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ABSTRACT
According to the predictive processing framework, our brain constantly generates predictions based on past experiences and 
compares these predictions with incoming sensory information. When an event contradicts these predictions, it results in a 
prediction error (PE), which has been shown to enhance subsequent memory. However, the neural mechanisms underlying 
the influence of PEs on subsequent memory remain unclear. This study investigated the electrophysiological correlates during 
encoding and retrieval of events eliciting PEs. We employed a statistical learning task in which participants were presented with 
pairs of objects in sequence. Subsequently, while recording electroencephalography (EEG), we introduced PEs by replacing the 
second object of each pair with new objects and we then tested the participants' memory. Behaviorally, PEs did not enhance 
memory. During retrieval, we observed higher amplitudes in the recollection-related late positive component for violation items 
that were remembered compared to those that were forgotten. In contrast, no evidence for the presence of the FN400 component 
associated with familiarity was found. These results suggest that recollection, but not familiarity, plays a crucial role in the inter-
play between PE and memory. Contrary to our hypothesis, we did not observe a relationship between PEs and the P3 component 
during encoding. In conclusion, our study contributes to the growing body of knowledge concerning the intricate relationship 
between PEs and episodic memory. It sheds light on the underlying neural mechanisms involved and emphasizes the importance 
of recollection in this context.

1   |   Introduction

Although the first season of Game of Thrones was broadcast 
12 years ago, many viewers still remember the execution of the 
main character, Ned Stark. According to storytelling conven-
tions, the viewers of the show might have predicted that the 

protagonist would ultimately be spared or that justice would 
be served in the end. However, when Ned was beheaded in a 
sudden twist, it violated the viewers' prediction. This violation 
might have led the viewers to process the unexpected event in a 
distinctive way since it differed from their prediction. Distinctive 
processing could explain why Ned's execution remains such a 
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memorable event, illustrating the role of prediction error (PE) 
in memory processes. Indeed, whether and how PEs modulate 
memory is a topic of intense investigation in cognitive psy-
chology and neuroscience (Aitchison and Lengyel  2017; Bein 
et  al.  2023; Ergo, De Loof, and Verguts  2020; Quent, Henson, 
and Greve 2021). Here, we investigated the electrophysiological 
correlates of encoding and retrieval of PE to gain a better under-
standing of the relationship between PE and memory.

According to the predictive processing framework, our brain 
constantly predicts likely occurrences based on past experiences 
(Bar  2007; Friston  2010; Henson and Gagnepain  2010). The 
brain continually compares sensory information with its pre-
dictions. When a prediction is confirmed, it reinforces existing 
internal models and increases confidence in future predictions. 
Conversely, when a prediction is violated, a PE occurs, signaling 
the need for additional processing to update predictions. This 
way, the brain utilizes PEs to adaptively refine its predictions 
over time. However, we have limited knowledge regarding how 
the brain processes events that give rise to PE and how the un-
derlying mechanisms contribute to subsequent memory.

Preceding studies have demonstrated that unexpected events 
typically improve memory (e.g., von Restorff  (1933) effect for 
isolated events). Recent research is in line with this tradition 
by showing that PEs facilitate memory. These studies have sug-
gested that events accompanied by PEs contain significant in-
formation that requires enhanced encoding for memory (Bein, 
Plotkin, and Davachi 2021; Bein et al. 2023; Brod, Hasselhorn, 
and Bunge 2018; Kafkas and Montaldi 2018; Quent, Greve, and 
Henson 2022). Improved encoding of events that elicit PEs might 
generate detailed ‘snapshots’ of these events, resulting in a mem-
ory advantage (Henson and Gagnepain 2010). Additionally, PEs 
might enhance pattern separation, a process by which distinct 
memory traces are created, potentially separate from those as-
sociated with previous predictions (Frank, Montemurro, and 
Montaldi 2020). It has been concluded that PEs enhance mem-
ory by rendering events that elicit PEs more distinctive, and this 
effect was supported by representational similarity analysis on 
neural network analyses of the hippocampus (Aisa, Mingus, and 
O'Reilly 2008; Frank, Montemurro, and Montaldi 2020), indicat-
ing enhanced pattern separation in various hippocampal sub-
regions. Furthermore, according to event segmentation theory 
(Zacks et al. 2007), which addresses how continuous experience 
is separated into discrete events, PEs trigger an upregulation of 
attentional resources toward the specific event. This increased 
attention enables the brain to process information more deeply 
and prompts the identification of an event boundary, poten-
tially leading to the separation of events and robust memory. 
Triggering an event boundary in this manner aids in segment-
ing the continuous stream of sensory information into discrete 
events and facilitates subsequent memory benefits (Wahlheim 
et al. 2022). Notably, as attention increases, neural similarities 
within events, compared to the across event boundaries, tend to 
grow, emphasizing the role of pattern completion within events, 
and this underscores the hippocampus's role in supporting pre-
dictions during the unfolding of events (Bein and Davachi 2022; 
Paz et al. 2010; Schapiro, Kustner, and Turk-Browne 2012). Yet, 
it should be noted that while recognizing the role of event seg-
mentation in memory for preceding events, we focus on mem-
ory of events that elicit PE. To summarize, previous research 

suggests that events giving rise to PE are encoded more effec-
tively and result in better memory.

In addition to encoding, retrieval processes might also con-
tribute to how PE enhances memory. For example, a study by 
Kafkas and Montaldi (2018) investigated the effects of PE during 
encoding and retrieval. Their results revealed that predicted 
events enhanced familiarity, which refers to a subjective feeling 
that an event has been experienced before, while unpredicted 
events enhanced recollection, which involves the retrieval of 
specific episodic details (Cowell, Barense, and Sadil 2019). This 
finding aligns with the framework proposed by Henson and 
Gagnepain (2010), which suggests that predictive events aided 
by familiarity benefited during the retrieval. Conversely, un-
predicted events elicit a memory characterized by snapshot-like 
details, leading to enhanced recollection. The connection be-
tween encoding and retrieval processes and the impact of PEs 
is further supported by the concept of selective retrieval pro-
cess, namely, intentionally recalling specific information while 
excluding other related or unrelated information (Lu, Hasson, 
and Norman  2022). This theory suggests that error signals, 
even during encoding, may play a vital role in facilitating sub-
sequent recollection during retrieval (Fenerci and Sheldon 2022; 
Wahlheim et al. 2022). Moreover, previous research suggests that 
the occurrence of events deviating from previous knowledge can 
trigger engagement in brain regions associated with successful 
retrieval, such as cortical and hippocampal memory networks 
(for a review, Alonso et al. 2020). Taken together, these findings 
suggest that the effects of PEs on memory are not limited to the 
encoding stage but can also extend to the retrieval phase.

