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Abstract

Background: Obstructive sleep apnea (OSA) is a severe condition associated with numerous cardiovascular complications, including
heart failure. The complex biological and morphological relationship between OSA and atherosclerotic cardiovascular disease (ASCVD)
poses challenges in predicting adverse cardiovascular outcomes. While artificial intelligence (AI) has shown potential for predicting
cardiovascular disease (CVD) and stroke risks in other conditions, there is a lack of detailed, bias-free, and compressed AI models
for ASCVD and stroke risk stratification in OSA patients. This study aimed to address this gap by proposing three hypotheses: (i) a
strong relationship exists between OSA and ASCVD/stroke, (ii) deep learning (DL) can stratify ASCVD/stroke risk in OSA patients
using surrogate carotid imaging, and (iii) including OSA risk as a covariate with cardiovascular risk factors can improve CVD risk
stratification. Methods: The study employed the Preferred Reporting Items for Systematic reviews andMeta-analyses (PRISMA) search
strategy, yielding 191 studies that link OSAwith coronary, carotid, and aortic atherosclerotic vascular diseases. This research investigated
the link between OSA and CVD, explored DL solutions for OSA detection, and examined the role of DL in utilizing carotid surrogate
biomarkers by saving costs. Lastly, we benchmark our strategy against previous studies. Results: (i) This study found that CVD
and OSA are indirectly or directly related. (ii) DL models demonstrated significant potential in improving OSA detection and proved
effective in CVD risk stratification using carotid ultrasound as a biomarker. (iii) Additionally, DL was shown to be useful for CVD
risk stratification in OSA patients; (iv) There are important AI attributes such as AI-bias, AI-explainability, AI-pruning, and AI-cloud,
which play an important role in CVD risk for OSA patients. Conclusions: DL provides a powerful tool for CVD risk stratification in
OSA patients. These results can promote several recommendations for developing unique, bias-free, and explainable AI algorithms for
predicting ASCVD and stroke risks in patients with OSA.
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1. Introduction
Atherosclerotic cardiovascular disease (ASCVD) ac-

counted for approximately 800,000 deaths in the United
States (US) in 2020, representing 36% of total mortality,
with 647,000 of these deaths occurring in individuals over
the age of 65 [1,2]. By 2030, the direct medical expenses as-
sociated with ASCVD are projected to exceed USD 920 bil-
lion [3]. According to the Sleep Apnea Association (SAA),
38,000 Americans die annually due to the combined effects
of ASCVD and obstructive sleep apnea (OSA) [4]. Mean-
while, countries such as China, the US, Brazil, and India
report the highest prevalence of OSA globally [5]. OSA
affects 34% of males and 17% of females but is often un-
derdiagnosed, with only 10% of OSA patients receiving an
appropriate diagnosis and treatment [6]. Severe OSA con-
tributes to an increased mortality rate from ASCVD and
is associated with intermittent hypoxia, hypercapnia, and
sympathetic overactivity [7].

OSA-related strokes occur when the brainstem fails
to effectively communicate with the upper airway or lower
thoracic muscles, leading to brain activation, intrathoracic
pressure shifts, hypoxia, and reoxygenation due to upper
airway collapse [8]. These events decrease oxyhemoglobin
saturation and cause electroencephalogram (EEG) arousals
[2]. During sleep, these cycles initiate pathways that in-
crease the risk of atherosclerosis [9–11]. Previous studies
have utilized polysomnographic data to predict OSA using
machine learning (ML) and deep learning (DL) techniques
[1,2]. Traditional signal-processing methods for predicting
cardiovascular outcomes in OSA patients have several lim-
itations [12]. These methods often struggle with the com-
plexity and variability of biological signals and may not ef-
fectively capture the multifactorial nature of OSA and AS-
CVD interactions [13]. Furthermore, they can be biased
and fail to provide a comprehensive and explainable risk
assessment [14,15].

However, no study has focused on ASCVD risk strat-
ification in OSA patients. Artificial intelligence (AI)-based
systems have been employed to analyze heart rate variabil-
ity (HRV) events, yet several reports indicate a biological
link between OSA and ASCVD. Therefore, including OSA
risk as a covariate in cardiovascular risk assessments could
enhance the accuracy of ASCVD risk stratification [16,17].

DL leverages convolution, max-pooling, and attention
mechanisms (spatial and temporal attention maps) to ex-
tract features and characterize OSA–ASCVD relationships
in both signal-based and image-based frameworks [18,19].
Given the complexity of biological non-linear phenomena,
developing robust, accurate, real-time DL paradigms is cru-
cial for detecting OSA and stratifying ASCVD risk [20,21].
Since evaluating ASCVD risk in OSA patients is challeng-
ing due to biological and morphological changes, surrogate
biomarkers such as carotid artery disease can be used as in-
dicators for coronary artery disease (CAD) [22–24].

This study proposes a DL approach to detect high-
risk OSA and predict ASCVD risk using a carotid window
[25–27]. We also address clinical evaluation and valida-
tion challenges, which can introduce bias and overfitting in
DL prediction models [28]. With the trend towards minia-
turized medical devices, such as edge devices, reducing
the size of DL-based training systems is essential [29,30].
Therefore, we explored pruned or compressed AI models
for assessing ASCVD risk in OSA patients [29,30]. Addi-
tionally, we emphasized the importance of understanding
AI “black boxes” through explainability paradigms and ex-
tended this into a cloud-based framework [31,32].

This study aimed to review DL systems for the joint
detection of OSA and ASCVD risk stratification [33] while
ensuring lower bias, higher compression, and clinical ex-
plainability within a cloud/telemedicine framework.

2. Search Strategy
Fig. 1 illustrates the search technique based on the Pre-

ferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) guidelines. This process began with
a comprehensive search using specific keywords related
to OSA and its associations with cardiovascular disease,
stroke, carotid imaging, AI, and deep learning. The search
terms included combinations such as “obstructive sleep ap-
nea and cardiovascular disease”, “obstructive sleep apnea
and stroke”, “obstructive sleep apnea and carotid imaging”,
“obstructive sleep apnea and AI”, “ASCVD atheroscle-
rotic tissue classification and characterization”, “obstruc-
tive sleep apnea and deep learning”, “carotid plaque tis-
sue characterization in sleep apnea”, and the conjunc-
tion of “obstructive sleep apnea” with databases, including
PubMed and Google Scholar, to screen pertinent papers.

Initially, this search yielded 271 records from the
specified databases and an additional 448 records from
other sources, resulting in 719 records after accounting for
quality-specific factors, such as timeliness and relevance.
These factors ensured that the included studies were up-to-
date and pertinent to the research topic.

