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Abstract

Background: This study aimed to develop and evaluate the detection and classification performance of different deep learning models on
carotid plaque ultrasound images to achieve efficient and precise ultrasound screening for carotid atherosclerotic plaques. Methods: This
study collected 5611 carotid ultrasound images from 3683 patients from four hospitals between September 17, 2020, and December 17,
2022. By cropping redundant information from the images and annotating them using professional physicians, the dataset was divided
into a training set (3927 images) and a test set (1684 images). Four deep learning models, You Only Look Once Version 7 (YOLO
V7) and Faster Region-Based Convolutional Neural Network (Faster RCNN) were employed for image detection and classification to
distinguish between vulnerable and stable carotid plaques. Model performance was evaluated using accuracy, sensitivity, specificity,
F1 score, and area under curve (AUC), with p < 0.05 indicating a statistically significant difference. Results: We constructed and
compared deep learning models based on different network architectures. In the test set, the Faster RCNN (ResNet 50) model exhibited
the best classification performance (accuracy (ACC) = 0.88, sensitivity (SEN) = 0.94, specificity (SPE) = 0.71, AUC = 0.91), significantly
outperforming the other models. The results suggest that deep learning technology has significant potential for application in detecting
and classifying carotid plaque ultrasound images. Conclusions: The Faster RCNN (ResNet 50) model demonstrated high accuracy and
reliability in classifying carotid atherosclerotic plaques, with diagnostic capabilities approaching that of intermediate-level physicians.
It has the potential to enhance the diagnostic abilities of primary-level ultrasound physicians and assist in formulating more effective
strategies for preventing ischemic stroke.
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1. Introduction
Stroke is one of the most common diseases with the

highest disability and mortality rates [1–3]. The incidence
of ischemic stroke accounts for about 80% of all strokes.
Moreover, about 70–80% of surviving patients have vary-
ing degrees of limb movement disorders, which seriously
affects their quality of life [4,5]. Therefore, timely rehabil-
itation treatment and dedicated care are needed to prevent
disability.

The fundamental pathological basis of cardio-cerebral
vascular diseases is atherosclerosis. The carotid artery,
which connects the heart and the head, is a primary source
of blood supply to the brain and is one of the most suscep-
tible sites for atherosclerosis in the human body. Should
carotid plaques rupture, they could potentially lead to cere-
bral artery embolism, which in turn may trigger clinical
events such as ischemic stroke. Therefore, screening for
carotid atherosclerotic plaques is important in preventing
cardiovascular incidents. Ischemic stroke caused by carotid
atherosclerotic plaque is the most common cause of death
after heart disease and cancer. Some studies have sug-
gested that 80% of cerebral ischemic processes are caused
by carotid atherosclerotic vulnerable plaques [6–11].

With its affordability, portability, and safety, ultra-
sound imaging has emerged as the preferred method for
clinically screening carotid atherosclerotic plaques. It re-
veals the anatomical structure and characteristics of the vas-
cular plaques and provides indicators of blood flow veloc-
ity within the vessels and the degree of vascular stenosis.
However, in conventional ultrasound examinations, the di-
agnostic skills and experience of sonographers and the im-
age quality of the ultrasound equipment can all influence
the diagnostic outcomes of plaques. Consequently, apply-
ing deep learning technology to assist in the ultrasound di-
agnosis of carotid atherosclerotic plaques can significantly
enhance the efficiency and accuracy of clinical diagnoses,
presenting a vital clinical application value.

Currently, the clinical assessment methods for carotid
atherosclerotic lesions mainly include ultrasound (US),
computed tomographic angiography (CTA), and magnetic
resonance imaging (MRI) [12–21]. However, US imaging
is more effective in identifying atherosclerotic plaques than
other imaging modalities due to its wide range of applica-
tions and high detection rate of vulnerable plaques. There-
fore, ultrasound forms the primary test for screening vul-
nerable plaques in the carotid arteries [5,22,23]. China has
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about 200,000 ultrasonographers conducting 2 billion an-
nual ultrasound examinations, indicating a severe shortage
of 150,000 ultrasonographers. Additionally, the traditional
ultrasound diagnostic process is time-consuming and re-
quires ultrasonographers to have extensive clinical experi-
ence, limiting the screening of many carotid atherosclerotic
plaques in people at high risk of developing stroke [24–30].
The shortage, the uneven skill level of physicians, and the
variable quality of image acquisition limit the early detec-
tion of carotid plaque vulnerable plaques in people at high
risk of ischemic stroke. Therefore, an efficient and accu-
rate method is needed to solve these difficulties. The re-
cent emergence of deep learning technology has improved
carotid plaque research globally [30,31].