Notwithstanding the importance of the aforementioned stud-
ies, PEs might not always enhance memory. A recent body of 
research has consistently reported that PEs do not guarantee 
subsequent memory advantage (Ortiz-Tudela et al. 2023; Turan 
et al. 2023). For instance, in one study, participants were asked 
to make explicit predictions regarding associations between se-
quentially presented pairs, and these predictions were either met 
or violated in varying levels of PEs. The results revealed better 
recognition memory for items that were consistent with partic-
ipants' predictions but not for items eliciting PEs. These results 
are consistent with prior work showing better memory for ex-
pected compared to unexpected events, indicating a memory 
congruency effect (Alba and Hasher 1983; Brod and Shing 2019; 
Craik and Tulving 1975; Liu, Grady, and Moscovitch 2018; Ortiz-
Tudela et al. 2017). Thus, the effect of PEs on subsequent mem-
ory is not straightforward and further exploration is warranted. 
Currently, there is limited empirical evidence regarding the reli-
able conditions under which PEs facilitate memory, highlighting 
the need for additional research.

Through the investigation of how the brain processes PEs and 
how its underlying operations influence subsequent memory, 
we can enhance our understanding of the effects of PEs and 
potentially reconcile the divergent findings in the literature. 
Event-related potentials (ERPs) can provide an ongoing evalu-
ation of neural processes that correlate with PEs. By comparing 
the time-locked changes in the brain's electrophysiological ac-
tivity in response to violating events that are later remembered 
versus later forgotten, we can identify neural processes that 
contribute to subsequent memory enhancement for PEs. For 
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instance, the P3 component has been one of the highly stud-
ied ERP components which was traditionally associated with 
oddball signals (Polich 2007), attention (Kramer, Wickens, and 
Donchin  1985), evaluation of novelty (Friedman, Cycowicz, 
and Gaeta  2001), and context updating (Donchin  1981). It 
has also been demonstrated that P3 amplitude is an indica-
tor of successful subsequent memory (Fabiani, Karis, and 
Donchin 1986; cf. Höltje and Mecklinger 2022; Rangel-Gomez 
and Meeter 2013). This implies that memory-related changes 
in P3 amplitude might index encoding processes associated 
with PEs that facilitate subsequent memory. Furthermore, in 
addition to the mentioned traditional origins, P3 has also been 
linked to reward PEs (see a recent meta-analysis, Stewardson 
and Sambrook 2020), novelty processing influenced by expec-
tations (Schomaker and Meeter  2018) and hierarchical viola-
tions as suggested by the predictive coding theory (Vidal-Gran 
et al. 2020). Even though these studies demonstrated the as-
sociations between P3 and the processing of violation (i.e., 
PEs), it is still unclear whether P3 elicited by violations con-
tributes to the subsequent memory of events that violate these 
predictions.

At the retrieval stage, behavioral and neural research sug-
gests two distinct processes contributing to memory recogni-
tion: familiarity and recollection (Jacoby 1991; Mandler 1980; 
Yonelinas  2002; for a recent review, Cowell, Barense, and 
Sadil 2019). While recollection has been defined traditionally 
as the assessment of specific details of an episode, a more nu-
anced perspective has arisen in recent decades. It has been pro-
posed that recollection should be conceptualized not merely as 
the retrieval of specific details, as these details can sometimes 
be accessed through various cognitive processes (e.g., famil-
iarity, Addante, Ranganath, and Yonelinas 2012). Rather, rec-
ollection should be viewed as the retrieval of an item linked to 
the contextual information from its previous episode (Diana, 
Yonelinas, and Ranganath 2007). This highlights the intricate 
nature of memory processes, underscoring that familiarity 
process, which is characterized as the subjective feeling that 
an event has been experienced before but in the absence of 
additional mnemonic details, can also contribute recognition. 
ERP studies have shown that recollection-based memory is as-
sociated with a late parietal effect called late positive compo-
nent (LPC), while the familiarity-based memory is observed 
at frontal sites with an earlier time window referred as FN400 
(Curran and Cleary 2003; Friedman 2013; Ozubko et al. 2021; 
Rugg and Curran 2007; Staresina and Wimber 2019). As pre-
viously mentioned, behaviorally, the effects of PEs on mem-
ory have been shown to extend to the retrieval phase, with 
differences between behavioral measures of familiarity and 
recollection (Kafkas and Montaldi  2018). However, neural 
evidence underlying these differences is limited (cf. McClure, 
Berns, and Montague 2003; Wittmann et al. 2007).

To gain a deeper understanding of how PEs influence the encod-
ing and retrieval processes and their impact on episodic mem-
ory, we investigated the relationship between PEs, its potentially 
associated ERP components, and memory within a single par-
adigm. We employed a statistical learning paradigm, whereby 
participants implicitly learned sequentially presented object 
pairs embedded within a stream of objects over two consecutive 

days (Bein, Plotkin, and Davachi 2021). On the third day, new 
objects were added to the list. Half of the new objects were 
inserted in place of the second item of the pair, inducing PEs 
(violation items). The other half was presented between pairs, 
serving as a non-violation baseline. Subsequently, participants' 
memory was assessed. We recorded electroencephalography 
(EEG) during encoding and retrieval phases.

We expected to replicate previous behavioral findings (Bein, 
Plotkin, and Davachi 2021), which demonstrated better memory 
performance for events that elicit PE compared to events that 
did not violate predictions. Additionally, we hypothesized that 
violating events that were later remembered would elicit larger 
P3 amplitudes compared to violating events that were later for-
gotten. Inspired by previous behavioral research (Kafkas and 
Montaldi  2018), we hypothesized that during retrieval, LPC 
would be observed for previously violated trials that were re-
membered, while FN400 would be observed for non-violation 
trials that were remembered.

2   |   Method

2.1   |   Participants

51 university students (32 women, 13 men, mean age 23.52 
[SD = 2.67]) were recruited for the study. A target sample size 
of 40 participants was determined by a power analysis of gener-
alized linear mixed models (Green and MacLeod 2016) on our 
pilot data from 13 participants, which was not part of the final 
sample. The model was calculated with maximum-likelihood 
estimation and participants as random intercept to account for 
between-participant variability in the P3 mean amplitude during 
the violation phase. As fixed factors, we included the within-
participant factor of condition (violation and non-violation) and 
item recognition accuracy (later remembered and later forgot-
ten). The effect size for the interaction between condition and 
item recognition accuracy obtained from the pilot participants 
was 0.28. We accounted for potential effect size inflation by tak-
ing 90% of the effect size. Thus, we aimed to detect an effect size 
of 0.25 with the standard 0.05 alpha error to obtain 80% power. 
The pilot data and analysis scripts can be found on the study's 
OSF page (https://​osf.​io/​sbc7d/​​).

Participants were recruited through an online experiment 
scheduling system of Goethe-University Frankfurt am Main 
and personal contacts. All participants reported normal or 
corrected-to-normal vision, no neurological or psychiatric dis-
orders, and right-handedness. They were asked to sign informed 
consent approved by the local ethics committee of the Goethe-
University Frankfurt prior to the study, debriefed at the end, and 
compensated either with 10 € per hour or partial course credits.

