
Yang et al. Diabetology & Metabolic Syndrome          (2024) 16:314  
https://doi.org/10.1186/s13098-024-01555-x

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Diabetology &
Metabolic Syndrome

Disentangling the genetic overlap 
between ischemic stroke and obesity
Ren Yang1†, Tangfeng Zhang1† and Feng Han1* 

Abstract 

Objective  Obesity has been recognized as a risk factor for cerebrovascular diseases, with observational studies 
suggesting a heightened incidence of stroke. However, the genetic epidemiology field has yet to reach a consensus 
on the causal relationship and genetic overlap between ischemic stroke (IS) and obesity.

Methods  We utilized linkage disequilibrium score regression, high-definition likelihood, and local analysis of vari-
ant associations to assess the genetic correlation between body mass index (BMI) and IS. Bidirectional Mendelian 
randomization was employed to infer causality. We identified shared risk single nucleotide polymorphisms (SNPs) 
through cross-trait meta-analyses and estimated heritability using summary statistics. Summary-data-based Mende-
lian randomization (SMR) was applied to explore potential functional genes.

Results  Our analysis revealed a significant positive genetic correlation between BMI and IS, supporting a causal link 
from BMI to IS. Cross-trait analysis yielded 9 and 16 shared risk SNPs for IS and small vessel stroke (SVS), respectively. 
We observed a notable enrichment of SNP heritability for IS and BMI in brain tissues, suggesting tissue-specific influ-
ences. The genes shared between the traits were predominantly involved in brain development, synaptic electrical 
activity, and immunoregulation. Notably, our SMR analysis identified the risk genes CHAF1A, CEP192, ULK4, CYP2D6, 
AS3MT, and WARS2 across the majority of the 14 enriched tissues shared by both traits.

Conclusion  Our study uncovered a significant genetic correlation and identified shared risk SNPs between BMI 
and IS. The identification of CHAF1A, CEP192, ULK4, CYP2D6, AS3MT, and WARS2 as potential functional genes com-
mon to both obesity and IS enriched our understanding of their genetic interplay, potentially advanced our grasp 
of their pathogenesis and therapeutic targets.
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Introduction
Cerebrovascular diseases, characterized by disruptions in 
cerebral blood flow and the ensuing neurological impair-
ments, represented a substantial threat to global health. 
They ranked as primary contributors to mortality and 

disability across the globe [1]. Among these conditions, 
stroke, and ischemic stroke (IS) in particular, stands as 
the second leading cause of death and the third leading 
cause of disability among adults worldwide [2]. Concur-
rently, obesity has become a critical public health and 
economic issue [3]. Observational studies have shown 
that individuals with a higher body mass index (BMI) 
have approximately double the risk of experiencing a 
stroke compared to those of normal weight [4]. Fur-
ther, mendelian randomization (MR) studies supported 
the association between elevated BMI and an increased 
risk of stroke [5], highlighting a bidirectional comor-
bidity between IS and obesity. Furthermore, previous 
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studies suggested obesity deteriorates the functional 
outcome after ischemic stroke. But there are researches 
claiming that obesity is associated with lower mortal-
ity, recurrence, and readmission rates, which is known 
as the obesity paradox [6]. Despite these findings, there 
remains a need for updated data to elucidate the causal 
link between obesity and IS, as the shared genetic basis 
underlying these conditions is not yet fully understood.

By deciphering the complex relationship between obe-
sity and IS, we can pinpoint potential intervention targets 
and forge more effective prevention and treatment strate-
gies for IS. Proposed mechanisms suggested that obesity 
may lead to vascular dysfunction and disrupt autonomic 
regulation of blood pressure, thereby elevating IS risk [7]. 
Nonetheless, fully comprehending the intricate processes 
that was correlated obesity and ischemic stroke remained 
an arduous endeavor.

