blue squares, respectively (unpaired two-sided 
Student's t test or Tukey–Kramer test). The numbers in the squares indicate the ratio of the percentage of each cell type among viable cells for tumor-
bearing mice to that for PBS-injected mice (n = 4 to 29 mice). (C) Summary of changes in the numbers of CD25− Tregs and CD25+ Tregs in periph-
eral blood from premetastatic to early metastatic phases. Significant (p < 0.05) increases relative to PBS-injected mice are indicated by red squares 
(unpaired two-sided Student's t test or Tukey–Kramer test). The numbers in the squares indicate the ratio of the percentage of each cell type among 
viable cells in tumor-bearing mice to that in PBS-injected mice (n = 6 to 20 mice). (D) Summary of the dynamics of immune cell types in peripheral 
blood showing a decrease in the number of eosinophils in the early premetastatic phase, an increase in Tregs in the late premetastatic phase, and an 
increase in PMN-MDSCs and interstitial macrophages and a decrease in B cells and CD8 T cells in the micrometastatic phase.
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FIGURE 5    |     Legend on next page.
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Our finding that changes in the immune cell composition of pe-
ripheral blood were similar to those apparent for the lungs sug-
gested that these changes in peripheral blood and lung may be 
linked and that it might be possible to predict lung metastatic 

phase from comprehensive flow cytometric data for peripheral 
blood immune cells with the use of machine learning or deep 
learning approaches. However, the mean accuracy of such pre-
diction was ~75%, which might not be high enough for clinical 

FIGURE 5    |    Correlation of immune cell changes in peripheral blood with those in the lung for the mouse models of metastasis. (A) Scatter plots 
for the percentage of the indicated immune cell types in peripheral blood (vertical axis) versus that in lung (horizontal axis) for the indicated premet-
astatic to early metastatic phases. Red lines represent the approximate straight lines. The correlation coefficient (R) is shown (n = 7 to 14 mice). (B) 
Heat map of Pearson product–moment correlation coefficients for lung immune cells versus peripheral blood immune cells (n = 7 to 14 mice).

FIGURE 6    |    Each metastatic phase has a distinct immune cell profile. (A) Schematic diagram for UMAP analysis based on flow cytometry data. 
Normal phase corresponds to mice injected with PBS instead of cancer cells. (B) UMAP analysis based on normalized flow cytometry data.
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application. Given that we used only 165 samples for machine 
learning and deep learning in this study, however, it may be pos-
sible to improve the accuracy with the use of a larger number 
of samples. Moreover, we used immune cell data from specific 
time points to make predictions, but long-term monitoring of 
peripheral immune cells and the addition of time information 
might allow more accurate predictions. To validate our find-
ings in humans, we need data on the presence or absence of 

micrometastases in patients and comprehensive and temporal 
information on immune cells, but we were unable to find a pub-
lic dataset that meets these two requirements. A previous study 
attempted to detect hepatocellular carcinoma or pancreatic 
ductal adenocarcinoma by machine learning (random forest) 
with data obtained by mass cytometric time-of-flight (CyTOF) 
analysis of peripheral blood immune cells from 2348 individ-
uals, including 790 and 376 patients with these cancer types, 

FIGURE 7    |    Prediction of metastatic phase from comprehensive flow cytometric data for immune cells. (A) Workflow for prediction of metastatic 
phase with the use of machine learning or deep learning. Normalized flow cytometry data (lung or peripheral blood) was split into training data or 
testing data at a ratio of 4:1, and training data were applied to machine learning or deep learning. The testing data were then used to predict meta-
static phase and to calculate the prediction accuracy. The normalized flow cytometry data were randomly split five times, with learning and testing 
(prediction) by machine learning or deep learning also being performed five times in a corresponding manner and the mean accuracy calculated. (B) 
Accuracy of metastatic phase prediction. Data are means +95% confidence interval (n = 5), with the mean accuracy also being shown above each bar. 
(C) Mean accuracy for prediction of each metastatic phase by logistic regression and an example of the prediction results.