Since the primary objective of the study was to examine the 
effects of violation on memory performance, we set two main 
exclusion criteria to ensure a clear interpretation of the results. 
In accordance with our pre-registered plan, we excluded six 
participants with poor associative memory performance of 
< 40% accuracy rate and who showed poor recognition mem-
ory performance, meaning d’ below 0.35. The threshold for the 

https://osf.io/sbc7d/
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d’ was calculated as that, it falls below 95% of the observations 
in a random distribution of d’ values after permuting the trial 
labels 5000 times, considering 100 old and 50 new trials in 
the memory test. Further details and code for calculating this 
threshold are available at the provided link (https://​github.​
com/​FPupi​llo/​dprim​ethres). For associative memory perfor-
mance, we set and pre-registered a threshold of 40% accuracy, 
slightly above the chance level of 33%. This threshold was 
chosen to balance excluding participants with very low perfor-
mance while ensuring that participants' performance reflected 
genuine learning. This threshold also aimed to maintain an 
adequate signal-to-noise ratio and include a sufficient num-
ber of participants for meaningful analysis. Additionally, four 
participants were excluded from further analysis steps due to 
missing or noisy EEG data. We ran the statistical analysis on 
the remaining 35 participants (26 women and 9 men, mean age 
23.26, SD = 3.24).

2.2   |   Material

The stimulus set consisted of 370 pictures of everyday namable 
objects from the database used in the previous study (Bein, 
Plotkin, and Davachi 2021). The set was altered only in a few 
instances, where a picture of an object that may not be common 
in Germany was replaced with another object picture. The ob-
jects were presented with a white square background sized set to 
350 × 350 pixels. The images were equally divided into two main 
categories according to their real-life size based on whether they 
are bigger than a shoe box or not.

2.3   |   General Procedure

The study was conducted over three consecutive days (Figure 1). 
On the first 2 days, prediction learning phase took place and vi-
olation and retrieval phases were employed on the third day. 
Participants were presented with object pictures and asked to 
indicate if the presented object was bigger or smaller than the 
previous one. However, unbeknownst to the participants, there 
were pairs of objects that always followed each other, while the 
order of the pairs was randomized in each block. Participants 
who did not demonstrate signs of learning the pairs during the 
statistical learning phase were not invited to the third session, as 
they would not engage in prediction violation phase and there-
fore not experience PE. Thus, based on participants' response 
times (RTs) and accuracy rates on the bigger and smaller task, 
we decided if they were eligible to participate on the third day. 
We invited participants with RT differences of more than 200 ms 
between the first and second items across pairs and with accu-
racy rate more than 90% (n = 45). The third day started with a 
reminder, which included one block identical to the learning 
phase. Then, during the prediction violation phase, half of the 
original pairs were violated by replacing the second item in 
the pair with a new item. The other half remained intact and 
was followed by a new item to create a non-violation baseline. 
Participants were then tested on surprise item recognition mem-
ory and associative memory, with a distraction task before and 
after the recognition memory phase.

To ensure participants' comfort and attention, we divided 
each task into multiple blocks and advised taking breaks in 

FIGURE 1    |    Study design. (A) During prediction learning (Days 1 and 2), participants viewed pairs of sequentially presented objects and were 
asked to indicate whether each object was bigger or smaller than the previous object. (B) In the prediction violation phase (Day 3), new object pictures 
were inserted into the sequence of objects, either instead of the second object in the pair (violation) or after the second object in a pair (non-violation). 
(C) Following the violation phase, participants completed an item recognition memory test (Day 3) where they were presented with violation and non-
violation targets, similar lures, or new items, and asked to indicate whether each item was old, similar, or new. Memory for the original predictive 
pair was also tested (associative memory) by presenting participants with the first object in a pair and asking them to identify which of three objects 
followed the top object.

https://github.com/FPupillo/dprimethres
https://github.com/FPupillo/dprimethres
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between. All instructions were provided both verbally and in 
written form. We used PsychoPy v2021.1.4 (Peirce  2007) to 
program the stimulus presentation and response collection. 
Each session was scheduled approximately 24 hours apart 
(M = 23.67, SD = 1.16).

2.3.1   |   Prediction Learning Phase

The prediction learning phase used a statistical learning par-
adigm to build-up predictions about object pairs. Participants 
implicitly learned sequentially presented object pairs em-
bedded within a stream of objects over two consecutive days 
(Kim, Norman, and Turk-Browne 2017; Schapiro, Kustner, and 
Turk-Browne 2012; Turk-Browne, Simon, and Sederberg 2012). 
Unbeknownst to the participants, there were object pairs that 
always followed each other, while the order of the pairs was ran-
domized in each block. Each pair consisted of a big and a small 
object. Half of the pairs were presented with the big object first 
and the other half with the small object first. The pairing of ob-
jects was randomized for each participant while ensuring that 
each pair included one big and one small object.

During the task, participants were presented with a stream 
of object pictures and asked to indicate if the presented object 
was bigger or smaller than the previous one. Each trial started 
with a fixation cross at the center of the screen for 1.5 s and was 
followed by the object picture for 1.5 s. Participants were then 
asked to give a response by pressing C or M keys on the keyboard 
with their left or right index fingers. They were instructed to be 
as fast and as accurate as possible. Despite all object pictures on 
the screen appearing to be relatively the same size, they should 
base their judgments on the real-life sizes of the objects. Before 
the initial task, participants received detailed instructions and 
completed eight practice trials. For each day, all participants 
completed 200 trials (100 pairs) equally spread over nine blocks.

2.3.2   |   Reminder Phase

The third session of the study took place in the EEG laboratory. 
It started with a reminder phase, which was constructed as a 
block of the prediction learning phase. Participants covered one 
block of the previously presented 100 original pairs, in total 200 
trials.

2.3.3   |   Prediction Violation Phase

Immediately after the reminder phase, participants were pre-
sented with the prediction violation phase. The task structure 
was the same as the previous phases (i.e., prediction learning 
and reminder phases) and participants were not provided with 
additional instructions. Therefore, they were not explicitly in-
formed of the transition to the prediction violation phase. In 
order to violate the pair associations, we added new object pic-
tures to the list. For the violation condition, half of the original 
pairs (i.e., 50) were violated by replacing the second item in the 
pair with a new object picture. The other half of the original 
pairs (i.e., 50) remained intact and were followed by a new ob-
ject picture to generate the non-violation condition as a baseline. 

Only the identity of the item was violated but not the response, 
meaning that we replaced previously presented small objects 
with small new object pictures, and likewise big object pictures. 
Within each block, all pairs were presented twice. First, the 
original pairs were presented. For the second presentation, half 
of the pairs were violated, while the other half remained intact. 
There were 20 original pairs in each block. The presentation of 
the original, violation, and non-violation pairs was randomized, 
with the constraint that there were at least six pairs between 
an original pair and its subsequent appearance as a violation or 
non-violation pair. The prediction violation phase consisted of 
five blocks of 90 trials, for a total of 450 trials.