In this study, we leveraged summary statistics from a 
large-scale genome-wide association study (GWAS) to 
explore the genetic correlation, causal relationship, and 
shared risk loci with potential functional implications 
between IS and obesity (Fig.  1). Our findings aimed to 
deepen the understanding of the comorbidity between 
these two conditions. We began by examining the genetic 
correlation to determine the extent to which the same 
genetic variants influence both IS and obesity. Subse-
quently, a cross-trait meta-analysis was conducted for 
a more refined genetic correlation assessment. Further-
more, MR analysis was employed to discern the direc-
tionality and potential causality between obesity and IS. 

We also utilized the Genotype-Tissue Expression (GTEx) 
dataset to unveil tissue-level SNP heritability enrichment 
associated with IS and obesity.

Methods
Data resources
GWAS datasets
The Genetic Investigation of Anthropometric Traits 
(GIANT) consortium conducted a GWAS meta-analysis 
involving approximately 0.7 million participants. The 
analysis included 2.4 million SNPs from the HapMap 2 
database. The effect estimates for SNPs associated with 
BMI were derived using the participants’ weight and 
height information [8]. For the study on IS and its sub-
types, the genetic association data was obtained from a 
previously published GWAS conducted by the MEGAS-
TROKE project [9]. In total, the analysis included 34,217 
cases of IS and 406,111 controls. To categorize the IS 
cases into subtypes, the Trial of Org 10,172 in Acute 
Stroke Treatment criteria were utilized. Among the IS 
cases included in the analysis, there were 7193 cases clas-
sified as cardioembolic stroke (CES), 4373 cases classified 
as large vascular stroke (LAS), and 5386 cases classified 
as small vessel stroke (SVS) [10].

Transcriptome data
In our study, we utilized gene expression data obtained 
from the GTEx project, which is a publicly avail-
able resource providing gene expression information 
across 53 non-diseased human primary tissues [11].

Fig. 1  Flow diagram of shared genetic architecture between IS and BMI. IS Ischemic stroke; BMI body mass index; LDSC linkage disequilibrium 
score regression; HDL high-definition likelihood; LAVA Local analysis of variant association; CPASSOC cross phenotype association; FUMA Functional 
Mapping and Annotation; MAGMT Multi-marker Analysis of GenoMic Annotation; SMR Summary-data-based Mendelian randomization
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We downloaded the GTEx v6p dataset and specifically 
selected the GTEx V8 expression quantitative trait locus 
(eQTL) summary data, applying a significance thresh-
old of P < 1 ×10−5 [12] for the downstream analysis, we 
utilized cis-eQTL summary statistics for whole blood, 
obtained from eQTLGen, which is a meta-analysis 
involving 14,115 individuals.

Statistical analyses
General genetic correlation analysis
Linkage disequilibrium score regression (LDSC) was 
used to investigate the genetic overlap between IS and 
BMI [13]. For the estimation of genetic correlations (rg) 
between IS and BMI, we used bivariate LDSC with a con-
strained intercept due to population overlap between 
the GWAS of IS and BMI. The χ2 statistic was replaced 
by z-scores, and the genetic covariance was estimated 
by regressing both z-scores on LD scores[14]. Addition-
ally, we conducted high-definition likelihood (HDL) 
analysis to estimate genetic correlations between BMI, 
IS, and SVS. HDL calculations for genetic correlations 
were based on summary data from GWAS, which was 
similar to LDSC. However, HDL has been suggested to 
reduce estimation variance for genetic correlations, mak-
ing it more effective in identifying potential connections 
between complex human traits [15].

Local genetic correlation analysis
Local analysis of variant association (LAVA) was used 
for establishing local rg analysis. Traditional global 
approaches, which only considered the average rg across 
the genome, might not be able to detect situations where 
the shared information is limited to certain regions or 
exhibits contrasting directions at various loci. Thus, in 
order to gain deeper insights into intricate and depend-
ent genetic associations, we performed multivariate 
genetic association analysis on all 2495 genomic loci in 
the entire genome, using pairwise local rg tests.

