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Abstract 

Background  The study aimed to explore whether Miya (MY), a kind of Clostridium butyricum, regulated osteoarthritis 
(OA) progression through adenosine 5’-monophosphate-activated protein kinase (AMPK) pathway.

Methods  The OA rats were orally given MY daily for 4 weeks and were intramuscularly injected with AMPK inhibi-
tor once a week for 4 weeks. Hematoxylin eosin (HE) staining was used to observe the histological morphology 
of the knee joint. The levels of succinate dehydrogenase (SDH) and muscle glycogen (MG) in the tibia muscle of rats 
were detected by the corresponding kits, as well as the expression of related genes/proteins were assessed by real-
time quantitative PCR (RT-qPCR) and western blot.

Results  HE staining suggested that MY suppressed the symptoms of OA, which was abolished by AMPK inhibi-
tor. Furthermore, the SDH and MG contents in the OA + MY + AMPK inhibitor group were lower than in the OA + MY 
group. At last, the levels of AMPK, PI3K, AKT1, Ldh, Myod, Chrna1, and Chrnd were notably decreased after AMPK inhibi-
tor treatment, while the levels of Lcad and Mcad were up-regulated by AMPK inhibitor. Furthermore, their protein 
expression levels detected by western blot were consistent with those from RT-qPCR.

Conclusion  MY may partially regulate skeletal muscle changes and prevente OA development through the AMPK 
pathway.
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Background
Osteoarthritis (OA) is a chronic degenerative disease of 
bone and joint [1]. The main pathological features of OA 
are articular cartilage damage, subchondral bone change, 

osteophyte formation and synovial inflammation of 
joint [2]. The primary causes of impairment in the aged 
are joint pain, swelling, stiffness, and loss of function, 
which are the clinical signs of OA [3]. As life expectancy 
increases and populations age globally, the prevalence 
and incidence of OA are increasing [4]. It is estimated 
that 30.8 million adults in the United States, and 300 
million people worldwide suffer from OA [2], creating a 
significant economic burden in terms of medical costs, 
lost wages, and lost economic productivity [5]. At pre-
sent, the main clinical treatment of OA is oral drugs, 
intra-articular drug injection and surgical treatment [6]. 
Non-steroidal anti-inflammatory drugs (NSAID), cor-
ticosteroids, and opioids can be used to improve joint 
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function and delay the progression of OA through anti-
inflammatory and pain-relieving effects [7]. However, 
these drugs are easy to cause gastrointestinal tract, car-
diovascular reactions, liver and kidney function damage 
and other adverse reactions, which have certain limita-
tions on clinical application [8]. Due to the unknown 
pathophysiology of OA, most treatment methods only 
relieve symptoms such as pain. Therefore, it is crucial to 
study the pathophysiology and management of OA.

Gut microbiota (GM) is a complex ecosystem in the 
body, which affects many physiological processes and is 
also the pathophysiological basis of many diseases [9]. 
Recent research has found that the imbalance of GM may 
be an important environmental factor in the develop-
ment of OA [10]. The relationship between GM and OA 
provides a new perspective for further study of the com-
plex pathogenesis of OA. For example, the study of Schott 
EM et al. provided direct evidence for the association of 
GM with OA [11], and found that probiotics such as Bifi-
dobacterium (Bifidobacterium pseudolongum) decreased 
in the intestines of obesity-related OA mice, and bacteria 
with pro-inflammatory effects increased [11]. By increas-
ing probiotics such as Bifidobacterium (Bifidobacterium 
lactis, Bifidobacterium pseudolongum, Bifidobacterium 
longum, and Bifidobacterium bifidum) [12] in the intes-
tinal tract of mice, inflammation in the colon and knee 
joints was reduced, and the development of OA could be 
inhibited. Probiotics are effective dietary supplements, 
which are beneficial to maintaining microecological bal-
ance, and are the focus of research on microecological 
therapy for OA [13]. Miya (MY) is a kind of Clostridium 
butyricum Tablets that are reported to be a probiotic for 
use in humans and livestock, and an anaerobic bacillus 
with strong acid resistance and corrosion resistance [14]. 
It can multiply in the intestine to promote the growth 
of intestinal probiotics such as Bifidobacterium longum, 
Streptococcus thermophilus and Lactobacillus bulgaricus, 
as well as inhibit the reproduction of harmful bacteria. 
Previous studies have shown that MY promotes mucosal 
repair, maintains barrier integrity, and restores intestinal 
function [15, 16]. Besides, MY can be used as an antidiar-
rheal. It has been reported that MY is beneficial for the 
neuroprotection of mental health issues, non-alcoholic 
fatty liver disease, and stomach ulcers [17–19]. In our 
previous study, we found that MY could enhance the 
abundance of beneficial bacteria (Lactobacillus, Oscil-
lospira, Clostridium, and Coprococcus), while decline 
the abundance of pathogenic microorganism (Prevo-
tella, Ruminococcus, Desulfovibrio, and Helicobacter) in 
gut, as well as regulate energy metabolism-related genes, 
myogenesis-associated genes, neuromuscular junctions 
(NMJ)-related genes and interleukin-1β (IL-1β) in mus-
cle, consequently promoting the joint damage repair and 