2.3.4   |   Distraction Phase

Before and after the Item Recognition Phase (see below), par-
ticipants performed a distraction task for 3 min in which a mix 
of basic mathematical operations, ranging in complexity were 
presented together with three alternative forced choices (e.g., 
128–612 = ? and 8 × 5–507 = ?). In each trial, an equation was 
presented in the center of the screen and three response options 
appeared below. Participants used the “A,” “S,” or “D” keys on 
the keyboard to select the correct response and responded with 
their left hand's ring, middle or index finger. The respective let-
ters were displayed under the response options to indicate the 
response keys. Once participants responded, the equation dis-
appeared, and a new one appeared after a 500 ms delay. We in-
formed participants to be as fast and accurate as possible.

2.3.5   |   Item Recognition Phase

To test item recognition memory for both violation and non-
violation items, participants were presented with object pictures 
and were asked to indicate if the presented object was old, sim-
ilar, or new. A total of 170 items were presented with 80 being 
identical to the items presented during the violation phase (half 
of the items were violation items and the other half was non-
violation items), 20 being similar lures that were different exem-
plars of objects presented during the violation phase, 20 being 
similar lures to the objects just seen in the recognition phase. 
In addition to violation items, non-violation items, and similar 
lures, 50 new object pictures were also included. Our main focus 
was on the old trials. For that reason, we added similar lures 
to execute the task, while maximizing the number of old trials 
we could use for analysis. It should be noted that these lures 
were incorporated into the study to create a more challenging 
and sensitive recognition memory task for participants, inspired 
by previous findings (Bein, Plotkin, and Davachi 2021) showing 
that violations of expectations during learning could enhance 
memory for items' details. While similar lures were part of the 
study design, they were not the main focus, hence the low num-
ber of trials (i.e., 10 trials for each condition). Nevertheless, they 
played a role in calculating the classification index, a key mea-
sure in our study. The similar objects presented during the item 
recognition phase were defined such that participants were in-
structed to respond “old” if the object was identical to one pre-
sented during the previous phase, “similar” if it was a different 
exemplar of an object presented earlier, and “new” if it had not 
been presented before.
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Each trial started with a fixation cross at the center of the screen 
for 1.5 s and was followed by the object picture for 3 s. To give 
a response, participants were instructed to press left, right, or 
down arrow keys on the keyboard with their ring, middle, or 
index finger of the right hand. The mapping of the left and right 
arrow key to indicate “old” or “new” responses was counterbal-
anced, while the down arrow key was consistently used for “sim-
ilar” responses. Participants were clearly instructed to respond 
with “old” if the object was the same as an object presented 
during the previous phase, “similar” if the object was presented 
before, but it was not the exact object in the previous phase (i.e., 
a different exemplar), and “new” if the object was not presented 
before. For instance, if participants were initially shown a white 
computer during the prediction learning phase, a similar lure in 
the recognition phase might involve a black computer. During 
the task, there were indicators to show participants which key 
to use for each response, which disappeared once response was 
made. They started with a practice phase consisting of 12 trials 
via detailed instructions from the experimenter. All participants 
completed 170 trials equally spread over two blocks.

2.3.6   |   Associative Memory Phase

After the item recognition phase, participants were given the 
second distraction task to reduce potential interference between 
the two memory phases. This was followed by an associative 
memory test, in which we aimed to assess explicit memory of 
the original pairs which were studied during the first two ses-
sions of the study (i.e., prediction learning phase). Participants 
were instructed to indicate which object appeared after the top 
object during the initial two sessions. At the beginning of each 
trial, a fixation cross appeared at the upper center of the screen 
for 1.5 s. The first item of a pair was then presented at the upper 
center of the screen, accompanied by three alternative items 
located at the lower part of the screen. One of the three alter-
natives was the second item that corresponded to the first item 
of the original pair (i.e., target item). The other two alternatives 
were chosen from the second items that belonged to the same 
size category as the target item. Participants were asked to in-
dicate which object appears after the upper object by pressing 
“A,” “S,” or “D” keys on the keyboard with their left hand's ring, 
middle, or index finger. Indicators were presented during the 
task to guide participants on which key to press for each object 
response. These indicators disappeared once the participant had 
made a response. In total, 100 trials were tested in one block 
after a practice phase of eight trials.

2.4   |   EEG Recording and Preprocessing

EEG was recorded during the third day of the study with 64 Ag/
AgCI BrainProducts active electrodes (actiCAP; Brainproducts, 
Munich, Germany) following the international 10–10 system 
at Fp1, Fpz, Fp2, AF7, AF3, AF4, AF8, F7, F5, F3, F1, Fz, F2, 
F4, F6, F8, FT7, FC3, FC1, FC2, FC4, FT8, T7, C5, C3, C1, Cz, 
C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8, 
PO9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, PO10, PO7, PO3, POz, 
PO4, PO8, O1, Oz, and O2 electrodes with a sampling rate of 
1000 Hz (actiCHamp Plus amplifier; Brainproducts, Munich, 
Germany), online band-pass filtered between 0 and 100 Hz. EEG 

data were online referenced to the left mastoid and a common 
ground was placed at the FCz. To record eye movements, three 
additional electrodes were placed at the outer canthi (horizon-
tal electrooculography, EOG) and below the left eye (vertical 
EOG). Electrode impedance values were maintained below 20 
kΩ during the recording.

EEG data preprocessing was performed offline with custom 
scripts in MNE-Python 1.3 (Gramfort et  al.  2014). It was run 
for each participant separately. As the first step, data were 
re-referenced to both mastoid electrodes. Then, an indepen-
dent component analysis was applied to correct eye blinks on 
cropped (we shortened the raw data to make it more manage-
able, thus reducing the computer memory required for the ICA 
decomposition process) and high pass (i.e., 1 Hz) filtered data. 
Those components were then corrected in three steps on the 
raw data: Automatic detection, visual check, and correction. 
Hereafter, data epochs were extracted according to the stimulus-
locked experimental conditions 100 ms prior to the onset of the 
stimuli presentation through 1500 ms post-stimuli. We excluded 
the epochs containing values higher than 60 μV. The Autoreject 
function (Jas et  al.  2017) was used to detect, interpolate, and 
reject bad epochs. Lastly, baseline corrected data were filtered 
between 0.1 and 30 Hz. After preprocessing, the mean total 
number of violation trials was 47.49 (SD = 2.89, range between 
38 and 49) and non-violation trials was 47.83 (SD = 2.37, range 
between 36 and 50) during the violation phase. For the recog-
nition phase, the mean total number of remembered violation 
trials was 24.17 (SD = 2.41, range between 16 and 30), forgotten 
violation trials was 12.54 (SD = 2.67, range between 5 and 20), 
remembered non-violation trials was 25.4 (SD = 2.29, range be-
tween 18 and 32) and forgotten non-violation trials was 10.86 
(SD = 2.13, range between 4 and 18).