This study proposed an optimization scheme and algo-
rithms to obtain a fully automated carotid artery plaque de-
tection and classification model to provide the basis for the
auxiliary diagnosis and treatment of ischemic stroke. Deep
learning-based artificial intelligence technology has a bet-
ter application prospect on carotid plaque ultrasound im-
ages, thus providing diagnostic assistance for junior physi-
cians and effectively relieving the workload of ultrasonog-
raphers.

2. Materials and Methods
2.1 Research Population

Inclusion criteria included: (1) patients aged ≥18
years; (2) outpatients or inpatients with carotid atheroscle-
rotic plaques diagnosed via carotid artery color Doppler ul-
trasound; (3) patients who did not undergo carotid vascular
surgical procedures; (4) patients without a history of severe
cerebrovascular disease.

Exclusion criteria: (1) age <18 years; (2) history of
cervical vascular surgeries such as carotid endarterectomy,
vascular bypass surgery, or carotid stent angioplasty; (3)
exclusion of individuals who have previously undergone
carotid vascular surgery; (4) exclusion of cerebrovascular
events including but not limited to cerebral hemorrhage,
cerebral infarction, and severe neurological dysfunction re-
sulting from there; (5) patients with carotid artery occlu-
sion; (6) individuals with physical limitations that prevent
cooperation for carotid ultrasound examination.

A total of 5611 carotid ultrasound images of 3683
carotid atherosclerosis patients were collected from the ul-
trasound departments of the Eighth People’s Hospital of
Shanghai, Fengxian District Central Hospital of Shanghai,
the Second People’s Hospital of Guangdong Province, and
the People’s Hospital of Huainan City, Anhui Province be-
tween 17 September 2020 and 17 December 2022. Specif-
ically, 2657, 2099, 455, and 401 carotid ultrasound images
were obtained from 1827 patients in Shanghai Eighth Peo-
ple’s Hospital, 1285 patients in Shanghai Fengxian District
Central Hospital, 289 patients in Guangdong Guangdong
Yuebei Second People’s Hospital, and 282 patients in An-
hui Huainan City People’s Hospital, respectively. Quali-

fied and trained ultrasonographers scanned the images us-
ing an advanced color ultrasound diagnostic instrument be-
fore saving them in the Digital Imaging and Communica-
tions in Medicine (DICOM) format in the corresponding
folders.

2.2 Instrumentation and Data Acquisition

Siemens S2000 (Model: 18L6 HD; Manufacturer:
Siemens Healthineers; Origin: Erlangen, Germany); GE
(Model: VIVID 7; Manufacturer: General Electric (GE)
Healthcare; Origin: Waukesha, WI, USA); Esaote TWICE
(Model: MyLab™Twice; Manufacturer: Esaote SpA; Ori-
gin: Turin, Italy); Esaote Class C (Model: MyLab Class C;
Manufacturer: Esaote SpA; Origin: Turin, Italy); Hitachi
A60 (Manufacturer: Hitachi, Ltd; Origin: Tokyo, Japan);
Philips A70 (Model: Affiniti 70; Manufacturer: Koninkli-
jke Philips N.V.; Origin: Anderhet, Netherlands); Philips
Color Doppler (Model: EPIQ 7C; Manufacturer: Konin-
klijke Philips N.V.; Origin: Anderhet, Netherlands) ultra-
sound diagnostic machine, line array probe (frequency, 3–
12 MHz) were used for data acquisition. Each image was
acquired as follows: The patient was laid down with a pil-
low at the shoulder to expose the neck fully, and the head
tilted backward and inclined to the opposite side. The pa-
tient’s bilateral carotid arteries were continuously swept
from proximal to distal segments, and their transverse and
longitudinal sections were observed following the Chinese
Stroke Vascular Ultrasound Guidelines. The two dimen-
sional (2D) morphology of the carotid arteries was ob-
served dynamically. The carotid atherosclerotic plaques
were detected and then placed in the center of the acquired
images to fully display the observed plaque morphology,
size, echogenicity, plaque integrity, and degree of vascular
stenosis. Carotid plaque ultrasound images were stored in
multiple sections and angles. The acquired carotid ultra-
sound images were saved in Digital Imaging and Commu-
nications in Medicine (DICOM) format (Fig. 1). Vulnera-
ble plaques are defined as those with the following charac-
teristics based on internationally recognized standards: A
large lipid core, a thin fibrous cap, significant inflamma-
tory response, and active neovascularization. We classified
the plaques based on these features through imaging data
[32,33].