protecting OA via the “gut-muscle-joint” axis [20]. How-
ever, whether MY is involved in OA progression through 
other signaling pathways needs to be further explored.

Adenosine 5’-monophosphate-activated protein kinase 
(AMPK) is a key regulator of energy and metabolic bal-
ance, and is reported to participate in regulating cell 
growth, proliferation, survival, and energy metabolism 
[21]. Recent studies have demonstrated that AMPK 
improves the anti-stress ability and survival ability of 
chondrocytes by regulating the activity of its downstream 
target molecules in articular chondrocytes, thereby play-
ing an important role in the occurrence and development 
of OA [22, 23]. When AMPK activity in chondrocytes 
is reduced the articular cartilage degrades, and leads to 
OA [24]. A previous study discovered that in human OA, 
adiponectin could facilitate matrix breakdown of chon-
drocytes via the AMPK pathway [25]. Another study 
manifested that AMPK loss in the chondrocytes could 
accelerate the progression of instability-induced and 
aging-related osteoarthritis in adult mice, which indi-
cated that AMPK activity in chondrocytes is important 
in maintaining joint homeostasis and OA development 
[26]. Thus, AMPK may be a potential therapeutic target 
for OA. Although there is growing evidence that AMPK 
activity is involved in the pathogenesis of OA, whether 
MY can alleviate OA through AMPK pathway, and its 
molecular pathways are still unclear. Therefore, this study 
constructed an OA rat model, and then MY (Miyalisan 
Pharmaceutical Co., Ltd, Japan) and BML275 (dorsomor-
phin, an AMPK inhibitor, Shanghai yuanye Biotechnol-
ogy Co., Ltd, China) were used to investigate the roles 
of AMPK pathways in MY regulating OA progression, 
which will provide new insights and strategies for drug 
development in the treatment of OA.

Methods
Animal experiments
A total of 24 of specific pathogen free female Wistar rats 
(weighing 180–220 g) were purchased from SLAC Labo-
ratory Animal Co., Ltd (Shanghai, China). All the rats 
were kept in pathogen-free micro-isolated cages in a spe-
cific laboratory animal facility at 22–25 ℃ and 20–25% 
relative humidity, with a 12  h light/dark cycle. During 
the experiments, all the rats were free access to food and 
water.

After acclimatization for 7 days, the rats were randomly 
grouped into 4 groups as follows (n = 6 for each group): 
control, OA, OA + MY, and OA + MY + AMPK inhibi-
tor groups. The OA rat model was created as previously 
described [20]. Briefly, the rats were deeply anaesthetized 
using 2%-4% isoflurane before modeling, and then fixed 
in lateral position. After that, the knee hair was removed, 
and the knee incision with a length of about 4  cm was 
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made. The knee capsule was opened laterally, the anterior 
cruciate ligament was incised, and muscles, fascia and 
skin were sutured. After operation, to prevent infections, 
penicillin (30000U/ time) was administered intramuscu-
larly to the rats once a day for 3 consecutive days, as well 
as the rats were closely observed in terms of food and 
water intake, hair color change, incision healing status, 
suture shedding and infections. However, the rats in the 
control group did not have their anterior cruciate liga-
ments dissected.