The review process involved several stages of filter-
ing. Firstly, studies that were unrelated to the primary fo-
cus of the research were excluded, which accounted for 324
studies. Next, irrelevant studies, those that did not directly
address the specific research questions or objectives, were
also removed, totaling 174 studies. Furthermore, studies
with insufficient data, those lacking the necessary informa-
tion for comprehensive analysis, were excluded, amounting
to 51 studies.

After this meticulous exclusion process, 194 research
studies were deemed suitable for inclusion in this review.
These studies provided the necessary data and relevance
to contribute to the systematic review and meta-analysis
of OSA and its association with cardiovascular outcomes.
This detailed selection process ensured that the final pool of
studies was robust, relevant, and sufficient for the intended
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Fig. 1. Search strategy based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model.
AI, artificial intelligence.

analysis, offering a comprehensive overview of the existing
research on the topic.

3. Biological Link Shows that OSA
Contributes to Conditions and Mechanisms
Involved in ASCVD and Stroke Development

The pathophysiological link between OSA and the
progression of ASCVD remains unknown [34,35]. How-
ever, several pathogenic factors, such as macro and micro-
arousals [36], intermittent hypoxia and hypercapnia [37],
oxidative stress, inflammation, and vascular dysfunction,
have been proposed as intermediate mechanisms linking
OSA and ASCVD [38,39]. Although discussed separately
here, these mechanisms are connected and appear sequen-
tially in patients with OSA. The biological mechanism
through which OSA leads to ASCVD is depicted in Fig. 2
through three possible routes.

Path I: Hypoxia and hypercapnia, combined with in-
termittent hypoxia, cause oxidative stress, reactive oxy-
gen species (ROS), inflammatory cytokines, and C-reactive
protein (CRP) [40]. Thus, atherosclerotic plaque de-

velopment in OSA is attributed to the cytokine storm
[41], which causes endothelial dysfunction and favors low-
density lipoproteins (LDLs) and circulating factors enter-
ing the intima of the blood vessels [42]. Moreover, in-
creased inflammatory cytokines and ROS induce the oxi-
dization of LDLs (OxLDL) [43]. Savransky et al. [44] re-
ported intermittent hypoxia can cause lipid oxidation and
atherosclerotic plaques. Nuclear factor kappa-B (NF-κB)-
activated macrophages absorb OxLDL, resulting in foam
cells [45,46]. These foam cells create the necrotic core,
forming atherosclerotic plaques that cause ASCVD [47].

Path II: Obesity, OSA, and metabolic dysregulation
are linked. Further, OSA, insulin resistance (IR), and AS-
CVD have the same pathophysiological connection and
risk factors. OSA causes behavioral, metabolic, and hor-
monal disturbances that promote weight gain and IR [48].
Since calories are largely used when resting, these distur-
bances may activate the neuroendocrine region, promot-
ing hunger and eventual weight gain [49]. OSA increases
sympathetic nerve activity (SNA), which may change glu-
cose metabolism, accelerate glycogen breakdown in skele-

3

https://www.imrpress.com


Fig. 2. The biological link between obstructive sleep apnea (OSA) and atherosclerotic cardiovascular disease (ASCVD). IL-6,
interleukin-6; TNF-α, tumor necrosis factor α; CRP, C-reactive protein, PO2, partial pressure of oxygen; PCO2, partial pressure of
carbon dioxide; NO, nitric oxide; LV, left ventricle; LDL, low-density lipoprotein; oxLDL, oxidized low-density lipoprotein; CAD,
coronary artery disease.
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Fig. 3. Deep learning (DL)-based model for OSA prediction. OSA, obstructive sleep apnea; ECG, electrocardiogram; LSTM, long
short-term memory; RNN, recurrent neural network; GRU, gated recurrent unit; BiGRU, bidirectional gated recurrent unit; BiLSTM,
bidirectional long short-term memory; BiRNN, bidirectional recurrent neural network.

tal muscles, and increase hepatic glucose synthesis. SNA
release may raise cholesterol, triglycerides, and IR [50,51].
IR causes more lipoproteins, which oxidize, increasing
OxLDL levels and promoting atherosclerosis and ASCVD.

Path III: Intermittent hypoxia with hypercapnia causes
baroreceptor dysfunction and a vasoconstriction effect of
decreased endothelin and nitric acid (NO) levels due to
vascular endothelial dysfunction. These changes increase
blood pressure, which increases ventricular tone due to
stress, leading to heart failure [22].

However, periodic hypoxia, characterized by regular
and predictable episodes of low oxygen levels, can con-
tribute to the development of ASCVD by inducing oxida-
tive stress and endothelial dysfunction [52]. These hy-
poxic events promote inflammatory responses and lipid de-
position in arterial walls, accelerating the progression of
atherosclerosis. Therefore, controlled studies on periodic
hypoxia can provide insights into its impact on ASCVD,
highlighting the importance of consistent oxygenation for
cardiovascular health [53].

Table 1 (Ref. [1,2,23,24,54–59]) lists studies link-
ing OSA to atherosclerosis in the carotid artery. OSA pa-

tients had higher atherosclerotic plaque levels and narrower
lumen diameters [1,23,54,60]. OSA increases proinflam-
matory plasma cytokines levels, such as interleukin (IL)-
2, IL-1, tumor necrosis factor (TNF)-α, polymerase chain
reaction (PCR), and interferon-alpha (IFN-α), endothelial-
dependent blood channel widening, and adhesion molecule
activity [2,55,56]. Inflammatory markers are associated
with increased risk for atherosclerosis [1,61,62]. A severe
OSA lowers blood oxygen and raises blood pressure [59].

Table 2 (Ref. [6,7,9,16,17,63–67]) shows the link be-
tween OSA and coronary atherosclerotic disease. Long ST
intervals (flat, isoelectric section on the electrocardiograph
(ECG) between the end of the S wave and the beginning
of the T wave) are connected to atherosclerosis [16,68].
OSA was related to higher inflammatory activity in this
CAD sample [63]. Moreover, left ventricle (LV) pressure
and diastolic dysfunction result in left atrial hypertrophy
[64,69]. Periodic hypoxia can cause sympathetic activation,
decreased parasympathetic tone, and inflammation [65,70].
Studies have shown that obesity, hypertension, and diabetes
are associated with OSA [17,64,66].
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Table 1. Relationships between OSA syndrome and carotid artery atherosclerotic disease.
SN Authors Year REF* PS REL* Comorbidities Progression of biomarkers Relationship between the manifestation of OSA

and CaAD

1 Hui et al. [23] 2012 37 50 OSA with cIMT NR CPAP treatment reduces plaques CPAP treatment is useful in OSA patients
2 Nadeem et al. [24] 2013 38 1415 OSA with cIMT HTN, DM Increase in carotid diameter and carotid plaques Increased plaque levels is symptomatic of an

atherosclerotic process
3 Ciccone et al. [55] 2014 56 80 OSA with cIMT HTN, pulmonary Increased levels of plaques, CRP, IL-6, TNF, and