2.3 Data Splitting

The total dataset (5611 2D grey scale ultrasound im-
ages of carotid plaques) was divided into a training set
(3927 images) and a test set (1684 images) in a ratio of 7:3.
The dataset included 4135 images of vulnerable plaques and
1476 images of stable plaques.

The neural network diagnosed the training and test sets
separately after training. The carotid stable and vulnerable
plaques were labeled “WENDIND” and “YISUN”, respec-
tively. The deep learning model was used to interpret the
carotid stable plaque/vulnerable plaque result as 1. The di-

2

https://www.imrpress.com


Fig. 1. Original ultrasound images of carotid plaque saved in DICOM format. MI, mechanical index; 2D, two dimensional; FR,
frequency; DICOM, digital imaging and communications in medicine; RS, radial strain.

agnostic output of each ultrasound image was between 0
and 1, where higher values indicated better diagnostic pre-
diction (Figs. 2,3).

2.4 Indicators for Model Evaluation

In this study, accuracy (ACC), sensitivity (SEN),
specificity (SPE), mean Intersection over Union (IoU), F1
score, receiver operating characteristic curve (ROC), and
area under curve (AUC) were used to evaluate the perfor-
mance of the model in the classification task. Accuracy
measured the percentage of correctly classified samples in
the test set (Eqn. 1), sensitivity measured the percentage
of correctly classified positive samples (Eqn. 2), and speci-
ficity measured the percentage of correctly classified nega-
tive samples (Eqn. 3). These three metrics were calculated
using true positive (TP), true negative (TN), false negative
(FN), and false positive (FP).

TP is the number of positive samples with positive
classification, i.e., the number of correctly identified carotid
vulnerable plaque ultrasound images, while FP is the num-
ber of negative samples with positive classification, i.e., the
number of vulnerable plaques identified as stable plaques.
TN is defined as the number of negative samples with neg-
ative classification, i.e., the number of correctly identified
stable plaques, while FN is the number of positive samples
with negative classification, i.e., the number of incorrectly
identified stable plaques.

Meanwhile, the AUC can be used to indicate the abil-
ity of the classifier to discriminate between samples and as-
sess the performance of the classifier. AUC is used to weigh
the performance of different classifiers between TP and FP
error rates.

ACC =
TP+ TN

TP+ TN+ FP+ FN
× 100% (1)

SEN =
TP

TP+ FN
× 100% (2)

SPE =
TN

FN+ FP
× 100% (3)

3. Results
3.1 Faster Region-Based Convolutional Neural Network
(RCNN) Model Classification Performance

The SEN, SPE, ACC, and AUC of the Faster RCNN
(ResNet 50) model for diagnosing carotid artery vulnera-
ble plaque were 0.91, 0.69, 0.85, and 0.90, respectively,
in the training set and 0.94, 0.71, 0.88, and 0.91, respec-
tively, in the test set. The SEN, SPE, ACC, and AUC of the
Faster RCNN (Inception V3) model for diagnosing carotid-
vulnerable plaques were 0.89, 0.57, 0.79, and 0.86, respec-
tively, in the training set and 0.91, 0.59, 0.83, and 0.85, re-
spectively, in the test set. The performance indexes of the
Faster RCNN (ResNet 50) model were significantly higher
than those of the Faster RCNN (Inception V3) model (p <

0.05) (Table 1).
However, the precision recall (PR) plot showed that

the Faster RCNN (ResNet 50) model (PR = 0.956) out-
performed the Faster RCNN (Inception V3) model (PR =
0.927). The Faster RCNN (ResNet 50) model had better de-
tection classification performance in detecting plaque prop-
erties than the Faster RCNN (Inception V3) model (Fig. 4).