Cross‑trait GWAS meta‑analysis
To identify the risk SNPs associated with the joint phe-
notypes of BMI and IS, we employed cross phenotype 
association (CPASSOC) to conduct a cross-trait meta-
analysis of GWAS summary statistics [16]. CPASSOC 
was used to perform pairwise cross-trait meta-analysis 
while accounting for variations in the heritability levels of 
the two phenotypes. It conducts a sample size-weighted 
meta-analysis of GWAS summary data to estimate the 
cross-trait statistic heterogeneity (SHet) and p-value, 
assuming the presence of heterogeneous effects across 
traits. The SNPs that exhibited significant associations 
with both phenotypes (P < 5e−8 in CPASSOC) were con-
sidered as the significant SNPs. Subsequently, SNPs that 

showed the most significant associations with the phe-
notype within a 1000-kb distance on chromosomes were 
independently selected. SNPs in linkage disequilibrium 
(LD r2 > 0.01) with these selected SNPs were excluded 
using PLINK v1.9  [17]. Independent SNPs without link-
age disequilibrium (LD r2 > 0.01 within 1000-kb win-
dows) that were significant in previous GWAS (including 
the two GWAS used in this study and previous GWAS on 
BMI and IS) were defined as novel loci.

Colocalization analysis
To investigate the shared genetic variants between IS 
and BMI, we conducted a colocalization analysis. This 
analysis helps explain the genetic relationship between 
these two traits by examining the pleiotropy of SNPs. 
We utilized the colco.abf function from the Coloc pack-
age in R to assess whether SNPs obtained from a cross-
trait GWAS meta-analysis colocalize, either through 
shared SNPs or separate SNPs within the same gene. 
Coloc employs a Bayesian algorithm to calculate poste-
rior probabilities for five mutually exclusive hypotheses 
related to the sharing of causal variants within a specific 
genomic region [18]. A locus was considered colocalized 
when the posterior probability of hypothesis 4 (PPH4) 
exceeded 0.70.

Functional mapping and annotation
Functional Mapping and Annotation (FUMA) platform 
[19] was used to obtain annotation information for SNPs 
associated with functional categories. FUMA can pro-
vide relevant information, especially for non-coding or 
intergenic regions, as GWAS results frequently fail to 
directly determine causal variants due to the impact of 
linkage imbalances. Regarding the information, it can be 
observed that CADD scores higher than 12.37 signify the 
possibility of negative effects on protein outcomes. Addi-
tionally, the scores obtained from RegulomeDB provide 
valuable understanding of the regulatory functionality of 
SNPs.

Tissue and functional enrichment analysis
To further comprehend the biological implications of the 
final pleiotropic genes identified from the overlapping 
genes detected by MAGMA and the annotation result in 
FUMA, an enrichment analysis was conducted on these 
genes. The analysis focused on Gene Ontology (GO) [20] 
biological processes and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways, using the "clusterPro-
filer" R package. To determine the tissues that are most 
linked to the shared genes between BMI and IS, we con-
ducted GTEx tissue enrichment analysis. GTEx (v.8) 
offers information on SNP mutations associated with 
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gene expression quantitative traits in multiple tissues, 
encompassing a total of 53 tissue types [12].

Multi‑marker analysis of GenoMic annotation
Gene and gene-set analysis, which have been proposed 
as alternative approaches to the usual single-SNP analysis 
carried out in GWAS, may potentially have greater effi-
cacy. MAGMA is a tool that is fast and flexible for ana-
lyzing genes and gene sets in GWAS genotype data [21]. 
MAGMA utilized a multiple regression method for gene 
analysis to accurately account for LD between markers 
and identify multi-marker effects. In this study on pleio-
tropic SNPs identified from CPASSOC, it is performed 
on FUMA. The gene sets generated by MAGMA were 
compared with the gene sets corresponding to the loci 
identified in CPASSOC. After implementing the Bonfer-
roni correction, the final set of pleiotropic genes identi-
fied at the gene level consists of the resulting genes.

Summary‑data‑based Mendelian randomization
Summary-data-based Mendelian randomization (SMR) 
was employed to identify potential functional genes asso-
ciated with IS and BMI. SMR is a technique that inte-
grates summary statistics from GWAS and eQTL studies 
within the MR framework to investigate the relationship 
between gene expression and a specific phenotype [22]. 
To assess the presence of linkage in the observed asso-
ciations, the heterogeneity in dependent instruments 
(HEIDI) test was performed using genome-wide signifi-
cant SNPs as instrumental variables. SMR employed the 
HEIDI-outlier test to distinguish between causality or 
pleiotropy and linkage. These functional genes passed the 
Benjamini-Hochberg false discovery rate (FDR) test and 
the HEIDI outlier test (p > 0.05, N > 10 SNPs).