2.5   |   Behavioral Analyses

As the first step, we calculated participants' “old” response rates 
to violation and non-violation items, following Bein, Plotkin, and 
Davachi (2021) to compare our results. This was done only for 
the items for which the original pair was remembered correctly 
in the associative memory task. Second, we calculated classifi-
cation indices based on confusion matrices (Ngo et al. 2021) to 
capture mnemonic discrimination. These classification indices 
are more sensitive than the traditional signal detection measures 
such as d’ and receiver operating characteristic curves, specifi-
cally in distinguishing old items from other categories such as 
similar and new items. To calculate classification indices, we 
first calculated the precision and sensitivity of violation and 
non-violation items, each separately. Precision was computed 
as the ratio of correct old responses to all old responses, while 
sensitivity was calculated as the ratio of correct old responses to 
all old items. A classification index was then determined by mul-
tiplying precision and sensitivity by two, adding them together, 
and then dividing by the sum of precision and sensitivity (Ngo 
et al. 2021). Thus, the classification index takes into account not 
only the correctness of identifying old items but also the capacity 
to differentiate old items from other categories.

We then conducted general linear mixed-effect model analy-
ses for response rates and classification indices to investigate 
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whether violation was a significant predictor of memory per-
formance. All analyses were conducted with custom-made R 
scripts (lme4 package: Bates et al. 2015) and can be found on 
the study's OSF page (https://​osf.​io/​sbc7d/​​). The models in-
cluded participants and objects as random intercepts, violation 
as fixed effect and random slope. We used a backward model 
selection approach. In this method, we ranked all possible 
models based on the number of parameters included in each 
one (Barr  2013). Starting from the full model, we compared 
the explanatory power of each model for the random effects 
via likelihood ratio test. We reduced the fixed effects by re-
moving non-significant predictors and interactions, and then 
compared these reduced models. Maximum likelihood ratio 
was assessed for model estimations and χ2 (chi-squared) was 
used for the statistical significance of the fixed effects. The 
model comparisons repeated until a significant decrease was 
observed. We also compared the models using AIC (Akaike 
Information Criterion) and BIC (Bayesian information crite-
rion). An analysis of variance function was conducted to com-
pare the variance explained by the models in terms of their 
model fit and to determine if the inclusion of random slopes 
for violation condition significantly improved the model. In 
the case of a significant interaction effect, we used the em-
means function to calculate estimated marginal means and 
performed post hoc tests with Bonferroni adjustment to com-
pare the levels of predictors for each level of the other variable.

2.6   |   ERP Analyses

To investigate electrophysiological correlates of PEs, we mea-
sured P3 mean amplitude values at parietal electrodes during 
the violation phase. The mean amplitude values were calculated 
for the LPC and FN400 during the item recognition phase. ERPs 
were time-locked to the onset of the stimuli. We defined time 
windows and electrodes for each component differently. The 
time window for the P3 component was 400–800 ms at centro-
parietal electrodes (CP3, CP1, CPz, CP2, CP4, P3, P1, Pz, P2, and 
P4). The FN400 was obtained during 300–500 ms after stimulus 
onset at frontocentral (F3, F1, Fz, F2, F4, F3, FC1, FC2, FC3, 
and FC4) electrodes. Lastly, the LPC was measured from 400 
to 800 ms at parietooccipital (P3, P1, Pz, P2, P4, PO3, POz, and 
PO4) electrodes. The electrode selection was based on estab-
lished ERP literature (Friedman 2013; Rugg and Curran 2007; 
Ozubko et al. 2021; Addante, Ranganath, and Yonelinas 2012). 
This selection was made to align with prior research and ensure 
consistency in our approach.

As suggested by Frömer, Maier, and Abdel Rahman (2018), lin-
ear mixed effect models were used to analyze trial-based data 
with lmer function (lme4 package: Bates et al. 2015). The par-
ticipants' mean-centered amplitude values were introduced as 
dependent variables and modeled separately for P3, familiarity, 
and recollection components. The model included violation con-
dition (violation vs. non-violation), correct answer (correct vs. 
incorrect), and their interaction as fixed effects. The model also 
accounted for random effects by including random intercepts for 
participants and objects. Random slopes were not included in 
this model. As in the behavioral analyses, we follow the same 
rationale to test model comparisons for the random and inter-
action effects.

We also exploratorily used spatiotemporal cluster-based permu-
tation t-tests (CBPT) to check the time window and topographi-
cal distributions. We created 3D data with channels, time points, 
and trials by participants for all scalp electrodes. Clusters were 
created by grouping adjacent channels and time points where 
the p-values were lower than 0.05. The sum of all t-values within 
a cluster was used to detect the following test statistic. This in-
volved randomly assigning the samples into two classes and 
contrasting the differences between these random classes with 
the actual differences between our experimental conditions 
(e.g., violation vs. non-violation trials for the prediction violation 
phase). This process was repeated 10,000 times for each permu-
tation. Later, t-statistics were calculated for each permutation 
and t-values were summed for each cluster. All analyses were 
run with custom MNE-Python scripts (Gramfort et al. 2014) and 
can be found on the study's OSF page (https://​osf.​io/​sbc7d/​​).

2.7   |   Deviations From the Pre-Registered Plan

The current study was preregistered prior to the data collection 
(https://​osf.​io/​68jkz​). All analyses were in line with our pre-
registered analysis plan, except that, in addition to d’ measure, 
we have also included the classification index, as it has demon-
strated greater sensitivity (Ngo et al. 2021).

3   |   Results

3.1   |   Behavioral Results

Before conducting our primary analysis on the response rates 
and classification index, we first checked if participants learned 
the object pairs to build up predictions. Thus, we investigated 
the results from prediction learning, reminder, and associa-
tive memory phases. The RTs during the prediction learning 
and reminder phase were faster for the second item of the pair 
(M = 0.56, SD = 0.10) than the first item of the pair (M = 0.72, 
SD = 0.15), t(1, 38) = 60.97, p < 0.001, d = 0.38, indicating a 
learning process due to prediction of the upcoming object (see 
Appendix A). The accuracy rate during the associative memory 
phase to test original pairs was 0.78 (SD = 0.17) and at the group 
level, all participants selected the associated pair significantly 
above chance level, t(38) = 39.20, p < 0.001, d = 4.44. The accu-
racy rate for the original pairs was not different between viola-
tion and non-violation trials, t(38) = −0.01, p = 0.99.