3.2 You Only Look Once Version 7 (YOLO V7) Model
Classification Performance

The SEN, SPE, ACC, and AUC of YOLOV7 (ResNet
50) were 0.91, 0.69, 0.85, and 0.90, respectively, in the

3

https://www.imrpress.com


Fig. 2. Automatic detection and identification of vulnerable plaque ultrasound images.

Fig. 3. Automatic detection and identification of stable plaques in ultrasound images.

Table 1. Comparison of Faster RCNN model confusion matrix and its parameter results.

Evaluation indicators
Training set Test set

Faster RCNN
(ResNet 50)

Faster RCNN
(Inception V3)

p-value Faster RCNN
(ResNet 50)

Faster RCNN
(Inception V3)

p-value

Accuracy 0.85 0.79 <0.001 0.88 0.83 <0.001
Sensitivity 0.91 0.89 <0.001 0.94 0.91 <0.001
Specificity 0.69 0.57 <0.001 0.71 0.59 <0.001
AUC 0.90 0.86 <0.001 0.91 0.85 <0.001
Mean IoU 0.68 0.73 <0.001 0.72 0.74 <0.001
F1 score 0.91 0.89 <0.001 0.92 0.89 <0.001
Mean IoU, mean intersection over union; AUC, area under curve; RCNN, Region-Based Convolutional Neural Network.

training set and 0.94, 0.71, 0.88, and 0.91, respectively, in
the test set. The SEN, SPE, ACC, and AUC of YOLO V7

(InceptionV3) were 0.89, 0.57, 0.79, and 0.86, respec-
tively, in the training set, and 0.91, 0.59, 0.83, and 0.85,
respectively, in the test set.

The performance indexes of the YOLO V7 (ResNet
50)model were significantly higher than those of theYOLO
V7 (Inception V3) model (p < 0.05) (Table 2).

Although the PR plot indicated that the YOLO V7
(ResNet 50) model (PR = 0.936) had performed better than
the YOLO V7 (Inception V3) model (PR = 0.927), the
model calibration of the YOLO V7 (ResNet 50) model
(mean intersection over union, Mean IoU = 0.68) was
slightly lower than that of the YOLO V7 (Inception V3)
(Mean IoU = 0.74). Notably, the YOLO V7 (Inception
V3) model exhibited higher accuracy than the YOLO V7
(ResNet 50) model (Fig. 5).
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Fig. 4. Faster RCNN (ResNet 50, Inception V3) model detection results. (A) PR curve of the Faster RCNN (ResNet 50) model; (B)
PR curve of the Faster RCNN (Inception V3) model; (C) Calibration curve of the Faster RCNN (ResNet 50) model; (D) Calibration
curve of the Faster RCNN (Inception V3) model; (E) ROC curve of the Faster RCNN (ResNet 50) model; (F) ROC curve of the Faster
RCNN (Inception V3) model. PR, precision recall; ROC, receive operating characteristic; RCNN, Region-Based Convolutional Neural
Network; AUC, area under curve.
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Table 2. Comparison of the model confusion matrix and its parameter results for YOLO V7.

Evaluation indicators
Training set Test set

YOLO V7
(ResNet 50)

YOLO V7
(Inception V3)

p-value YOLO V7
(ResNet 50)

YOLO V7
(Inception V3)

p-value

Accuracy 0.83 0.84 <0.001 0.86 0.83 <0.001
Sensitivity 0.91 0.90 <0.001 0.94 0.91 <0.001
Specificity 0.59 0.63 <0.001 0.61 0.60 <0.001
AUC 0.90 0.82 <0.001 0.86 0.83 <0.001
Mean IoU 0.68 0.68 <0.002 0.68 0.69 <0.001
F1 score 0.90 0.88 <0.001 0.91 0.89 <0.001
Mean IoU, mean intersection over union; AUC, area under curve; YOLO V7, You Only Look Once Version 7.