PTX-3
The development of atherosclerosis may be

influenced by inflammatory markers
4 Zhou et al. [57] 2017 58 18 OSA with carotid HTN Increase in atherosclerotic plaques Independent risk factor for ASCVD
5 Song et al. [54] 2020 62 95 OSA with cIMT NR Increase in atherosclerotic plaques Reduced plaque and carotid arterial elasticity
6 Bandi et al. [58] 2021 47 NR OSA with HF NR Causes arrhythmogenicity and results in HF Leads to atherosclerosis
7 Smith et al. [2] 2021 36 96 OSA with carotid HTN Elevation in important proinflammatory cytokines The population’s inflammatory environment is a

risk factor for childhood atherosclerosis
8 Suzuki et al. [56] 2022 31 07 OSA with carotid HTN, DM REM and OSA both are linked to metabolic and

cardiovascular complications
Arterial stiffness and REM are increased

9 Gunnarsson et al. [1] 2014 28 790 OSA with carotid HTN Increase in carotid plaques Increased future ASCVD and stroke risks
10 Firincioglulari et al. [59] 2022 23 190 OSA with carotid NR Increase in carotid artery calcification More calcification leads to increased stroke risk
REF*, references in the respective articles; PS, patient size; REL*, relationship; OSA, obstructive sleep apnea; HTN, hypertension; cIMT, carotid intima-media thickness; DM, diabetes mellitus;
HF, heart failure; CRP, C-reactive protein; NR, not reported; ASCVD, atherosclerotic cardiovascular disease; REM, rapid eye movement; CPAP, continuous positive airway pressure; CaAD, carotid
artery disease; SN, serial number; IL-6, Interleukin-6; TNF, tumor necrosis factor; PTX-3, pentraxin-3.
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Table 2. Relationship between OSA syndrome and coronary atherosclerotic artery disease.
SN Authors Year REF* PS REL* Comorbidities Progression of biomarkers Relationship between the manifestation of OSA

and CAD

1 Colish et al. [9] 2012 40 47 OSA with CAD HTN Risk of ASCVD CPAP treatment is useful in OSA
2 Tan et al. [63] 2014 36 93 OSA with CAD Obesity, HTN, DM SA patients have increased atheroma volumes Chronic OSA is an important potential risk factor

for coronary atherosclerosis
3 Miller et al. [64] 2015 74 NR OSA with CAD Obesity, HTN Risk of intermittent nocturnal hypoxemia Atrial fibrillation
4 Valo et al. [16] 2015 39 80 OSA with CAD NR ST segment depression Myocardial necrosis
5 Singh et al. [65] 2022 28 100 OSA with CAD Obesity Young patients with angiography show OSA

serve symptoms
Correlation between obesity and OSA

6 Lu et al. [17] 2021 105 82 OSA with CAD Obesity, HTN Ventricular malfunction and remodeling Coronary atherosclerosis
7 Tang et al. [67] 2021 28 158 OSA with CAD HTN Risk of ASCVD Pulmonary hypertension
8 Liu et al. [66] 2022 44 255 OSA with CAD Obesity, HTN Patients in China with CAD have a significantly

higher incidence of OSA
OSA is a risk factor for ASCVD

9 Wang et al. [6] 2023 45 1927 OSA with CAD Hypertension Ischemia-driven unstable angina Acute coronary syndrome
10 Wojeck et al. [7] 2023 10 8246 OSA with CAD NR Ertugliflozin to reduce the effect of OSA Sodium-glucose transporter 2 inhibitors are

beneficial in OSA
REF*, references in the respective articles; PS, patient size; OSA, obstructive sleep apnea; DM, diabetes mellitus; HTN, hypertension; NR, not reported; ASCVD, atherosclerotic cardiovascular disease;
CAD, coronary artery disease; CPAP, continuous positive airway pressure; SN, serial number; REL*: relationship; SA, sleep apnea.
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4. Deep Learning for OSA Detection and
ASCVD Risk Stratification

ML and DL have become more prominent in medi-
cal imaging [71–73]. The fundamentals of DL are based
on deep neural networks (DNNs), a subgroup of DL that
functions similarly to a human brain [74]. Recently, stud-
ies have used AI employing OSA detection in the HRV
framework [75–78] and ASCVD diagnosis and prognosis
[28,79,80]. While DL is becoming popular for higher ac-
curacy in segmentation and classification, hyperparameters
need to be optimized during the training paradigm [31].
This requires several epochs, including optimal learning
rate, batch size, batch normalization, and dropout layers, to
avoid overfitting and achieve generalization without mem-
orization [81]. To accomplish the foremost DL architecture,
onemust usemultiple diagnostic sources withmany distinct
data sets in a big data framework [82]. However, comor-
bidities in patients alongside ASCVD and OSA influence
non-linear dynamics between gold standard and covariates
[83].

4.1 Deep Learning for OSA Detection
The impulses from an ECG serve as the standard phys-

iological measurement [84]. Interestingly, there is a strong
connection between breathing disorders and ECG abnor-
mality [85]. Hence, variation in the ECG can be a strong
predictor of OSA [86]. Moreover, the processing and opti-
mization of ECG signals are cost-effective [87]. DL algo-
rithms train the model to extract features from polysomnog-
raphy (PSG) signals automatically [84]. Overnight PSG
measures numerous sleep parameters, while PSG record-
ings should be segmented into 30-second epochs to score
sleep [88]. The training set trains the models, the validation
set fine-tunes the models, and the testing set evaluates the
performance. Subsequently, the data extracted from PSG
determine the conclusion related to OSA severity. When
large amounts of high-dimensional PSG data are available,
DL models regularize the data and perform more accurate
predictions than ML models [89,90]. Singh and Talwekar
[91] used hybrid deep learning (HDL) with CNN to predict
OSA, achieving 80% accuracy. Locharla et al. [92] used
DLwith K-Nearest neighbors (KNN) and achieved 78% ac-
curacy. Thus, DL systems for OSA prediction are power-
ful and reliable paradigms; however, work still needs to be
performed to ensure the reliability and stability of the DL
systems. Several studies that use AI for OSA prediction are
shown in Appendix Table 4 (Refs. [20,21,33,85,89,90,93–
98]), Appendix Table 4. Fig. 3 shows a typical DL-based
model for OSA prediction.

4.2 Deep Learning for ASCVD Risk Stratification
DL is an effective strategy because it can use the un-

derlying knowledge to create automated features and of-
fers a better training paradigm that adjusts the non-linearity
among both variables (covariates) and the gold standard.