For the effects of PE on item recognition memory performance, 
the response rates and classification index are displayed in 
Figure 2. First, the full model to test the effect of violation con-
dition on response rates did not show a significant main effect, 
χ2(1) = 0.39, p = 0.53, and the full model did not significantly 
different from the reduced model without violation as a pre-
dictor, Δχ2(2) = 3.39, p = 0.18. Bayes Factors (BFs, Schönbrodt 
and Wagenmakers  2018) to index the evidence for the alter-
native hypothesis relative to the null hypothesis indicated 
moderate evidence for the null hypothesis (95% CI [−0.007, 
0.133], BF01 = 5.15). Second, the classification index did not 
differ between violation items (M = 0.45, SD = 0.24) and non-
violation items (M = 0.49, SD = 0.19), χ2(1) = 3.50, p = 0.06, 95% 
CI [−0.595, 0.035], BF01 = 1.23. Additionally, the participants' 

https://osf.io/sbc7d/
https://osf.io/sbc7d/
https://osf.io/68jkz
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correct responses to similar lures did not differ between vio-
lation (M = 0.31, SD = 0.47) and non-violation items (M = 0.32, 
SD = 0.47), t(1.38) = 0.38, p = 0.70, 95% CI [−0.512, 0.108], 
BF01 = 2.53. Alltogether, these findings indicate that there was 
no significant difference in item recognition memory perfor-
mance between violation and non-violation trials1,2. Although 
we did not find a behavioral difference in response rates and 
classification index, we proceeded to investigate our main hy-
potheses concerning ERP components as they could give better 
insights into mechanisms involved in encoding and retrieval 
processes of PE.

3.2   |   ERP Results

3.2.1   |   P3 Amplitude During Encoding

The ERP results for the P3 amplitude can be seen in Figure 3. 
The average mean amplitude values are displayed in Figure 4A. 
We ran the analysis with mean amplitude values measured at 
centroparietal electrodes within the time window of 400 and 
800 ms. We started with the full model with participants and 
objects as random intercepts and random slopes together with 
random slopes for the predictors to examine how P3 ampli-
tude is influenced by violation condition and item accuracy. 
Model comparison favored the reduced model excluding vio-
lation, item accuracy, and their interaction as random slopes, 
Δχ2(18) = 8.05, p = 0.98 (AIC: 23394 vs. 23,366, BIC: 235451 
vs. 23,408). The reduced model showed that the main effect 
of violation condition ( χ2(1) = 2.59, p = 0.11), item accuracy 
( χ2(1) = 3.24, p = 0.07), and the interaction effect ( χ2(1) = 0.08, 
p = 0.08) was not significant. BFs indicated that there is anec-
dotal evidence for the null hypothesis for violation, item accu-
racy, and the interaction effects on P3 amplitude, respectively 
(95% CI [−0.219, 0.981], BF01 = 2.60; 95% CI [−0.130, 1.026], 
BF01 = 2.19; 95% CI [−0.825, 0.645], BF01 = 0.46). CBPT to 
compare violation and non-violation trials found a cluster 

from 260 ms after stimulus onset to 532 ms for 53 electrodes 
(see Appendix B).

3.2.2   |   LPC Amplitude During Retrieval

Figure  5 displays the ERP outcomes for the LPC. Figure  4B 
shows the average mean amplitude values for each condition. 
We conducted an analysis using mean amplitude values ob-
tained at parietooccipital electrodes between 400 and 800 ms. 
We additionally focused on the 500–800 ms time window to 
provide a more detailed characterization of the LPC for its sug-
gested later time frame (see Appendix D: Friedman 2013; Rugg 
and Curran 2007; Ozubko et al. 2021; Addante, Ranganath, and 
Yonelinas  2012). To test the effects of violation condition and 
item accuracy on the amplitude, we ran the full model with par-
ticipants and trials as random intercepts and random slopes to-
gether with random slopes for the predictors. Model comparison 
favored the reduced model excluding violation, item accuracy, 
and their interaction as random slopes, Δχ2(18) = 12, p = 0.81 
(AIC: 18445 vs. 18,421, BIC: 18591 vs. 18,462). In this reduced 
model without random slopes, the main effect of violation con-
dition (χ2(1) = 0.02, p = 0.88) and item accuracy (χ2(1) = 2.55, 
p = 0.11) was not significant. However, the interaction of vio-
lation and item accuracy was significant, χ2(1) = 3.87, p < 0.05. 
The follow-up results showed that remembered violation trials 
had higher amplitudes than forgotten violation trials, b = 1.31, 
SE = 0.52, p = 0.01. There was no significant difference between 
remembered non-violation and forgotten non-violation trials, 
b = 0.15, SE = 0.54, p = 0.78.

Since we hypothesized that amplitude values during the late 
window of the item recognition phase would be higher for re-
membered violation items compared to forgotten violation 
items, suggesting a recollection effect, we conducted a CBPT 
only for remembered versus forgotten violation items. The re-
sults revealed a cluster between 524 and 1.177 ms after stimulus 

FIGURE 2    |    Response rates and classification index. The raincloud plot shows the distribution of response rates and classification index for vi-
olation and non-violation conditions. (A) Proportion of old responses to old items. (B) The proportion of correct responses (true positives and true 
negatives) out of all instances. The box plots display the median, interquartile range, and 95% confidence interval for each group, while the density 
plots show the distribution of the data points for each experimental condition. The individual data points are displayed as scatter plots.
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onset, involving 56 electrodes (see Appendix  C). Additionally, 
we ran a CBPT only for non-violation trials to test the effect of 
item memory, which found a cluster between 625 and 869 ms 
(see Appendix E).

3.2.3   |   FN400 Amplitude During Retrieval

First, we conducted linear mixed effects models to investigate 
the effects of violation and item accuracy on the FN400 mean 
amplitudes obtained at frontocentral electrodes within 300 ms 
and 500 ms (Figure 6). Starting from the full model to the re-
duced model, there was no significant decrease in the model fit, 
Δχ2(18) = 8.20, p = 0.98. The main effects of violation, χ2(1) = 0.66, 
p = 0.42, and item accuracy, χ2(1) = 1.00, p = 0.32, and the inter-
action effect, χ2(1) = 1.78, p = 0.18, were non-significant. BFs pro-
vided anecdotal evidence for the null hypothesis for violation, 
item accuracy, and the interaction effects on FN400 amplitude 
(95% CI [−0.488, 0.810], BF01 = 5.81; 95% CI [−0.404, 0.926], 
BF01 = 3.70; 95% CI [−0.363, 1.339], BF01 = 2.03). CBPT analysis 

comparing the remembered and forgotten non-violation trials 
did not find a cluster.

4   |   Discussion

The aim of this study was to investigate the electrophysiological 
correlates of encoding and retrieval of events eliciting PEs. To 
achieve this, we employed a statistical learning task, whereby 
participants implicitly learned pairs of objects. Subsequently, 
their memory was tested for predictions that were violated. 
Our behavioral results revealed successful learning of the ob-
ject pairs. However, contrary to our pre-registered hypothesis 
and prior findings (Bein, Plotkin, and Davachi 2021), we did 
not observe a memory advantage for items giving rise to PEs. 
Based on our ERP results, during retrieval, we found a signifi-
cant association between the recollection component and item 
recognition memory for previously violated items. Specifically, 
there was a significant interaction, with higher amplitudes of 
the LPC for remembered violation trials compared to forgotten 

FIGURE 3    |    P3 component during the violation phase. Stimulus-locked ERPs during the prediction violation phase. (A) Color-coded ERP grand 
average recorded at centroparietal electrodes with highlighted time window in gray. (B) Topographical map plot of violation minus non-violation 
difference in the P3 time window.
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violation trials, but no difference between remembered and 
forgotten non-violation trials. The results did not yield sup-
porting evidence for the FN400. Furthermore, our data also 
did not show a link between P3 mean amplitude during en-
coding, PEs, and subsequent memory. Overall, these findings 
suggest that recollection influences the interplay between PE 
and episodic memory. Lastly, our exploratory analysis showed 
that our pre-registered time windows for ERP components 
aligned with the cluster-permutation results, indicating the 
validity of our approach in selecting relevant time-windows 
of interest3.