Table 3. Comparison of the confusion matrix results and its parameters for the four models in the test set.
Models Accuracy Sensitivity Specificity AUC Mean IoU F1 score p-value

Faster RCNN (ResNet 50) 0.88 0.94 0.71 0.91 0.72 0.92 <0.001
Faster RCNN (Inception V3) 0.83 0.91 0.59 0.85 0.74 0.89 <0.001
YOLO V7 (ResNet 50) 0.86 0.94 0.61 0.86 0.68 0.91 <0.001
YOLO V7 (Inception V3) 0.83 0.91 0.60 0.83 0.69 0.89 <0.001
Mean IoU, mean intersection over union; AUC, area under curve; YOLO V7, You Only Look Once Version 7;
RCNN, Region-Based Convolutional Neural Network.

These findings indicate that the YOLO V7 (ResNet
50) model has better detection and classification perfor-
mance than the YOLO V7 (Inception V3) model.

3.3 Comparison of Classification Performance between
Faster RCNN Model and YOLO V7 Model

The Faster RCNN (ResNet 50) model showed the best
performance among the four models, with SEN, SPE, ACC,
AUC, and F1 scores of 0.94, 0.71, 0.88, 0.91, and 0.92, re-
spectively, in the test set. Similarly, the Faster RCNN (In-
ception V3) model showed the best performance among the
four models based on calibration (Mean IoU = 0.74) with
the highest model consistency. Therefore, the Faster RCNN
(ResNet 50) model was optimal for diagnosing carotid vul-
nerable plaques among the four models, with an AUC of
0.91. In contrast, the YOLO V7 (Inception V3) model was
the worst model for diagnosis, with an AUC of 0.83 (p <

0.05) (Table 3).

4. Discussion
Ultrasound images have become a popular research

object in the medical field. However, in acquiring ultra-
sound images of carotid plaques, the quality of ultrasound
images and the level of ultrasound image acquisition varies,
seriously affecting the accurate classification and diagnosis
of carotid plaques by sonographers. With the continuous
development of computer technology and information sci-
ence, scientific research database management is becom-
ing more diversified, convenient, and networked. Carotid
plaque ultrasound image data collected in this study were
collected from Shanghai Eighth People’s Hospital, Shang-
hai Fengxian Central Hospital, Guangdong Province, North
Guangdong Second People’s Hospital, Huainan People’s

Hospital, Anhui Province respectively, and the inspection
equipment used for image collection was seven kinds of ul-
trasound instruments of various brands and models at home
and abroad. As we all know, for the training and verifi-
cation of deep learning models, the larger the sample size,
the better the performance of the selected models. In this
study, we included 3683 patients with carotid atheroscle-
rotic plaque replacement and rationally designed the carotid
plaque ultrasound image data of the included subjects.

As deep learning technology gains prevalence in the
medical domain, it has proven capable of autonomously
adapting to the nonlinear characteristics of medical images
through sophisticated multilayer mappings, thereby uncov-
ering intrinsic features within the raw data. This confers
an improved adaptability and generalization potential. Zhu
et al. [20] demonstrated that deep learning can exploit a
richer array of image data information compared to tradi-
tional manual feature extraction, a benefit particularly pro-
nounced in the context of carotid plaque image feature ex-
traction. Furthermore, the feature extraction approach for
carotid plaque images, developed by Skandha et al. [23]
and based on deep learning, excels in addressing the clas-
sification complexities associated with different types of
carotid plaque images, reinforcing identification capabili-
ties and facilitating the extraction and integration of multi-
dimensional features from carotid ultrasound images.

While deep learning technology boasts many
strengths, its challenges, and limitations include the sub-
stantial data requirements of artificial intelligence systems
and the necessity to tailor deep learning algorithms to the
unique characteristics of different diseases. Consequently,
the flexible design of distinct deep learning models and
algorithmic workflows for various carotid plaque types to
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Fig. 5. YOLO V7 (ResNet 50, Inception V3) model detection results. (A) PR curve of YOLO V7 (ResNet 50) model; (B) PR curve of
YOLO V7 (Inception V3) model; (C) calibration curve of YOLO V7 (ResNet 50) model; (D) calibration curve of YOLO V7 (Inception
V3) model; (E) ROC curve of YOLO V7 (ResNet 50) model; (F) ROC curve of the YOLO V7 (Inception V3) model. PR, precision
recall; ROC, receive operating characteristic; YOLO V7, You Only Look Once Version 7; AUC, area under curve.
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Fig. 6. Schematic of the Faster RCNN model. RCNN, Region-Based Convolutional Neural Network; RPN, region proposal network;
ROI, region of interest.