Fig. 4 depicts a typical DL system. This architecture com-
prises (a) a training design using composite risk factors such
as OSA risk labels, office base bio markers (OBBMs), lab
base bio markers (LBBMs), carotid ultrasound image phe-
notypes (CUSIPs), medication utilization (MedUSE), and
(b) clinical risk labels representative of ground truth (GT),
such as heart failure ASCVD and stroke [99]. This GT may
indicate CAD, similar to a cardiac computed tomography
(CT) score. Indeed, CT can be scored using DL. Suri et al.
[100] have describedCT-based grading. Intravascular ultra-
sound (IVUS) can also be used as a CT to represent CAD le-
sions [101,102]. A non-linear training-based approach has
been employed in heart disease risk stratification [103,104].

The recurrent neural network (RNN) and long short-
term memory (LSTM) models can be used to evaluate se-
quential data, such as ECG, text [105], speech [106], and
handwriting [107]. Further, these models contain a set of
continuous data patterns. Previous RNNs could not learn
long-term dependencies, resulting in a bridge problem con-
necting old and new data [108]. This problem further pro-
moted the vanishing gradient problem, in which error sig-
nals vanished after backpropagation, leading to model fail-
ure [106]. LSTM has input, internal, and output gates: The
input gate determines how much data will be forgotten; the
internal gate determines the level of current state data; the
output gate state is used to derive the next hidden state
[109]. These models could memorize key data and under-
stand long-term dependencies following the backpropaga-
tion of useful information. Fig. 5 depicts LSTM architec-
ture.

4.3 Deep Learning for Plaque Wall Segmentation and
CUSIP Measurements: A Surrogate Biomarker

We have hypothesized that OSA leads to ASCVD dis-
ease via the morphological changes in the vascular net-
work. CUSIPs refer to image-based carotid artery phe-
notypes [59,110], and this training program is adaptable
to non-linear adaptation [103,104,111]. Fig. 6 [112] rep-
resents the B-mode carotid ultrasound scan and its corre-
sponding coronary atherosclerotic disease. The DL system
can measure the atherosclerotic plaque area [113,114]. The
DL system computes the CUSIPs and helps to detect plaque
aggregation in OSA patients [115]. Therefore, GT is re-
quired for DL-based ASCVD risk classification.

Jain et al. [116] proposed a universal neural network
(UNet) model to detect atherosclerotic plaques. The model
uses four layers of deep learning (DL) and a pair of encoders
and decoders. The model is shown in Fig. 7 (Ref. [116]). A
sample is transmitted and received by the encoder. A two-
dimensional-convolution rectified linear unit (ReLU) and
MaxPooling may all be found in each UNet encoder layer.
Each successive decoding stage employs up-convolution
(two dimensions, 2D), depth-concatenation, and 2D con-
volution as part of image reconstruction.
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Fig. 4. OSA-based multiclass DL model to predict ASCVD/stroke severity. OSA, obstructive sleep apnea; DL, deep learning;
ASCVD, atherosclerotic cardiovascular disease; OBBM, office base bio markers; LBBM, lab base bio markers; CUSIP, committee on
uniform securities identification procedures; MedUse, medication use; LSTM, long short-term memory; RNN, recurrent neural network;
GRU, gated recurrent unit; BiLSTM, bidirectional long short-term memory; BiRNN, bidirectional recurrent neural network; GT, ground
truth; AI, artificial intelligence; ROC, receiver operating characteristic.

5. Challenges and Recommendations in OSA
Detection and ASCVD Risk Stratification

The DL system must address several key challenges
to ensure the safety and efficacy of the medical devices

used in ASCVD risk stratification for OSA patients: the
comparison between carotid and retinal imaging, mitigat-
ing bias, ensuring explainability and trust in AI, optimizing
ergonomics and cost-effectiveness, model pruning, cloud-
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Fig. 5. Long short-term memory (LSTM) architecture for ASCVD risk stratification. ASCVD, atherosclerotic cardiovascular
disease; ReLU, rectified linear unit.

Fig. 6. The carotid artery examination using intravascular ultrasound (IVUS). (a) The carotid artery is a potential surrogate marker
for the coronary artery, as shown by an IVUS-based vascular cross-sectional scan. (b) B-mode carotid longitudinal imaging system using
linear ultrasound [112].

based deployment, and the integration of carotid artery
Doppler examinations.

5.1 A Special Note on Carotid Imaging vs. Retinal
Imaging as Biomarkers for CVD Risk

The genetic makeup of the carotid artery: Previ-
ous studies have successfully established that the genetic
makeup of the carotid artery is the same as the coronary
artery [117]. Indeed, the coronary calcium volumes de-
tected by IVUS are related to the automated carotid intima-
media thickness (cIMT), which ensures the genetic na-
ture of atherosclerosis disease. In another study, Araki
et al. [118] used a machine learning classifier that used

cIMT as the gold standard for risk stratification of coronary
atherosclerosis disease, establishing the link between coro-
nary plaques and subclinical atherosclerosis in the carotid
artery, determining the genetic makeup of the atheroscle-
rosis disease. The same pattern was established in other
studies by Araki et al. [118], Banchhor et al. [101] and
Narula et al. [119] . Lastly, it is easy to access the carotid
artery from the innominate artery, i.e., where the innom-
inate artery is connected to the aortic arch, which sup-
plies blood to the brain and head [120], as the left com-
mon carotid artery branches off from the arch itself, and the
right common carotid originates from the brachiocephalic
trunk [101]. This anatomical connection is crucial in under-
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Fig. 7. UNet model for segmentation of the atherosclerotic plaque wall [116]. UNet, U-Net (a type of convolutional neural network
architecture for image segmentation); GT, ground truth.

Fig. 8. The link between the coronary and carotid arteries [121]. RSA, right subclavian artery; CCA, common carotid artery; VA,
vertebral artery; TCT, total circulating tumour cell; MA, mammary artery; LSA, left subclavian artery.

standing the impact of aortic diseases, such as atherosclero-
sis, on cerebral blood flow and the potential risk of stroke,
thereby highlighting the interdependency between the aorta

and carotid arteries in vascular health shown in Fig. 8 [121].
A similar relationship exists between the coronary artery
originating from the aortic arch, which supplies blood to
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the heart. The base of the aorta corresponds to the left
and right coronary arteries (LCAs and RCAs) that supply
blood to the heart, meaning the LCAs and RCAs are the
first branches of the aorta. Thus, the two sets of arteries,
coronary and carotid, originate from the aorta with the same
genetic makeup [121,122]. Since the genetic makeup of
carotid and coronary arteries is similar, this study used the
carotid arteries as a surrogate biomarker for coronary artery
disease [101,123].