After 2  weeks of modeling, the rats in the OA + MY, 
and OA + MY + AMPK inhibitor groups were firstly 
orally given MY (4 × 105 colony-forming units/mL C. 
butyricum, Miyalisan Pharmaceutical Co., Ltd, Japan) 
daily for 4 weeks, and then were intramuscularly injected 
with an equal volume of PBS, and 10  mg/kg BML275 
(dorsomorphin, an AMPK inhibitor, cat. no. S31490, 
Shanghai Yuanye Biotechnology Co., Ltd, China) [27] 
once a week for 4 weeks, respectively. After that, all the 
rats were sacrificed by cervical dislocation, and knee joint 
samples and tibia muscle tissues were collected. All the 
animal experiments were approved by the Ethics Com-
mittee of Shanghai Tenth People’s Hospital, Tongji Uni-
versity School of Medicine. And the study is reported in 
accordance with the relavant ARRIVE guidelines.

Hematoxylin–eosin (HE) staining
The collected knee joint samples were fixed with 4% par-
aformaldehyde for 24 h, and then, were decalcified, dehy-
drated, waxed, and embedded in paraffin. After that, the 
slices were immersed in hematoxylin – eosin (HE, cat. 
no. C0105S, Beyotime, Shanghai, China) for 5 min. After 
dewatering and sealing, the images were observed by an 
inverted optical microscope (IX70, Olympus, Japan).

Determination of succinate dehydrogenase (SDH) 
and muscle glycogen (MG)
Based on the instructions of the manufacturer, the SDH 
detection kit (cat. no. A022-1–1, Nanjing Jiancheng 
Bioengineering Institute, Nanjing, China) and glyco-
gen detection kit (cat. no. A043-1–1, Nanjing Jiancheng 
Bioengineering Institute) were respectively used to 
determine the levels of SDH and MG in the tibia muscle 
samples of different rats.

Real‑time quantitative PCR (RT‑qPCR)
Total RNA was isolated from the tibia muscle samples 
in the OA + MY and OA + MY + AMPK inhibitor groups 
using RNAiso Plus (Trizol, cat no. 9109,Takara, Tokyo, 
Japan), and then reverse-transcribed to cDNA using Pri-
meScript™ RT Master Mix (cat. no. RR036A, Takara). 
Then, the RT-qPCR was amplified using Power SYBR 
Green PCR Master Mix (cat. no. 4367659, Thermo Fisher 
Scientific, USA) in a 7500 RealTime PCR System (ABI, 
Waltham, MA, USA). Glyceraldehyde-3-phosphate dehy-
drogenase (GAPDH) was used as the internal control, 
and the sequences of all primers were shown in Table 1. 
The relative mRNA levels were calculated by the 2−ΔΔCT 
method.

Western blot
Total protein was isolated from the tibia muscle sam-
ples using RIPA (cat. no. P0013B, Beyotime, Shanghai, 
China), and the concentrations of total protein samples 
were tested using a BCA assay kit (cat. no. PL212989, 
Thermo Fisher Scientific). Subsequently, the protein sam-
ples (20  μg) were separated via 10% SDS-PAGE using 
an electrophoresis apparatus (model: EPS300, Tanon 
Biotech, Shanghai, China), and transferred onto PVDF 
membranes by a trans-blot transfer (model: VE186, 

Table 1  Primer sequences for RT-qPCR assay

Gene Forward Primer (5’-3’) Reverse Primer (5’-3’)