(A)

(B)

CD4 T cells
CD8 T cells
B cells

M-MDSCs
PMN-MDSCs
Nonclassical monocytes
Eosinophils
Dendritic cells
Interstitial macrophages

NK cells

CD25+ Tregs
CD25- Tregs

Cell (feature value)

Flow cytometry data
         (lung or blood, 
         N= 165, F = 14)

4.73%
6.99%

26.1%

1.62%
3.32%
1.16%
3.68%
0.51%
4.19%

6.54%

0.17%
0.25%

Lo
gis

tic
 re

gr
es

sio
n

Ra
nd

om
 fo

re
st

Su
pp

or
t v

ec
to

r m
ac

hin
e

Lung Peripheral blood

81.8%
76.4%

75.8%
76.4% 76.4%

70.9%

1.Machine learning

2.Deep learning
    (neural network)

Random forest
Support vector machine

Logistic regression
  Training data
(N = 132, F = 14)

 Testing data
(N = 33, F = 14)

Split (4:1)

Classification (speculation of metastatic phase)

Phase X = Micrometastatic phase?
Phase X = Late premetastatic phase?
Phase X = Early premetastatic phase?
Phase X = Normal?

Phase X

66.6%CD45+ cells

0.42%Tregs

N = number of samples
F = feature value Accuracy (%)

(Figure 7B)

Ac
cu

ra
cy

 (%
)

73.3%
71.5%

Ne
ur

al 
ne

tw
or

k

Lo
gis

tic
 re

gr
es

sio
n

Ra
nd

om
 fo

re
st

Su
pp

or
t v

ec
to

r m
ac

hin
e

Ne
ur

al 
ne

tw
or

k

Testing data #1

10 1 0 2

2 0 0

0

0 0

00

0

5

8

5

Te
st

in
g 

da
ta

Predicted data

M
ic

ro
m

et
as

ta
tic

 p
ha

se

La
te

 p
re

m
et

as
ta

tic
 p

ha
se

Ea
rly

 p
re

m
et

as
ta

tic
 p

ha
se

N
or

m
al

Micrometastatic phase

Late premetastatic phase

Early premetastatic phase

Normal 9 1 0 2

0 0 0

1

2 0

01

1

3

6

7

Te
st

in
g 

da
ta

Predicted data

M
ic

ro
m

et
as

ta
tic

 p
ha

se

La
te

 p
re

m
et

as
ta

tic
 p

ha
se

Ea
rly

 p
re

m
et

as
ta

tic
 p

ha
se

N
or

m
al

Micrometastatic phase

Late premetastatic phase

Early premetastatic phase

Normal

Lung Peripheral blood

Logistic regression(C)

0

20

40

60

80

100

79.4 81.9 92.7 87.7Mean accuracy (%)
for each phase 78.5 72.6 76.7 78.6Mean accuracy (%)

for each phase

(before mormalization)



12 of 13 Cancer Medicine, 2025

respectively, and 633 healthy volunteers [28]. The presence or 
absence of a tumor could be predicted with a sensitivity of ~80%. 
The combination of the CYTOF data with circulating levels of α-
fetoprotein or carbohydrate antigen 19–9 (CA19-9), both known 
tumor markers, resulted in an increased sensitivity of up to 88%. 
These results suggest that immune cell profiles of peripheral 
blood may be useful in predicting cancer metastasis in humans. 
Previous studies also suggest that data on blood proteins, extra-
cellular vesicles, DNA, RNA, or metabolites may be useful for 
more accurate prediction.

In summary, there is a generality of changes in immune cell pro-
files from premetastatic to early metastatic phases in the lung, 
which may allow prediction of metastatic phase and provide a 
basis for the development of methods for early detection and pre-
vention of cancer metastasis in a manner independent of can-
cer type.
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