A recent trend has emerged that uses the carotid artery
as a biomarker instead of retinal scans to evaluate CVD
risk stratification; this small note explains why the carotid
artery is preferred over retinal scans. While this compar-
ison is outside the scope of this review, we discuss the
benefits the carotid artery offers. (i) The instrumentation
for carotid artery imaging is ergonomic and user-friendly,
meaning the sonographer, cardiologist, or radiologist can
all perform carotid imaging without much training. The
common carotid artery is easy to image using a linear
transducer in an arterial cross-section mode and longitudi-
nal modes [124,125]. (ii) The economics of using carotid
imaging over retinal imaging are favorable since the cost
for carotid artery imaging is lower (economic) than reti-
nal imaging devices. Meanwhile, the device used for reti-
nal imaging is mentioned in the nutrition paper (diabetic
retinopathy). Even though a normal camera can be used,
the image quality is poor, meaning a stronger retinal imag-
ing device is required, which is costly [126]. Recently, it
was shown that when combined with AI, carotid imaging
is very economical; however, surgeries can be prevented
using carotid imaging [127]. (iii) Simplicity of processing
images from carotid artery imaging: The image process-
ing applied to carotid ultrasound is much simpler. This
is because the lumen diameter is 10 mm, and the outer
wall diameter is 12 mm [73,101,117,128,129]; meanwhile,
the media-adventitial borders are 12 mm apart. Thus, the
plaque burden is the difference between the outer and inner
borders. (iv) East identification of media adventitia (MA)
borders: The MA borders are easy to determine as there
is a clear transition from the media region to the adventi-
tia region, which indicates the MA borders of the carotid
artery. Similarly, the lumen-intima (LI) borders are those
between the lumen region (black region) and the media re-
gion (brighter region). Thus, the LI borders can also be eas-
ily estimated. The region between the LI and MA borders
is the IMT region and represents the surrogate biomarker
for coronary artery disease [130]. (v) Video imaging of the
blood flow: Video imaging can also be taken when em-
ploying carotid artery imaging, which allows for stiffness
computation, a very informative analysis for symptomatic
vs. asymptomatic computations [102,131,132]. (vi) Deep
learning paradigm: the feature extraction during the DL that
represents closer to the coronary artery disease is the carotid
artery.

This DL will likely provide a stronger design for CVD
risk prediction, as proven before using aML system design.
Since the plaque burden in the carotid artery is a stronger
biomarker for coronary heart disease (CHD), then there is a
stronger chance that DL is more effective in carotid artery
imaging (CAI) compared to retinal artery imaging (RAI).
Carotid atherosclerosis plays a substantial role in cardio-
vascular morbidity and mortality. Given the multifaceted
impact of carotid atherosclerosis, there has been increas-
ing interest in harnessing AI and radiomics as complemen-
tary tools for the quantitative analysis of medical imaging
data. This integrated approach holds promise in refining
medical imaging data analysis and optimizing the utiliza-
tion of radiologists’ expertise since AI allows radiologists
to focus on more pertinent responsibilities by automating
time-consuming tasks. Simultaneously, the capacity of AI
in radiomics to extract nuanced patterns from raw data en-
hances the exploration of carotid atherosclerosis, advanc-
ing efforts in terms of (1) early detection and diagnosis, (2)
risk stratification and predictive modeling, (3) improving
workflow efficiency, and (4) contributing to advancements
in research. This review provides an overview of general
concepts related to radiomics and AI and their application
in carotid-vulnerable plaques. It also offers insights into
various research studies on this topic across different imag-
ing techniques [133].

5.2 The Role of Bias in DL System Designs
Previous computer-aided diagnosis techniques lacked

bias evaluations [83]; however, the importance of evaluat-
ing bias in AI models has increased significantly [134,135].
Bias prevention can be handled using large sample sizes,
proper clinical testing, introducing comorbidities, using big
data configurations, unseen data analysis, and scientific
validation of the training model design [100]. Identify-
ing the AI risk of bias (RoB) [125,136] and appropriately
modifying diagnoses and treatments are key steps in pa-
tient risk stratification. Imbalanced data, common in med-
ical datasets, can skew model performance towards over-
represented classes. In the context of CVD prediction,
we propose that strategies such as oversampling minority
classes or undersampling majority classes can ensure the
model learns equally from all categories of data. Synthetic
data generation techniques such as the Synthetic Minor-
ity Oversampling Technique (SMOTE) or Adaptive Syn-
thetic Oversampling Technique (ADASYN) [137] can also
be applied in future implementations to balance class dis-
tributions without losing information [138]. Using diverse,
multi-modal datasets that capture a wide range of patient
demographics, symptoms, and conditions helps ensure that
the model can generalize across various populations and is
less likely to overfit specific groups. Furthermore, using
large-scale datasets from different sources also reduces the
risk of introducing bias from a single source [139].
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5.3 Enhancing Model Explainability and Trust in AI
Understanding AI’s “black box” is one of the most

critical challenges in its adoption. Moreover, providing
clear explanations of AI model outcomes helps health-
care practitioners interpret and trust these results. Indeed,
using tools such as Local Interpretable Model-agnostic
Explanations (LIME) and SHapley Additive exPlanations
(SHAP), which offer explainability for AI predictions, pro-
vides physicians with greater confidence in their mod-
els [73,140]. Similarly, visualization techniques such as
Gradient-weighted Class Activation Mapping (GradCAM),
GradCAM+, and GradCAM++ can highlight lesions in
carotid scans, aiding in interpretation [141]. These meth-
ods, which make the technology more transparent and user-
friendly, can enhance the acceptance of AI in healthcare.

Explainability also makes AI systems more adaptable
and cost-effective [142]. GradCAM and its variants are par-
ticularly useful for convolutional neural network (CNN)-
based models such as carotid artery and retinal scans, which
are commonly used in medical image analysis. These meth-
ods produce visual explanations by highlighting the areas
in an image that contribute most to a prediction, thereby al-
lowing clinicians to observe the specific features, such as
artery blockages or other abnormalities, that influenced the
model’s decision. This provides clinicians with a greater
ability to validate or challenge AI-generated results [143–
145].

LIME and SHAP provide valuable interpretability for
non-image data, such as clinical, demographic, or symptom
information. LIME creates local interpretable models by
perturbing input features and observing changes in the out-
put, helping clinicians understand how specific factors—
such as apnea-hypopnea index (AHI) or oxygen desatura-
tion levels inOSApatients—impact CVDor stroke risk pre-
dictions. SHAP complements this by providing a global in-
terpretation, assigning consistent and additive importance
values to each feature, and ensuring clinicians can identify
the most critical factors in a patient’s risk profile [102]. To-
gether, these tools improve the trustworthiness and clinical
utility of AI models in healthcare.