AMPK CAG​CGA​TCA​ACA​GGC​GAG​AC AGA​GAT​ATC​CCA​GCA​AAC​CTA​TCC​A

AKT CTT​TAT​TGG​CTA​CAA​GGA​ACGG​ CAG​TCT​GAA​TGG​CGG​TGG​T

mTOR AGT​GAA​GCC​GAG​AGC​AAT​GAGA​ GAC​AAG​GAG​ATA​GAA​CGG​AAG​AAG​C

p70S6K CTA​CAG​AGA​CCT​GAA​GCC​GGAGA​ AAT​GTG​TGC​GTG​ACT​GTT​CCATC​

PI3K ACG​GCA​ATG​TGG​AGC​AGA​ GTC​GTA​GCC​AAT​CAG​GGA​G

Murf-1 ACC​TGC​TGG​TGG​AGA​ACA​TC CTT​CGT​GTT​CCT​TGC​ACA​TC

MyoD CGA​CTG​CCT​GTC​CAG​CAT​AG GGA​CAC​TGA​GGG​GTG​GAG​TC

Ldh GCA​GCA​GGG​TTT​CTA​TGG​AG TGG​AGA​CAG​TGG​GAT​TGT​CA

Lcad GCA​GTT​ACT​TGG​GAA​GAG​CAA​ GGC​ATG​ACA​ATA​TCT​GAA​TGGA​

Mcad CCA​CAG​TGA​CCC​TTT​CTA​G GTG​ACA​GGC​TAC​CTT​TCT​T

Chrna1 GGC​ACT​TGG​ACC​TAT​GAC​GGC​TCT​ GAC​GCT​GCA​TGA​CGA​AGT​GGT​AGG​

Chrnd GCC​GCA​AGC​CGC​TCT​TCT​ACA​TCA​ CGT​GCT​GGG​TGT​TCG​GAA​GTG​GAT​

GAPDH AGA​CAG​CCG​CAT​CTT​CTT​GT CTT​GCC​GTG​GGT​AGA​GTC​AT
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Tanon Biotech). The membranes were incubated with 
anti-AMPK antibody (cat. no. 2532S, 1: 1000, CST, Dan-
vers, MA USA), anti-cholinergic receptor nicotinic alpha 
1 subunit (Chrna1) antibody (cat. no. 10613–1-AP, 1: 
1000, Proteintech, Rosemont, IL, USA), anti- lactate 
dehydrogenase (Ldh) antibody (cat. no. 21799–1-AP, 1: 
1000, Abcam, Cambridge, UK), anti-medium-chain acyl-
CoA dehydrogenase (Mcad) antibody (cat. no. 55210–1-
AP, 1: 1000, Proteintech), anti-myogenic differentiation 
antigen (Myod) antibody (cat. no. 18943–1-AP, 1: 1000, 
Proteintech), anti-cholinergic receptor nicotinic delta 
subunit (Chrnd) antibody (cat. no. ab233758, 1: 1000, 
Abcam), anti-phosphatidylinositol-3 kinase (PI3K) anti-
body (cat. no. 20584–1-AP, 1: 1000, Proteintech), anti-
long-chain acyl CoA dehydrogenase (Lcad) antibody (cat. 
no. 17526–1-AP, 1: 1000, Proteintech), and anti-GAPDH 
antibody (cat. no. 60004–1-lg, 1: 10,000, Proteintech) at 
4˚C overnight; and after washing, the secondary antibody 
(cat. no. 111–035-003 or 115–035-003, 1: 5000, Jackson 
ImmunoResearch, West Grove, PA, USA) was added, and 
then incubated at 37˚C for 2 h. Finally, the protein bands 
were visualized using an enhanced chemiluminescence 
luminescence (cat. no. P0018AS, Beyotime, Shanghai, 
China).

Statistical analysis
Statistical analysis was performed using Graphpad prism 
5 (GraphPad Software, Inc., San Diego, CA, USA), and 
data were presented as mean ± standard deviation (SD). 
Student’s t-test was used to compare the differences 
between two groups; while one-way analysis of variance 
(ANOVA) followed by Tukey’s post hoc test was applied 
for the comparison of more than two groups. p < 0.05 was 
considered statistically significant.

Results
Effects of the AMPK inhibitor on OA
The nuclei of chondrocytes were blue-purple and the 
cytoplasm was pink. In the knee tissue sections of con-
trol group, the membrane cells were arranged neatly, 
the number of chondrocytes was large, the shapes were 
mostly round or quasi-round, the size was uniform, and 
the nuclei were visible and the color was uniform. In the 
knee tissue sections of OA group, synovial tissue cells 
were hyperplasia and disordered, the number of chon-
drocytes was reduced, the nuclear staining was shallow, 
and the four layers of cartilage tissue were indistinct. In 
the knee tissue sections of the OA + MY group, chon-
drocytes showed abnormal morphology, disordered 
distribution and even clustered distribution, while the 
number of the chondrocytes was higher than that in the 
OA group, and the arrangement of cartilage tissues was 
more orderly than that of the OA group. In addition, in 

the OA + MY + AMPK inhibitor group, the number of 
the chondrocytes was higher than that in the OA group, 
whereas was lower than that in the OA + MY group; as 
well as the arrangement of cartilage tissues was more 
orderly than that of OA group (Fig. 1).