Mendelian randomization
MR used SNPs with significant correlations as instru-
mental variables (IVs) for investigating causal relation-
ships between exposure and outcome. In our study, the 
primary method used was the inverse-variance weighted 
(IVW) approach. Using a random effects inverse-variance 
approach, this method combined the Wald ratio estimate 
of each SNP, obtained by dividing the SNP outcome esti-
mate by the SNP-exposure estimate, using weights based 
on the standard error of each ratio. The IVW method cal-
culates average causal effect estimates for both traits. We 
used the MR-Pleiotropy Residual Sum and Outlier (MR-
PRESSO) and MR-Egger regression methods to identify 
and address horizontal pleiotropy. We analyzed the rela-
tionship between the genetic liability of BMI and IS by 
conducting a reverse-direction MR analysis.

Results
Evidence for causality between BMI and IS
We performed a bidirectional MR analysis using the 
identified loci that demonstrated a significant association 
with the single phenotype GWAS of IS or BMI as IVs. All 
SNPs used in the MR analysis exhibited a high instru-
ment strength, with an F-statistic greater than 10. We 
found evidence to support the causality of BMI on IS in 
four methods (MR Egger β = 0.21, se = 0.097, p = 0.034; 
weighted median β =  0.18, se =  0.06, p =  0.0027; IVW 
β =  0.16, se =  0.037, p =  1.63E−05), but those results 
with significant heterogeneity (IVW Q  =  658.67, 
p = 4.29E−07). Egger intercept was not different from 0, 
which suggested that the IVs were not pleiotropic. The 
leave-one-out analysis showed that no SNP was driv-
ing the effect. We also found that BMI may increase the 
risk of LVS (MR Egger β =  0.477, se =  0.24, p =  0.046; 
weighted median β =  0.47, se =  0.14, p =  0.0008; IVW 
β = 0.29, se = 0.09, p = 0.001, Fig. 2) but with significant 

Fig. 2  Bi-directional Mendelian Randomization (MR) analyses between IS and BMI. A Causal effect of BMI on IS; B Causal effect of IS on BMI
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heterogeneity (IVW Q = 641.24, p =  5.45E−06, Figs. S1 
and S2). In other words, the causality of IS and SVS with 
BMI was not stable. However, we did not observe the cas-
ual effect of BMI on SVS and CES. Furthermore, IS and 
its subtypes did not affect BMI supported by all methods 
in the reverse analyses (Fig. 2).

Genetic correlations
LDSC was employed to calculate the liability-scale SNP 
heritability for BMI and IS and its subtypes. The liabil-
ity-scale SNP heritability for BMI, IS, SVS, LVS, and CES 
were 21.2, 0.46, 44.46, 0.76, and 0.87%, respectively. We 
found that BMI was significantly genetic associated with 
IS (rg =  0.187, p<0.001) and SVS (rg =  0.281, p<0.001), 
but no genetic correlation observed between BMI and 
LVS, and CES, respectively (Table 1). Furthermore, HDL 
revealed that a significant genetic correlation between 
BMI and IS (rg = 0.243, p<0.001), and SVS (rg = 0.421, 
p = 0.0164), respectively.

Local genetic correlations
The single GWAS was partitioned into 2495 loci to con-
duct the LAVA analysis, which aimed to explore the 
genetic correlation between IS and BMI. The threshold 
equals p  =  0.05/2495, which is equivalent to 2.00E−5. 
Strong local correlations were found in two loci (chr22 
27192924–27952441, p  =  4.37E−06; chr18 6756497–
7862479, p =  1.45E−05) for SVS with BMI (Table  S1). 
However, we did not identify the local genetic association 
between BMI and IS because of a lower liability-scale 
SNP heritability of IS.