Another way to improve trust is by integrating ex-
plainability tools such as GradCAM, LIME, and SHAP
into clinical decision support systems. By providing real-
time, transparent insights into the mechanisms through
which models reach their decisions, clinicians can vali-
date AI recommendations alongside their expertise, foster-
ing a collaborative decision-making process [146]. Layer-
wise Relevance Propagation (LRP) can further break down
model predictions and assign relevance scores to individual
neurons or pixels, especially in medical imaging models.
This pixel-level breakdown explains how each input feature
(such as a pixel in a medical scan) contributed to the final
prediction, ensuring that decisions are not solely based on
superficial or misleading information.

Finally, improving trust in DL models requires exten-
sive testing and validation on diverse and representative
datasets. Continuous evaluation of the performance of the
models across different demographic groups, medical con-
ditions, and geographic regions is essential to ensure the
models perform robustly in various clinical settings. Future
work should address potential biases during validation and
improve the generalization ability of the models through
fine-tuning and retraining.

5.4 The Role of Pruning-based DL Systems

As the Internet and cloud-based systems evolve, edge
devices are gaining importance. Indeed, edge devices are
particularly powerful when applying trained AI models
for future predictions or disease risk stratifications. How-
ever, large data models are not deployable on edge de-
vices, meaning compressed models are needed. Genetic al-
gorithms (GA), particle swarm optimization (PSO), differ-
ential evolution (DE), and wolf optimization (WO) can be
used to prune image-based DL models. Moreover, a fully
connected network (FCN) or segmentation network (Seg-
Net) can be used to compress the models [147].

5.5 Cloud-based Workflow in DL Models for ASCVD Risk
Stratification for OSA Patients

As the Internet has become more technologically ad-
vanced, cloud-based technologies have evolved. Subse-
quently, we anticipate using cloud-based DLmodels to pro-
cess OSA and ASCVD risk stratification [31,148]. Fig. 9
depicts the role of DL in OSA detection and ASCVD risk
stratification via a pipeline that contains A, B, and C cas-
caded systems. System A is used for OSA severity pre-
diction on the test patient via A-on, given the A-off EEG-
based OSA-trained model. System B is used for CUSIP
segmentation via a DL-based UNet system, a B-on system,
and a B-offline trained model. Finally, system C applies
a DL-based ASCVD risk stratification using C-on via a C-
off trained ASCVDmodel. The C-off LSTM-trained model
uses biomarkers such as office base bio markers (OBBM),
lab base bio markers (LBBM), CUSIP, MedUSE, OSA risk,
and the ASCVD gold standard. The overall system uses
smart-based OSA detection by analyzing real-time ECG
signals during sleep, while system C uses cloud-based AS-
CVD risk stratification. Thus, the overall system is cost-
effective.

5.6 Impact of Radiologist Experience on the Accuracy of
Carotid Artery Doppler Examinations

An essential factor influencing the accuracy of carotid
artery scanning is the experience level of the radiologists
performing these procedures [149]. Experienced radiolo-
gists, often with several years of specialized training, can
more precisely and efficiently image the common carotid
artery, carotid bulb, and internal carotid artery [150]. More-
over, the expertise of the radiologist allows for minute
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Fig. 9. The architecture of ASCVD screening for patients with OSA and obesity. OSA, obstructive sleep apnea; CUISP, carotid
ultrasound image phenotype; A-off, offline DL-based OSA training model; A-on, online DL-based OSA severity system; B-off, offline
DL-based carotid training model; B-on, online DL-based carotid wall segmentation and quantification system; C-off, offline training-
based ASCVD risk model; C-on, online DL-based ASCVD risk assessment; ASCVD, atherosclerotic cardiovascular disease; CVD,
cardiovascular disease; DL, deep learning; OBBM, office base bio markers; LBBM, lab base bio markers; MedUSE, medication utiliza-
tion; A, section A is OSA severity detection; B, section B is CUSIP measurement; C, section C is CVD/Stroke measurement.

pathological changes to be identified that may indicate
atherosclerosis [151]. Comparatively, junior radiologists,
who may still be refining their skills, could require more
time to perform these examinations and additional training,
particularly for imaging the more complex segments [152].
This difference in proficiency could potentially impact the
diagnostic outcomes and should be considered when in-
terpreting the results of studies involving carotid artery
Doppler examinations [153]. Senior radiologists typically
supervise procedures performed by junior radiologists to
ensure consistency and accuracy in the imaging results.

5.7 Recommendations
ASCVD risk stratification in OSA patients has several

recommendations: (i) Three hypotheses: (a) OSA leads to
atherosclerosis formation promoting ASCVD, (b) DL sys-
tems are well suited for complex non-linear behavior un-
dergoing morphological changes, and (c) combining OSA
risk as a covariate with cardiovascular risk factors can im-
prove ASCVD risk stratification; and recommendations
are: (i) evaluation and validation: DL systems must un-
dergo a clinical evaluation and scientific validation for a
robust OSA detection and ASCVD risk stratification; (ii)
hyperparametrization: DL systems must be hyperparame-
terized in both phases: (a) OSA detection and (b) ASCVD
risk stratification; (iii) bias: bias in DL models can be best
reduced by balancing the risk classes (control, low-risk, and
high-risk); (iv) edge devices: DL systems can be ported to
edge devices if these systems are pruned or compressed; (v)
carotid surrogate imaging: DL systems based on surrogate
carotid imaging can be low-cost without reducing ASCVD
risk stratification accuracy.

6. Discussion
6.1 Principal Findings

This study emphasizes four major objectives:
(i) Establishment of the link between OSA and heart

failure;
(ii) Role of DL for CVD risk stratification in OSA pa-

tients;
(iii) Role of surrogate biomarkers for CVD risk;
(iv) Fusion of OSA risk factors with other risk factors

for composite CVD risk.
(i) Link between OSA and heart failure: OSA is

intricately linked to numerous cardiovascular complica-
tions, including heart failure. The relationship between
OSA, ASCVD, and stroke is complex and involves vari-
ous pathogenic mechanisms. Studies have shown that OSA
contributes to conditions such as intermittent hypoxia, hy-
percapnia, oxidative stress, systemic inflammation, and en-
dothelial dysfunction, all of which are critical in the de-
velopment of ASCVD and stroke. OSA-induced intermit-
tent hypoxia leads to oxidative stress and systemic inflam-
mation, which promote the development of atherosclerotic
plaques. These plaques cause cardiovascular complica-
tions by inducing endothelial dysfunction and increasing
the deposition of LDLs in arterial walls [44,154]. Addi-
tionally, research has demonstrated that OSA patients have
higher levels of inflammatory markers and greater carotid
artery atherosclerosis compared to non-OSA individuals
[63]. OSA has also been identified as an independent risk
factor for stroke, with mechanisms such as hemodynamic
instability, increased sympathetic activity, and impaired
cerebral autoregulation playing significant roles [7].