Effects of the AMPK inhibitor on SDH and MG contents 
in OA
Skeletal muscle is the body’s main organ for absorbing 
glucose and oxidizing fatty acids, and plays an important 
role in metabolism. SDH is a respiratory chain enzyme 
in the TCA cycle, involved in oxidative phosphoryla-
tion and respiratory metabolism [28]. MG is involved 
in the energy supply of muscles, and disturbance of MG 
levels may lead to loss of muscle strength and function, 
impairing biological energy metabolism [29]. There-
fore, the function of the tibia muscle samples was fur-
ther examined. The SDH contents in the OA + MY and 
OA + MY + AMPK inhibitor groups were 7.97 ± 0.21 and 
5.93 ± 0.40 U/mg prot, respectively. These indicated that 
compared to the OA + MY group, the AMPK inhibitor 
notably decreased the SDH content by 25.6% (p < 0.05, 
Fig. 2A). Additionally, the MG contents in the OA + MY 
and OA + MY + AMPK inhibitor groups were respec-
tively 5.01 ± 0.18 and 4.40 ± 0.13  mg/g tissue, which 
displayed that the AMPK inhibitor treatment could sig-
nificantly reduce the MG content by 12.18% compared to 
the OA + MY group (p < 0.05, Fig. 2B).

RT‑qPCR and western blot analysis
AMPK, PI3K, protein kinase B (AKT1), and mamma-
lian target of rapamycin (mTOR) are closely associ-
ated with AMPK pathway; 70-kDa ribosomal protein 
S6 kinase (p70s6k), Ldh, Lcad, and Mcad are energy 
metabolism-related genes; Myod and muscle RING 
finger 1 (Murf1) are myogenesis-associated genes; as 
well as Chrna1 and Chrnd are NMJ- related genes. It 
is clear that the mRNA expression levels of AMPK, 
PI3K, AKT1, and mTOR were markedly down-regulated 
in the OA + MY + AMPK inhibitor group compared 
to the OA + MY group (p < 0.05, Fig.  3A-D). However, 
there was no difference in p70s6k mRNA expression 
between the two groups (p > 0.05, Fig.  3E). For Ldh, 
its expression was also significantly decreased after 
the AMPK inhibitor treatment in comparison with 
the OA + MY group (p < 0.05, Fig.  3F). Relative to the 
OA + MY group, the mRNA expression levels of Lcad 
and Mcad were evidently increased by AMPK inhibi-
tor treatment (p < 0.05, Fig. 3G, H). For Myod, Chrna1 
and Chrnd, the trend of their mRNA expression lev-
els in the two groups were similar with that of the 
AMPK and PI3K mRNA expression (p < 0.05, Fig.  3I, 
K, L). However, no significant difference was found 
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in the Murf-1 expression between the OA + MY and 
OA + MY + AMPK inhibitor groups (p > 0.05, Fig. 3J).

Furthermore, western blot was used to determine the 
protein expression levels of AMPK, PI3K, Ldh, Lcad, 
Mcad, Myod, Chrna1 and Chrnd. It was found that 
the tendency of AMPK, PI3K, Ldh, Lcad, Mcad, Myod, 
Chrna1 and Chrnd protein expression levels in the dif-
ferent groups detected by western blot were consistent 
with that measured by RT-qPCR (p < 0.05, Fig. 4A-I).