In line with our pre-registered hypothesis, we found higher 
amplitude values from 400 to 800 ms at parietooccipital elec-
trodes for remembered violation trials compared to forgot-
ten violation trials, indicating a recollection effect during 
retrieval of items that previously elicited PEs. This suggests 
that remembering events with PE might involve the retrieval 
of an item along with its associated contextual information 
from a previous episode. Notably, we observed a significant 
interaction effect, revealing a substantial difference in mean 
amplitudes of the LPC, specifically between remembered and 
forgotten violation items, but not within the non-violation 
items. This finding suggests that the violation of expectations 
can enhance recollection, aligning with previous behavioral 
research demonstrating the retrieval-enhancing effects of PEs 
(Kafkas and Montaldi 2018). The lack of a significant differ-
ence in the non-violation condition implies that the mere pre-
sentation of baseline items may not be sufficient to enhance 
recollection. This could be because novel items, in the absence 
of a strong violation, fail to engage deeper levels of processing, 
such as processing and associating the episodic details of an 
event (Cowell, Barense, and Sadil 2019).

Our results regarding the LPC contribute to the growing 
body of evidence supporting the notion that memory-guided 
predictions can enhance memory performance (Fenerci 
and Sheldon  2022; Henson and Gagnepain  2010; Theobald, 
Galeano-Keiner, and Brod  2022; Van Kesteren et  al.  2012). 
Memory-guided predictions refer to the process by which 
retrieved memories of past events influence and shape pre-
dictions during the comprehension of unfolding events. For in-
stance, Wahlheim et al. (2022) conducted a study investigating 
the effects of predictive-looking errors on remembering event 
changes. Predictive-looking errors occur when viewers direct 
their gaze to incorrect locations based on their memory of past 
experiences, but the actual event deviates from their predic-
tions. In their study, participants watched movies of everyday 
activities, including actions that were repeated either identi-
cally or with changed features. Their findings demonstrated 
that memory guidance led to predictive-looking errors, which 
were associated with better recollection memory for changed 
event features. This suggests that retrieving recent event fea-
tures can guide predictions during unfolding events, and PEs 
can contribute to enhanced recollection when it is driven by 
expectations. In line with these findings, we observed a recol-
lection process only for violation items, which were presented 
instead of the second object of the pairs that the participants 
had predicted to see. Taken together, our findings show that 
deviations from what was expected could generate a stronger 
recollection signal that facilitates subsequent memory.

However, in contrast to previous studies that have demonstrated 
better memory for events eliciting PEs (Antony et al. 2021; Bein, 
Plotkin, and Davachi 2021; Brod, Hasselhorn, and Bunge 2018; 
Greve et al. 2017; Quent, Greve, and Henson 2022), our study, de-
spite utilizing a similar setup (Bein, Plotkin, and Davachi 2021), 

FIGURE 4    |    Average ERP amplitude values. Average ERP amplitude values for each condition within the relevant component-specific time win-
dows. Error bars represent the within-participant standard error of the mean. (A) Mean amplitude values of P3 component during the violation phase. 
(B) Mean amplitude values of LPC during the item recognition phase. **p < 0.01.
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revealed a more nuanced pattern. We did not observe an overall 
memory advantage for PEs, but only differences in the neural 
correlates of retrieval of events that elicited PEs. The behavioral 
observation is consistent with recent studies that did not show 
memory-enhancing effect of PEs (Ortiz-Tudela et al. 2023; Turan 
et al. 2023). Thus, it is reasonable to consider that there may be 
additional factors moderating the relationship between PEs 
and subsequent memory benefit. Factors such as the strength 
and the precision of the prior (Greve et  al.  2018; Ortiz-Tudela 
et al. 2023), the appraisal (Gruber and Ranganath 2019) and the 
novelty (Schomaker and Meeter 2018) of the violation could po-
tentially influence the effect of PEs on memory. In the following, 
we will discuss these factors and provide potential explanations 
for their presence in our results.

Our study protocol was similar to a previous study that demon-
strated the beneficial effect of PEs on memory (Bein, Plotkin, and 
Davachi 2021). However, there was a main difference between 
our study and the study by Bein, Plotkin, and Davachi's (2021) 
which was the increased number of object pairs and blocks. To 
ensure an adequate signal-to-noise ratio for the EEG signal, we 
increased the number of trials from 36 to 50 for each condition, 
necessitating additional blocks and sessions to achieve an effec-
tive learning threshold. Consequently, our extended learning 
phase likely resulted in stronger predictions compared to the 
previous study (Bein, Plotkin, and Davachi  2021), where the 
reported accuracy rate was 0.60, whereas in our study, it was 
0.78. As a result, our participants may have had stronger predic-
tions, leading to higher item surprise for violation trials (Greve 

FIGURE 5    |    LPC during the item recognition phase. Stimulus-locked ERPs during the item recognition phase. (A) Color-coded ERP grand aver-
age recorded at parietooccipital electrodes with highlighted time window in gray. (B) Topographical map plot of remembered violation minus forgot-
ten violation difference in the recollection component time window.
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et al. 2017; Quent, Henson, and Greve 2021). It is reasonable to 
assume that stronger predictions are associated with higher PEs 
and that might have resulted in improved subsequent memory. 
However, according to a recent framework (PACE: Gruber and 
Ranganath 2019), the memory enhancement for PEs is not solely 
determined by prediction strength but also by appraisal. This 
framework proposes that PEs trigger an appraisal process that 
influences one's actions and subjective experience in resolving 
the uncertainty elicited by PEs. This process can either trigger 
curiosity and subsequent memory enhancement or elicit behav-
ioral inhibition due to negative uncertainty assessment. In our 
study, participants may have exhibited a tendency to disregard 
the new objects altogether, violation and non-violation objects 

presented during the violation phase, instead relied more heav-
ily on the previously learned objects, possibly indicating a nega-
tive assessment of uncertainty resolution. Congruently, a similar 
finding was reported in one of our recent studies (Ortiz-Tudela 
et  al.  2023), which demonstrated a decreased memory perfor-
mance for violations of strong predictions derived from low-
uncertainty priors.