achieve efficient and precise detection and classification
represents a gap in the current research landscape. This
study utilizes the Faster RCNN (Fig. 6) and YOLO
V7 (Fig. 7) models as the cornerstone of deep learning
convolutional neural networks, deploying two diverse
feature extraction networks (Resnet 50 and Inception V3)
to identify and classify carotid plaques from ultrasound
images, distinguishing between vulnerable and stable
plaques. The performance of four distinct deep-learning
models in detecting and classifying carotid plaques is
meticulously analyzed and discussed.

This study employs the method of artificial intelli-
gence deep learning, utilizing ResNet 50 and Inception V3
as the fundamental feature extraction networkmodels. It in-
volves training the carotid plaque ultrasound images using
the YOLO V7 and Faster RCNN models, respectively. The
Faster RCNN model can achieve real-time detection while
maintaining high accuracy, simultaneously handling object
detection and classification, thereby reducing algorithmic
complexity. This model also exhibits better performance in
detecting small and dense targets. The YOLO V7 model
features a lightweight network architecture, which con-
sumes less computational resources and can be deployed
on smaller devices. However, the YOLO V7 model has
slightly lower detection accuracy than the Faster RCNN
model and is less effective in detecting small and dense tar-
gets.

The subject of this study is carotid ultrasound images,
with carotid plaques being considered as small target de-

tection. These research results indicate that, compared to
the YOLO V7 model based on two different feature ex-
traction networks (ResNet 50 and Inception V3), the Faster
RCNN (ResNet 50) model achieved the highest AUC of
0.91, while the Faster RCNN (Inception V3) model had an
AUC of 0.85, slightly lower than the YOLO V7 (ResNet
50) model’s AUC of 0.86. The YOLO V7 (Inception V3)
model performed the worst, with an AUC of 0.83. There-
fore, in the context of this study, the Faster RCNN model
demonstrates superior performance compared to the YOLO
V7model. In the analysis of medical ultrasound images, the
uncertainty of the size and quantity of objects within the im-
ages leads to varying detection outcomes based on different
feature extraction networks (ResNet 50 and Inception V3).
Due to the complexity of ultrasound images, characterized
by noise interference and low contrast, the ResNet 50 net-
work possesses stronger image feature extraction capabili-
ties than the Inception V3 network, allowing for more pre-
cise extraction of target object features. The Faster RCNN
model, based on the ResNet 50 feature extraction network,
exhibits robust feature extraction and recognition abilities.

This study delved deeply into the performance of
various deep-learning models in detecting and classifying
carotid plaque ultrasound images. Notably, interobserver
and intraobserver variability are significant factors affect-
ing ultrasound image interpretation accuracy. Therefore, a
meticulous analysis of such variabilities is crucial for as-
sessing the stability and reliability of the models. Interob-
server variability generally stems from the differences in
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Fig. 7. Schematic diagram of the YOLO V7 model. YOLO, You Only Look Once; FPN, feature pyramid network; SPPCSPC, spatial
pyramid pool construction statistical process control.