Discussion
OA, is a kind of bone and joint disease with multiple fac-
tors and pathological changes, has a high morbidity and 
a disability rate in the elderly population, causing a huge 
economic burden to society [1]. MY is a probiotic that 
is used to treat and improve digestive tract diseases [30, 
31]. Our previous study found that MY promoted joint 
injury repair and inhibited OA progression through the 
"gut-muscle-joint" axis [20]. Then, the research explored 
the molecular mechanisms by which MY protects against 

Fig. 1  The histological changes of rats in the different groups observed by hematoxylin–eosin (HE) staining at 40 × , 100 × and 200 × magnification 
times. The green arrow indicates the surface of the cartilage; the yellow arrow points to cells; the red arrow indicates the tide line; and the blue 
arrow indicates the absence of cells. The rough triangle represents the nucleus; and the thin arrow represents the cytoplasm. Control: 
the rats without any treatments; OA: the osteoarthritis (OA) rat model; OA + MY: the OA rats treated with Miya (MY); OA + MY + adenosine 
5’-monophosphate-activated protein kinase (AMPK) inhibitor: the OA rats firstly treated with MY, and then treated with BML275 (dorsomorphin, 
an AMPK inhibitor)

Fig. 2  Effects of the AMPK inhibitor on the succinate dehydrogenase (SDH) and muscle glycogen (MG) in MY-treated OA. A The contents of SDH 
in the tibia muscle of different groups. B The contents of MG in the tibia muscle of different groups. * p < 0.05, compared with the OA + MY group
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Fig. 3  Effects of the AMPK inhibitor on the mRNA levels of associated genes in the MY-treated OA using real-time quantitative PCR. The mRNA 
expression levels of (A) AMPK, (B) PI3K, (C) AKT1, (D) mTOR, (E) p70s6k, (F) Ldh, (G) Lcad, (H) Mcad, (I) Myod, (J) Murf-1, (K) Chrna1, (L) Chrnd 
in the different groups. * p < 0.05, compared with the OA + MY group
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OA. AMPK has been extensively investigated and has 
attracted a lot of attention due to its critical function in 
preserving the body’s energy balance, which was found 
to be significantly up-regulated after MY administration. 
However, the roles of AMPK in MY-treated OA remains 
unclear. Therefore, a rat OA model was constructed, 
and treated with MY and an AMPK inhibitor to study 
the roles of the AMPK inhibitor in MY-mediated OA. 
This study found that MY could regulate skeletal mus-
cle changes, alleviate cartilage injury, and prevent OA 
development, while the AMPK inhibitor could partially 
reverse the actions of MY in OA.

AMPK not only plays the role of intracellular energy 
sensor, but also participates in maintaining cellular 

homeostasis under various stress conditions [32]. It has 
been reported that when the AMPK activity in chon-
drocytes was declined, the articular cartilage would 
become degenerative, thus triggering OA occurrence and 
progression [33]. A previous study demonstrated that 
metformin (an AMPK agonist) could inhibit the develop-
ment and progression of OA by activating AMPK sign-
aling [23]. Another study in a randomized controlled 
trial showed that methotrexate, a kind of AMPK ago-
nists, could significantly relieve pain in patients with 
knee OA and synovitis [34]. In vitro and in vivo experi-
ments showed that chitosan oligosaccharides could sup-
press the expression of inducible nitric oxide synthase 
and cyclooxygenase-2 in TNF-α-induced synovial cells 

Fig. 4  Effects of the AMPK inhibitor on the protein levels of the associated proteins in the MY-treated OA by western blot. A The protein bands of all 
the associated proteins visualized by western blot analysis. The protein expression levels of (B) AMPK, (C) PI3K, (D) Ldh, (E) Lcad, (F) Mcad, (G) Myod, 
(H) Chrna1, (I) Chrnd in the different groups. * p < 0.05, compared with the OA + MY group
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through an AMPK-dependent mechanism, thereby alle-
viating inflammation in  vivo through activating AMPK 
signaling pathway [35]. These reports indicate that 
AMPK agonists can delay the development of experi-
mental OA. In our previous study, MY treatment signifi-
cantly increased AMPK mRNA and protein expression in 
the OA rat models [20]. Considering the roles of AMPK 
in OA, an AMPK inhibitor (BML275, dorsomorphin) was 
used to investigate whether MY inhibited OA progres-
sion through the AMPK signaling pathway in a rat model 
of OA, and we found that the AMPK inhibitor could 
reverse the effects of MY on OA partially, further indicat-
ing the roles of AMPK in MY-treated OA.