Identification of shared SNPs by cross trait meta‑analysis
We then employed the CPASSOC and set a threshold of 
p < 5E−8 for meta-analysis to screen a pleiotropic SNP. 
A total of 36334 overlap SNPs were identified among 
IS and BMI (Table  S2 and Fig.  3), 41441 were observed 
for SVS and BMI (Table  S3). The SNP with the most 
significant statistic between BMI and IS, and BMI and 
SVS were rs7206790 (p  =  1.165E−312) and rs7235626 
(p = 3.26e−99). There were 9 novel SNPs shared between 
IS and BMI (pBMI and pIS<5E−6 and pCPASSOC <5E−8, 

Table  S4) and 16 novel SNPs for SVS and BMI after 
excluding SNPs (Table  S5) that were significant in the 
single-trait GWAS of IS or SVS, or BMI, or were in LD 
(LD r2 ≥ 0.02) with any of previously reported significant 
SNPs. We then employed FUMA platform to calculate 
the annotation information of the shared SNPs between 
two traits, respectively. A total of 784 genomic locus with 
4529 independent significant SNPs (Table  S6) and 1584 
lead SNPs (Table  S6) were identified between IS and 
BMI. There were 2797 genes were mapped according to 
the results of CPASSOC for IS and BMI (Table S6). How-
ever, there were 337 genomic locus with 1457 independ-
ent significant SNPs and 505 lead SNPs were obtained 
for SVS and BMI (Table S7). A total of 1337 genes were 
mapped based on the results of CPASSOC (Table S7).

Finally, we also used MAGMA to map the common 
SNPs between IS and BMI. There were 18,483 and 18,689 
genes were identified for BMI and IS, BMI and SVS, 
respectively (Table S8 and S9, Fig. 3). The intersect genes 
with Bonferroni correction mapped via MAGMT and 
FUMA were used for tissue and functional enrichment 
analysis (Table S10 and S11).

Colocalization analysis
We conducted colocalization analysis to confirm if 
the genomic region has pleiotropic effects on the loci 
annotated on FUMA. The results indicated that 4 loci 
(including 570, 42, 75 and 263) were associated with IS 
with a PPH4 value exceeding 70%. The significant SNPs 
included rs11066301, rs11066028, rs233721, rs2891403, 
rs16864515, rs12759907, rs235509, rs6893539, 
rs11241696, and rs7711753, which were used to map 
17 genes including SH2B, ATXN2, BRAP, ACAD10, 
RP11-162P23.2, ALDH2, MAPKAPK5, TMEM116, 
ERP29, NAA25, TRAFD1, HECTD4, RPL6, PTPN11, 
RPH3A, PRRC2C and CEP120 (Table S12). However, no 
genomic region has pleiotropic effects on the loci for SVS 
(Table S13).

Tissue and functional level SNP heritability enrichment
The intersect genes with Bonferroni correction mapped 
via MAGMA and FUMA were used for tissue and 

Table 1  The global genetic correlation between BMI and IS

IS Ischemic stroke, BMI body mass index, LAS large vascular stroke, SAS small vessel stroke, CES cardioembolic stroke

Stroke rg (SE) P-value Genetic covariance (SE) BMI Lambda GC BMI intercept IS IS
Lambda GC Intercept

IS 0.1868 (0.0316) 3.41E−09 0.0168 (0.0037) 2.9072 0.9855 (0.0331) 1.0466 0.953 (0.009)

LAS 0.1197 (0.1162) 0.3028 0.0048 (0.0038) 2.7872 1.0222 (0.0295) 1.0165 1.0227 (0.0071)

SAS 0.2809 (0.0609) 3.96E−06 0.0861 (0.0161) 2.7872 1.0257 (0.0287) 1.0225 0.9852 (0.0063)

CES 0.1087 (0.0562) 0.5298 0.0051 (0.0023) 2.7872 1.0233 (0.0261) 1.0213 1.0331 (0.0045)
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functional enrichment analysis. MAGMA was employed 
to explore the tissue-level SNP heritability enrichment 
for IS and BMI, using GTEx with different tissues. We 
discovered that the brain tissues exhibited shared sig-
nificant SNP-heritability enrichment for both IS and BMI 
(Table  S14 and Fig.  4). In details, we found that SNPs 
associated with BMI and IS were enriched in 18 differ-
ent brain regions, leading by frontal cortex, anterior cin-
gulate cortex, cerebellum, and amygdala. However, the 
shared SNPs among BMI and SVS were only enriched in 
cerebellum (Table S14 and Fig. 4).