14

https://www.imrpress.com


Table 3. Benchmarking data for ASCVD risk in OSA patients.
K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17

1 Mostafa et al. [171] 2019 93 HTN ✓ 8 8 8 ✓ 8 8 DL ✓ ✓ 8 DT 85%
2 Pépin et al. [176] 2020 85 OSA ✓ 8 8 8 8 8 8 DL ✓ ✓ 8 RF 87%
3 Loh et al. [177] 2020 106 ASCVD, HTN ✓ 8 ✓ 8 ✓ ✓ ✓ DL 8 ✓ 8 CNN 90%
4 Cao et al. [169] 2020 72 DM, ASCVD, HTN ✓ 8 ✓ 8 ✓ ✓ ✓ DL 8 8 8 RF 88%
5 Hong et al. [172] 2020 231 DM, HTN 8 ✓ ✓ 8 ✓ ✓ ✓ DL 8 - 8 KNN 82%
6 Qian et al. [173] 2021 155 HTN 8 8 ✓ 8 ✓ ✓ ✓ ML 8 ✓ 8 DT 84%
7 Brennan et al. [170] 2022 63 DM, ASCVD, HTN ✓ ✓ ✓ ✓ ✓ ✓ ✓ DL ✓ ✓ 8 RF 89%
8 Ferreira-Santos et al. [174] 2022 68 DM, HTN ✓ 8 ✓ ✓ ✓ ✓ ✓ ML 8 ✓ 8 XGB 86%
9 V. Kumari et al. [175] 2023 275 ASCVD 8 8 8 8 8 ✓ ✓ DL 8 8 8 CNN 91%
10 Maindarkar et al. (proposed) 2024 144 OSA, ASCVD ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 8 8

K0, serial number; K1, studies; K2, year; K3, references; K4, comorbidities; K5, body mass index; K6, ethnicity; K7, electrocardio-
graph; K8, waist circumference; K9, polysomnography; K10, electromyograph; K11, oxygen saturation; K12, AI type; K13, FDA
discussion; K14, clinical setting; K15, risk of bias; K16, classifier; K17, accuracy of the model; DM, diabetes mellitus; ASCVD, car-
diovascular disease; HTN, hypertension; DL, deep learning; ML, machine learning; OSA, obstructive sleep apnea; DT, decision tree;
RF, random forest; CNN, convolutional neural network; KNN, K-Nearest neighbors; XGB, XGBoost (Extreme Gradient Boosting);
✓, included; 8, exculded.

(ii) Role of DL for carotid imaging: DL techniques
have shown remarkable capabilities in medical imaging
analyses, providing accurate and efficient predictions for
various health conditions [155–157]. Thus, applying DL
to carotid imaging in OSA patients offers a promising ap-
proach to stratifying ASCVD and stroke risks. DL algo-
rithms, particularly CNN, have effectively identified and
quantified atherosclerotic plaques in carotid imaging, of-
fering detailed insights into the severity and progression
of ASCVD [81,147,158,159]. DL models trained on large
datasets of carotid images can accurately predict cardio-
vascular events by analyzing plaque characteristics such as
size, composition, and morphology [81,141,160].

(iii) Role of surrogate biomarker for CVD risk: These
predictions are crucial for risk stratification in OSA pa-
tients, who are at higher risk for ASCVD and stroke. Inte-
grating DL-based carotid imaging analysis with traditional
cardiovascular risk factors enhances the precision of risk
prediction models, providing more personalized and effec-
tive management plans for OSA patients [125,161,162].

(iv) Fusion of OSA risk factors with other risk fac-
tors for composite CVD risk: Incorporating OSA risk into
cardiovascular risk models can significantly improve the
accuracy of predicting adverse cardiovascular outcomes,
similar to erectile dysfunction [160] or Parkinson’s disease
[163,164]. Traditional risk models for CVD and stroke typ-
ically consider factors such as age, sex, hypertension, di-
abetes, cholesterol levels, and smoking status [165,166].
Therefore, adding OSA risk to these models acknowledges
the substantial impact of sleep-disordered breathing on car-
diovascular health. Studies have shown that OSA indepen-
dently predicts cardiovascular events and its inclusion in
risk models can improve the stratification of patients into
different risk categories, allowing for more targeted and ef-
fective interventions [167,168].

Validating these enhanced models through clinical tri-
als and longitudinal studies can provide robust evidence for
the utility of including OSA risk in cardiovascular risk strat-
ification, ultimately leading to better outcomes for patients
with OSA [64].

6.2 Benchmarking

Table 3 (Ref. [169–177]) provides a comprehensive
benchmarking analysis of various studies that predict AS-
CVD risk in OSA patients using AI technologies. Table 3
includes 15 attributes: serial number, studies, year, refer-
ences, comorbidities, body mass index (BMI), ethnicity,
ECG, waist circumference, polysomnography (PSG), elec-
tromyography, oxygen saturation, AI type, Food and Drug
Administration (FDA) discussion, clinical setting, and risk
of bias. Key observations from Table 3 indicate that only
two studies, Cao et al. [169], and Brennan and Kirby [170],
specifically predicted ASCVD in OSA patients using DL.
The remaining studies focused on predicting OSA alone.
Among these studies, seven had hypertension as a comor-
bidity, nine utilized DL technologies, and two employed
ML methods. Mostafa et al. [171] used DL with a de-
cision tree (DT) classifier to predict OSA in hypertensive
patients, achieving an accuracy of 85%. Munjral et al.
[26] also used DL but with a random forest (RF) classi-
fier, achieving 87% accuracy. Cao et al. [169] predicted
both ASCVD and hypertension using DL with a convolu-
tional neural network (CNN), reaching 90% accuracy. Cao
et al. [169] combined DM with ASCVD and hypertension
in their predictions using DL with RF, achieving 88% ac-
curacy. Hong et al. [172] included DM and hypertension
and used DL with KNN, achieving 82% accuracy. Qian et
al. [173] used ML with a DT classifier to predict OSA in
hypertensive patients and achieved 84% accuracy. Bren-
nan and Kirby [170] achieved 89% accuracy using DL with
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RF, covering multiple comorbidities, including DM, AS-
CVD, and hypertension. Ferreira-Santos et al. [174] used
ML with eXtreme gradient boosting (XGB) to predict OSA
in patients with DM and hypertension, achieving 86% ac-
curacy. Singh and Talwekar [91] used HDL with CNN for
OSA predictions, achieving 80% accuracy. Locharla et al.
[92] used DL with KNN, achieving 78% accuracy. The
most recent study by V. Kumari et al. [175] used DL with
CNN to predict ASCVD, achieving the highest accuracy of
91%. This presented study aimed to predict both OSA and
ASCVD, including comprehensive physiological parame-
ters, but lacked the risk of bias discussion.