Skeletal muscle is critical in the evolution of knee 
structural destruction and functional changes in OA 
patients [36, 37]. Skeletal muscle components of OA 
patients are changed, which release myogenic cytokines 
involved in the pathogenesis of OA [37]. Muscle strength 
training helps delay OA while improving joint function 
and relieving pain [38]. Myogenic cytokines are a kind of 
cytokines or proteins secreted by muscles that regulates 
muscle development and growth, and plays an important 
role in the formation of bone and fat [39]. Our previous 
study found that SDH and MG contents were decreased 
in the OA model rats; while MY could significantly ele-
vated the contents caused by OA [20]. However, in this 
study, the SDH and MG contents were notably decreased 
after AMPK inhibitor treatment. SDH is widely present 
in mitochondria, and is tightly bound to the inner mem-
brane of mitochondria [40].

Mitochondria produce ATP through tricarboxylic acid 
cycling and oxidative phosphorylation, affecting reac-
tive oxygen species production, inflammation regulation, 
chondrocyte senescence, stromal catabolism, apoptosis 
induction, and calcium homeostasis in the pathological 
process of OA [41, 42]. Succinic acid is an intermediate 
product of the tricarboxylic acid cycle, and its accumu-
lation ultimately promotes the increase of inflammatory 
factor IL-1β, leading to inflammatory response [43]. SDH 
is one of the important enzymes in the electron trans-
port chain and oxidative phosphorylation in cellular glu-
cose metabolism [44]. The decrease in SDH activity may 
cause the cell energy metabolism to slow down or stop, 
and the decrease of adenosine triphosphate production, 
contributing to the disturbance of glucose metabolism 
[45]. Glycogen is an important exercise energy substance 
that is mainly stored in the liver and muscle tissue. MG 
is considered an important energy source for high-inten-
sity and endurance exercise, and is an important factor 
in sustained muscle movement [46]. The germ-free mice 
were reported to have lower MG levels than individuals 
with normal GM components [47]. Taken together, it can 
be inferred that MY could increase the contents of SDH 

and MG in muscles, while is abolished by the AMPK 
inhibitor, which indicated that MY may affect the levels 
of SDH and MG via AMPK pathway.

In addition, we observed that the AMPK inhibitor 
could significantly down-regulate the expression levels 
of AMPK, PI3K, AKT1, and mTOR. It has been reported 
that AMPK can be abnormally activated in articular 
chondrocytes, and phosphorylated activation of AMPK 
can promote phosphoinositide 3 kinase (PI3K) to reduce 
apoptosis [48]. PI3K is believed to be closely related to 
articular cartilage injury, and has been paid close atten-
tion by researchers [49, 50]. AKT is a direct downstream 
target of P13K [51], which included three subtypes of 
AKT1, AKT2 and AKT3. Among them, AKT1 and AKT2 
are involved in the balance regulation of bone cell syn-
thesis and metabolism. PI3K/AKT is an important 
intracellular signal transduction pathway [52]. In recent 
years, due to its involvement in the regulation of chon-
drocyte proliferation, differentiation and survival, PI3K/
AKT pathway, as a core pathway in the pathogenesis of 
osteoarthritis, has received extensive attention [53, 54]. 
A previous study of Chen et al. showed that Fuzi decoc-
tion could increase the cell viability and wound healing 
ability of chondrocytes, and reduce the PI3K/AKT sign-
aling pathway, thus relieving OA [53]. Another research 
demonstrated that overexpression of circFOXO3 could 
alleviate chondrocyte apoptosis and promote the anabo-
lism of extracellular matrix by activating FOXO3, PI3K/
AKT pathway, and autophagy [54]. It is well known that 
activation of PI3K/AKT pathway can promote chondro-
cyte autophagy and prevent cartilage injury [55]. mTOR 
is a kind of serine/threonine kinases, and a key regulator 
of cell growth, which regulates autophagy and inflam-
mation [56]. Ji et  al. [57] reported that apigenin could 
reduce the protein levels of p-mTOR, apoptosis regulator 
BAX and caspase 3, while increase B-cell lymphoma-2 
in macrophages, as well as down-regulate the levels of 
IL-1, IL-6, and TNF-α in chondrocytes, thereby inhibit-
ing the chondrocyte inflammation and alleviating OA. 
Additionally, PI3K/AKT and mTOR can jointly constitute 
the PI3K/AKT/mTOR signaling pathway, which partici-
pates in a variety of biological regulatory processes, such 
as regulating cell growth, differentiation and metabolism 
[58]. Among them, AKT receives upstream PI3K sig-
nal, and transmits the signal to mTOR, the downstream 
target of AKT, playing a "connecting role". Zhang et  al. 
[59] showed that daurisoline could alleviate H2O2-
induced chondrocyte autophagy via activating the PI3K/
AKT/mTOR signaling pathway, thus protecting OA. 
Another study manifested that inhibition of recombinant 
chemokine C–C-motif receptor (CCR10) could allevi-
ate IL-1β-induced chondrocyte damage by inhibiting 
the PI3K/Akt/mTOR pathway, suggesting that CCR10 
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may be a promising target for OA treatment [60]. Com-
bined with our results, we speculate that AMPK may par-
ticipate in MY-treated OA through regulating the PI3K/
AKT/mTOR pathway. However, the specific actions of 
PI3K/AKT/mTOR pathway in MY regulating OA need to 
be investigate in the future.