Furthermore, we found that the common SNPs 
between BMI and IS were mainly enriched in the bio-
logical processes such as brain development and syn-
aptic electrical activity revealed by GO analysis (Fig.  5 
and Table  S15). Results of KEEG suggested that those 
SNPs were enriched in biological pathway such as axon 

guidance, neurotrophin signaling pathway, and neurosyn-
aptic potential regulation (Fig. 5 and Table S16). Moreo-
ver, the genes annotated by the shared SNPs between 
BMI and SVS were primarily enriched in immunoregu-
lation such as T cell differentiation and mononuclear 
cell differentiation revealed by GO analysis (Table  S15). 
Those genes were enriched in the signaling pathway 
involved with immunoregulation demonstrated by KEEG 
analysis (Table S16).

Identification of shared functional genes for IS and BMI
In order to infer causality and identify the putative 
functional genes for BMI and IS, we analyzed GWAS 
summary data from GTEx using SMR based on the 
overlapped genes from results of FUMA and MAGMA. 
A total of 6, 2, 15, 4, 9, 25, 33, 24, 18, 11, 13, 15, 13 and 
6 shared genes associated with BMI and IS in aorta 

Fig. 3  Manhattan plot showed the pleiotropy SNPs and genes revealed by CPASSOC (A) and MAGMA (B)
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artery, coronary artery, caudate basal ganglia, amygdala, 
anterior cingulate cortex BA24, cerebellar hemisphere, 
cerebellum, cortex, frontal cortex BA9, hippocampus, 
hypothalamus, nucleus accumbens basal ganglia, puta-
men basal ganglia, and substantia nigra, respectively. 
Among those genes, CHAF1A, CEP192, ULK4, and 
WARS2 were found in most of the 14 shared enriched 
tissues. Regarding the common genes between SVS and 
BMI, we identified 1(WNT3), 1(WNT3), 2(CYP2D6 
and FUT2), 3(AS3MT, CYP2D6 and LRRFIP2), 
2(AS3MT and CYP2D6), 3(ADAMTSL3, CISD2, and 

TYW5), 5(ADAMTSL3, CISD2, FAM212A, MANBA, 
and RNF123), 5(ADAMTSL3, AS3MT, CYP2D6, 
LRRFIP2 and NAGA), 2(AS3MT and CYP2D6), 
2(AS3MT and CYP2D6), 4(CISD2, CYP2D6, MAMSTR 
and NAGA), 5(AS3MT, CYP2D6, FUT2, LRRFIP2 and 
MAMSTR), 4(CYP2D6, FUT2, LRRFIP2, and MAM-
STR), and 1(CYP2D6) shared genes in aorta artery, 
coronary artery, caudate basal ganglia, amygdala, ante-
rior cingulate cortex BA24, cerebellar hemisphere, 
cerebellum, cortex, frontal cortex BA9, hippocampus, 
hypothalamus, nucleus accumbens basal ganglia, puta-
men basal ganglia, and substantia nigra, respectively. 

Fig. 4  MAGMA-based heritability enrichment estimates in tissues for BMI and IS. A IS, B SVS

Fig. 5  Functional enrichment for pleiotropy genes between IS and BMI. A GO analysis, B KEEG analysis
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However, only CYP2D6 and AS3MT were found in 
most of the 14 shared enriched tissues (Table S17).