Furthermore, the role of context surprise (Quent, Henson, and 
Greve 2021) should be taken into account when interpreting our 
findings. Our task involved extensive exposure to the paired 
structure of object associations, which could have created con-
text surprise when participants encountered a non-violation 

FIGURE 6    |    FN400 during the item recognition phase. Stimulus-locked ERPs during the item recognition phase. (A) Color-coded ERP grand aver-
age recorded at frontocentral electrodes with highlighted time window in gray. (B) Topographical map plot of remembered violation minus forgotten 
violation difference in the recollection component time window.
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item that violated the expected task structure. Specifically, 
violation items violated the expected object at the item level, 
whereas non-violation items violated the expected task structure 
by presenting an object that had not been previously seen in that 
specific position (i.e., after the second object of a pair), thereby 
creating a context surprise and leading to novelty. This distinc-
tion may have elicited different cognitive and neural responses 
compared to the violation items that violated the expected object 
at the item level. Therefore, the absence of a memory benefit for 
PEs and its relationship to the P3 component in our study could 
potentially be attributed to both experimental conditions engen-
dering expectations and subsequent violations of those expecta-
tions (Schomaker and Meeter 2018). Additionally, since our task 
involved a statistical learning paradigm, we did not specifically 
measure participants' awareness of the violations, which could 
have influenced their responses and neural correlates. Future 
studies should consider assessing this awareness to better un-
derstand this complex relationship between PE and memory 
processes.

While our current study focused on the electrophysiological 
correlates that are not easily localized in the brain, to gain a 
comprehensive view of the neural mechanisms underlying the 
impact of PE on subsequent memory, it is important to consider 
anatomical regions underlying episodic memory. Prior research 
has shown that the hippocampus is involved in both familiarity 
and recollection (Merkow, Burke, and Kahana 2015). However, 
the temporal dynamics of these processes in the hippocampus 
differ. For example, an intracranial EEG study revealed distinc-
tive hippocampal responses during successful memory retrieval 
emerging between 500 and 1500 ms post stimulus, indicating a 
recollection process (Staresina et al. 2012). This finding aligns 
with our LPC and CBPT findings, suggesting that a hippo-
campal signal that distinguishes successful from unsuccessful 
memory performance can be detected at later time points. On 
the other hand, in contrast to prior research that has reported a 
relationship between subsequent memory, P3, and hippocampal 
activity (Fonken, Kam, and Knight 2020), our study, similar to 
some others (Höltje and Mecklinger  2022; Rangel-Gomez and 
Meeter 2013), did not demonstrate a direct link between expec-
tancy, successful memory and the P3 component. Even though 
this discrepancy could be attributed to variations in the types 
of memory tests employed (Quent, Henson, and Greve  2021), 
it indicates that there may be more nuanced dynamics at play 
in this relationship. Future investigations can build upon our 
findings by incorporating neuroimaging techniques to pinpoint 
the specific brain regions associated with the encoding and re-
trieval processes of unexpected events (e.g., Bein, Reggev, and 
Maril 2020; Kumaran and Maguire 2006; Sinclair et al. 2021).

Our results highlight the importance of recollection as a poten-
tial mechanism underlying the association between PEs and 
episodic memory processes. Even though our findings indicate 
differences in recollection related to PE, we acknowledge that the 
absence of behavioral differences needs further explanation and 
investigation (Yacoby, Reggev, and Maril 2021). It raises ques-
tions about the robustness of an overall beneficial effect of PEs 
on episodic memory, while at the same time highlights the value 
of EEG in revealing subtle differences in memory processes. The 
null behavioral effects of PE on memory performance in our 
study may not imply an absence of PE. Instead, it suggests that 

other factors, such as the strength and the precision of priors, 
appraisal, and novelty of the violation (Greve et al. 2018; Gruber 
and Ranganath 2019; Ortiz-Tudela et al. 2023; Schomaker and 
Meeter  2018), may moderate the relationship between PE and 
memory benefit. Future research should consider these factors 
to better understand this complex relationship.

In conclusion, our findings on higher LPC amplitudes for re-
membered violation trials compared to forgotten violation trials, 
with no difference observed for non-violation trials, contribute 
to our understanding of how we remember unexpected events, 
when successfully done. However, not all events with PE are 
consistently remembered later on, as shown by a lack of over-
all better memory performance for events with violation. This 
aligns with the notion that while PE can generate neural sig-
natures indicative for recollection, this may not always happen 
or translate into measurable behavioral outcomes. Further in-
vestigation into the recollection process could provide a more 
comprehensive understanding of how PEs influence memory. 
Overall, our study contributes to the growing body of knowledge 
on the complex and nuanced nature of the relationship between 
PE and episodic memory processes, shedding light on the under-
lying neural mechanisms involved.
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Endnotes

	1	In addition to response rates and classification index, we also calcu-
lated d’ scores as stated in the pre-registered report. The results did not 
show a main effect of violation on d’ scores, either, χ2(1) = 2.37, p = 0.12.

	2	We also analyzed memory performance without filtering the data 
based on the associative memory performance. The effect of viola-
tion condition on response rates did not yield a significant main effect 
(Δχ2(2) = 2.64, p = 0.27), suggesting that the approach to analyze the 
item recognition did not change the overall results, namely that there 
was no difference between violation and non-violation items and both 
sets of analyses align in their general findings.

	3	The CBPT not only allowed us to identify significant effects but also 
served as a confirmatory tool, validating our choice of time windows 
for investigating the ERP components (Frömer, Maier, and Abdel 
Rahman 2018).
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Appendix A

A.	 RT differences between the first and second item of the pairs during the prediction learning and reminder phases.

B.	 CBPT results for the P3 mean amplitude for the comparison violation and non-violation trials.

C.	 CBPT results for the recollection component for the comparison remembered violation and forgotten violation trials.

D.	 The analysis for calculating mean amplitude values within the 500–800 ms time window at the parietooccipital electrodes.

E.	 CBPT results for the recollection component for the comparison remembered non-violation and forgotten non-violation trials.

D. We conducted a similar linear mixed-effects models approach to test the effects of violation condition and item accuracy on the LPC amplitude. 
Results from this extended analysis revealed that the model comparison favored the reduced model excluding violation, item accuracy, and their 
interaction as random slopes, Δχ2(18) = 11.84, p = 0.81 (AIC: 18741 vs. 18,717, BIC: 18887 vs. 18,758). In this reduced model without random slopes, 
while the main effect of violation condition (χ2(1) = 0.02, p = 0.90) was not significant, the item accuracy (χ2(1) = 4.42, p < 0.05) was significant. We 
observed higher amplitude values for remembered trials than forgotten trials (b = 0.82, SE = 0.40). Additionally, the interaction of violation and item 
accuracy was significant, χ2(1) = 3.67, p < 0.05. The follow-up results showed that remembered violation trials had higher amplitudes than forgotten 
violation trials, b = 1.58, SE = 0.56, p < 0.01. There was no significant difference between remembered non-violation and forgotten non-violation 
trials, b = 0.06, SE = 0.58, p = 0.91.
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