Further, the effects of the AMPK inhibitor on the lev-
els of energy metabolism-associate genes (Ldh, Lcad, and 
Mcad), myogenesis-associated genes (Myod and Murf-
1), and NMJ- related genes (Chrna1 and Chrnd) in the 
tibia muscle tissues were further explored. In this study, 
we found that the AMPK inhibitor treatment could sig-
nificantly down-regulate Ldh, MyoD, Chrna1 and Chrnd 
expression, and up-regulate Lcad and Mcad expression. 
LDH is a key enzyme in anaerobic glycolysis of glucose, 
and an indicator of muscle damage [61]. The main func-
tion of LDH is to catalyze the reaction between lactic acid 
and pyruvate, and lactic acid is produced by anaerobic 
glycolysis of glucose catalyzed by LDH. Under pathologi-
cal conditions, LDH activity is enhanced and catalyzes 
lactic acid oxidation, which is a protective compensa-
tory mechanism of automatic mechanical regulation in 
the body. It has been reported that AMPK can regulate 
lipid metabolism by regulating key enzymes of fatty acid 
synthesis and autophagy function of cells, thus delaying 
the development of OA [62]. Lcad and Mcad are two key 
enzymes that regulate fatty acid synthesis and oxygena-
tion [63]. Vitamin D could activate AMPK, and elevate 
the levels of Lcad and Mcad in skeletal muscle, boost-
ing muscle fat formation and mitochondrial activity [64]. 
MyoD is the first discovered myogenic regulator, and can 
regulate myoblast differentiation during muscle regen-
eration [65]. Furthermore, MyoD can also transform 
many other types of cells, such as fibroblasts, pigment 
cells, nerve cells, fat cells, liver cells, etc. into skeletal 
muscle cells [65]. NMJ plays an important role in main-
taining the conduction of nerve impulses and the trans-
port of nutrients, and its disruption can lead to muscle 
atrophy [66]. A previous study showed that knee OA con-
tributed to muscle atrophy and NMJ remodeling of the 
tibial anterior muscle [67]. Choline is a substrate derived 
from the neurotransmitter acetylcholine, and is essential 
for membrane integrity [68]. Chrna1 and Chrnd encod-
ing different acetylcholine subunits and acetylcholine 
receptors have been reported to be closely related to the 
development and function of NMJ [69]. These reports, 
together with our findings, we can hypothesize that the 
AMPK inhibitor may regulate energy metabolism-asso-
ciate genes (Ldh, Lcad, and Mcad), myogenesis-associ-
ated genes (Myod), and NMJ- related genes (Chrna1 and 
Chrnd) to influence MY-treated OA, thus reducing the 
effect of MY on OA.

Conclusion
In conclusion, MY may partially regulate skeletal mus-
cle changes and prevent OA development through the 
AMPK pathway. These findings provide a new idea for 
studying the role of MY in bone and joint disease, and 
also provide a reference and basis for better clinical treat-
ment of bone and joint diseases with AMPK as the novel 
potential target.
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