image feature recognition and interpretation among differ-
ent physicians, while intraobserver variability is related to
the consistency of interpretation by the same physician for
the same image at various times. To evaluate the impact
of these variabilities on our study results, we annotated the
images in our dataset multiple times and calculated the co-
efficients of variation for interobserver and intraobserver
variabilities. According to related research [34], interob-
server variability in our study was kept within an acceptable
range, indicating a high level of agreement among profes-
sional physicians in recognizing carotid plaque ultrasound
images. However, intraobserver variability was relatively
high, which might be due to the complexity and subjec-
tivity of the ultrasound images. Nevertheless, the Faster
RCNN (ResNet 50) model exhibited a stable performance
in the test set, demonstrating good classification efficacy.
Analysis of the interobserver and intraobserver variabili-
ties showed that the Faster RCNN (ResNet 50) model had
high stability in the accuracy, sensitivity, and specificity for
carotid plaque classification, comparable to the diagnostic
level of intermediate-level physicians. Specifically, the co-
efficients of variation for interobserver accuracy, sensitiv-
ity, and specificity were 0.05, 0.04, and 0.06, respectively,
while the coefficients of variation for intraobserver were
0.03, 0.02, and 0.04, respectively [34,35]. These results
suggest that the Faster RCNN (ResNet 50) model signifi-
cantly reduces interobserver and intraobserver variabilities,
contributing to improved consistency in the classification
of carotid plaque ultrasound images. Moreover, the high
stability of the model also provides a reliable auxiliary tool
for ultrasound physicians, aiding in enhancing their diag-
nostic capabilities and promoting the development of more
effective strategies for preventing ischemic stroke.

The application of AI tomography in analyzing carotid
plaque characteristics has provided a new perspective for a
deeper understanding of plaque nature. Tomography tech-
nology can capture information on carotid plaques from

multiple angles, aiding in the revelation of the plaque’s in-
ternal microstructure [36]. Combined with deep learning
models, features of carotid plaques can be automatically
extracted, offering a more comprehensive basis for clini-
cal diagnosis [37]. The use of AI tomography in analyzing
carotid plaque characteristics holds promise for providing
more precise predictive indicators for the early identifica-
tion of major vascular strokes.

In the current healthcare environment, the importance
of early identification and accurate classification of carotid
atherosclerotic plaques in preventing ischemic strokes must
be addressed [38]. By comparing the performance of differ-
ent deep learning models in the detection and classification
of carotid plaque ultrasound images, this study has unveiled
the immense potential of deep learning technology in the
early identification of major vascular strokes. The YOLO
V7 and Faster RCNN models demonstrated exceptional
classification performance in this study, with the Faster
RCNN (ResNet 50) model particularly highlighted for its
high accuracy, sensitivity, and AUC values, indicating its
potential in the early identification of carotid atheroscle-
rotic plaques. These models can effectively identify vulner-
able plaques, which is crucial for clinicians to develop in-
tervention strategies and preventive measures. Early iden-
tification of carotid plaques not only aids in risk assessment
but also guides clinicians in targeted therapeutic interven-
tions, such as pharmacological treatment, lifestyle modifi-
cations, or surgical interventions. For instance, the diagnos-
tic level of the Faster RCNN (ResNet 50) model is nearly
equivalent to that of a mid-level physician, suggesting its
potential to enhance the diagnostic capabilities of primary
ultrasound physicians in primary healthcare settings, thus
enabling early intervention in the stages of major vascular
stroke onset. Furthermore, the rapid detection and classifi-
cation abilities of deep learning models contribute to effi-
cient and precise plaque identification in large-scale popu-
lation screenings, which is of significant importance in pub-
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lic health. By identifying carotid atherosclerotic plaques
early, we can provide timely treatment and intervention
for patients, reducing the risk of ischemic strokes. There-
fore, our findings provide robust evidence for applying deep
learning technology in the early identification of major vas-
cular strokes.

However, the current study does have certain limita-
tions. Firstly, the dataset size is limited, which may result in
insufficient generalization of the models. Future research
could expand the dataset size to enhance model stability
and accuracy. Secondly, this study focuses solely on de-
tecting and classifying carotid plaques without addressing
other factors that may contribute to major vascular strokes.
In practical applications, it may be beneficial to incorporate
other biomarkers and clinical indicators to improve predic-
tive performance. Future research will further explore the
applicability of these models in different populations and
the methods through which they can be integrated into ex-
isting clinical practices to achieve optimal preventive and
treatment strategies.

5. Conclusions
This study evaluated four deep-learning models for

automatically detecting and classifying carotid atheroscle-
rotic plaques in ultrasound images. The Faster RCNN
(ResNet 50) model emerged as the most effective, demon-
strating high accuracy and reliability. Thus, the Faster
RCNN (ResNet 50) model holds promise for aiding pri-
mary physicians in identifying vulnerable plaques, enhanc-
ing diagnosis rates, and guiding personalized interventions
for high-risk ischemic stroke patients.
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