Notably, only six studies [169,172–175,177] dis-
cussed FDA regulations, which are crucial for product de-
sign and clinical application. The risk of bias was not dis-
cussed in any study except the proposed one, highlighting
a gap in addressing potential biases in the research method-
ologies.

6.3 Strengths, Weakness, and Extensions
The primary strength of this review lies in its intro-

duction of ASCVD risk stratification, which was specifi-
cally tailored for patients with OSA. This review highlights
the complex biological and morphological interactions be-
tween OSA and ASCVD, forming the basis of our first hy-
pothesis. We propose a DL solution for the dual tasks of
OSA detection and ASCVD risk prediction. Our system
is a cascaded framework that integrates the computation of
OSA risk labels, CUSIP segmentation, and ASCVD risk
stratification using LSTM models.

Despite the simplicity of the proposed system, there
are important considerations for its optimization. One key
aspect is minimizing the risk of bias, which is critical for
ensuring the reliability and validity of the DL models. Ad-
ditionally, the system needs to be generalized to account for
various comorbidities often coexisting with OSA, thereby
improving its robustness and applicability across diverse
patient populations. This necessitates rigorous testing and
validation across different datasets and clinical scenarios.

To further enhance the performance and accuracy of
the system, we suggest extending the design to incorporate
ensemble-based DL systems. Ensemble methods, which
combine multiple models to improve predictive perfor-
mance, can help address the limitations of individual mod-
els and providemore reliable predictions. By leveraging en-
semble techniques, the system can achieve higher accuracy
in OSA detection and ASCVD risk stratification, ultimately
leading to better clinical decision-making and patient out-
comes.

7. Conclusions
This review presented three key hypotheses that form

the foundation of its analysis. First, it explored the biolog-
ical link between OSA and ASCVD, highlighting the com-
plex interplay of factors contributing to both conditions.

Second, it proposed that incorporating OSA risk into exist-
ing models could significantly improve the stratification of
ASCVD risk, suggesting that understanding and quantify-
ing OSA can provide valuable insights into cardiovascular
health. Third, it examined the capability of DL to manage
the intricate relationships involved due to its sophisticated
layers and superior feature extraction methods.

A clear and detailed connection was established be-
tween OSA and atherosclerotic disease, particularly in crit-
ical areas such as the carotid arteries, coronary arteries, and
aorta. This review highlighted the efficacy of DL mod-
els in detecting OSA, utilizing this detection as a criti-
cal biomarker. This biomarker was combined with other
office-based and laboratory-based biomarkers, carotid ul-
trasound imaging phenotypes, and statin usage data to cre-
ate a comprehensive ASCVD risk stratificationmodel. This
multi-faceted approach aimed to provide a more accurate
and personalized risk assessment for patients with OSA.

This review also delved into several significant chal-
lenges that need to be addressed to enhance the application
of AI in this context. These challenges include AI bias,
which can skew results and reduce the reliability of predic-
tions; AI explainability, which is crucial for gaining clinical
trust and understanding the decision-making process of DL
models; AI pruning, which involves reducing the complex-
ity of models to make them more efficient without sacrific-
ing accuracy. Additionally, this review proposed a cloud-
based cascaded system designed to provide a personalized
approach to ASCVD risk stratification, leveraging the scal-
ability and accessibility of cloud computing to implement
these advanced AI methods effectively.
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Table 4. DL-based OSA studies use ECG alongside risk factors and GT as input modalities.

SN Studies Year REF DS MOD IC
Risk factors

GT
R1 R2 R3 R4 R5 R6 R7

1 Anitha et al. [85] 2021 31 285 LBBM, OBBM ECG 8 8 ✓ 8 ✓ 8 8 OSA, non-OSA
2 Kim et al. [93] 2021 45 279 LBBM, OBBM ECG ✓ ✓ ✓ 8 8 8 8 OSA, non-OSA
3 Ma et al. [94] 2021 71 2277 LBBM, OBBM ECG ✓ ✓ ✓ ✓ ✓ ✓ ✓ OSA, non-OSA
4 Panindre et al. [95] 2021 169 30 LBBM, OBBM ECG ✓ ✓ ✓ ✓ 8 ✓ ✓ OSA, non-OSA
5 Brink-Kjaer et al. [33] 2022 77 2500 LBBM, OBBM ECG 8 8 8 8 ✓ 8 8 SA, life expectancy
6 Almutairi et al. [90] 2021 71 70 LBBM, OBBM ECG ✓ 8 ✓ 8 8 8 8 OSA, non-OSA
7 Tsai et al. [96] 2022 69 10,391 LBBM, OBBM ECG ✓ 8 ✓ ✓ ✓ 8 8 OSA, non-OSA
8 Ramesh et al. [89] 2021 80 1500 LBBM, OBBM ECG ✓ ✓ ✓ - ✓ 8 8 OSA, non-OSA
9 Gourishetti et al. [20] 2022 39 6814 LBBM, OBBM ECG ✓ ✓ ✓ ✓ ✓ ✓ ✓ OSA, ASCVD
10 Samadi et al. [97] 2022 33 18 LBBM, OBBM ECG ✓ ✓ ✓ ✓ ✓ ✓ ✓ OSA, non-OSA
11 Tasmi et al. [21] 2022 43 136 LBBM, OBBM ECG ✓ ✓ ✓ ✓ ✓ ✓ ✓ SA, mortality
12 H. Liu et al. [98] 2023 36 70 LBBM, OBBM ECG ✓ ✓ ✓ 8 8 ✓ ✓ SA, mortality
REF, references in the respective articles; DS, data size; IC, input covariates; MOD, modality; LBBM, lab base bio markers; OBBM,
office base bio markers; ECG, electrocardiograph; GT, ground truth; R1, body mass index; R2, hypertension; R3, electrocardiogram;
R4, waist circumference; R5, polysomnography; R6, electromyography; R7, oxygen saturation; DL, deep learning; OSA, obstructive
sleep apnea; SN, serial number; SA, sleep apnea; ASCVD, atherosclerotic cardiovascular disease.

principal component analysis; PRISMA, Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses;
PTC, plaque tissue characterization; RA, rheumatoid arthri-
tis; PR, the period measured in milliseconds; RF, ran-
dom forest; ROS, reactive oxides stress; RoB, risk of bias;
ROC, receiver operating-characteristics; RNN, recurrent
neural network; SCORE, systematic coronary risk evalua-
tion; SMOTE, synthetic minority over-sampling technique;
SVM, support vector machine; SAA, sleep apnea associ-
ation; TPA, total plaque area; TC, tissue characterization;
US, ultrasound.
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