Discussion
Based on our current understanding, this study repre-
sented the first comprehensive genome-wide analysis 
that systematically investigated the shared genetic struc-
tures connecting IS and BMI. Our research employed 
large-scale GWAS datasets and tissue-specific expression 
data to demonstrate the genetic interplay between IS and 
BMI. Notably, we have observed a significant association 
between IS and BMI within specific genomic regions and 
functional elements. Moreover, we have identified sev-
eral genes that exhibit pleiotropic effects on both IS and 
BMI, suggesting their involvement in the development 
of both phenotypes. Importantly, our bi-directional MR 
analysis has revealed a causal effect of BMI on IS, sug-
gesting that higher BMI may contribute to an increased 
risk of developing IS. However, we did not find evidence 
of a causal effect of IS on BMI. Lastly, our focus has been 
on exploring the shared genetic characteristics of IS and 
BMI specifically in brain tissue, leading us to identify sev-
eral genes that could potentially play a functional role in 
both phenotypes.

Obesity, which was identified as a risk factor for cer-
ebrovascular disease, have been suggested to be linked 
to a higher occurrence of stroke [23, 24]. For example, 
data collected from a total of 97 prospective cohort stud-
ies revealed a correlation between being overweight or 
obese and a higher likelihood of experiencing a stroke 
[25]. However, the causal association between IS and 
BMI remained controversial in genetic epidemiology [26, 
27]. Our analysis revealed that elevated BMI may play a 
role in the development of IS and LVS, but not SVS and 
CES. These findings aligned with previous observational 
studies and meta-analyses that have frequently reported 
the co-occurrence of IS and obesity in clinical settings. 
By utilizing robust GWAS data and conducting com-
prehensive analyses, our study provided further support 
for the association between high BMI and the risk of IS 
and LVS. These results contributed to the growing body 
of evidence highlighting the relationship between obesity 
and stroke [24, 28].

Currently, a comprehensive analysis of the genetic 
association between IS and BMI has not yet been con-
ducted. We discovered a substantial genetic relationship 
between IS and BMI, thus reinforced the theory that 
genetic factors have a crucial impact on the comorbidity 
of IS and obesity. From CPASSOC analysis, we identi-
fied 9 suggestively significant SNPs for BMI and IS, and 
16 novel SNPs for BMI and SVS. As for SNPs for IS and 
BMI, rs11065987 and rs3184504 were reported to be 
associated with hypertension [29, 30], rs11066301 and 

rs653178 were related to coronary artery disease [31, 32], 
rs11066320 was associated with LDL cholesterol level 
[33]. Those phenotypes were involved with stroke and 
obesity, which also supported the hypothesis that genetic 
factors affect comorbidity of obesity and IS.

In our study, we used the GTEx datasets to investigate 
the functional enrichment of gene expression across mul-
tiple tissues. Our analysis revealed significant SNP herit-
ability enrichment for BMI and IS in eight tissues, with a 
prominent enrichment observed in the brain. This indi-
cated that genetic variants associated with BMI and IS 
were more likely to influence gene expression in brain 
tissues. Additionally, our findings supported previous 
suggestions that loci associated with obesity are enriched 
in both blood vessels and brain tissues. This aligns with 
existing research highlighting the involvement of these 
tissues in the genetic regulation of obesity-related traits 
[34], which implied that obesity may lead to the occur-
rence of IS by disrupting blood vessels and altering the 
microstructure of brain tissue. The shared genes for 
FUMA and MAGMA were then used to perform GO 
and KEEG analysis. We found that genes annotated by 
the shared SNPs were mainly enriched in brain develop-
ment, synaptic electrical activity, and immunoregulation. 
All these biological processes were associated with the 
comorbidity of obesity and IS [35], which may contribute 
to understanding the underlying causes of obesity and IS.

Furthermore, we examined whether shared risk genes 
can mediate the association between BMI and IS by 
used blood and tissue eQTL data. Based on SMR and 
HEIDI, our findings indicate that CHAF1A, CEP192, 
ULK4, CYP2D6, AS3MT, and WARS2 were present in 
the majority of the 14 enriched tissues shared between 
the two traits, suggesting that these genes may serve as 
a potential connection between the two traits. ULK4 and 
CYP2D have been reported to be associated with blood 
pressure and hypertension [36, 37]. As a tryptophanyl-
tRNA synthetase, WARS2 may function as a crucial fac-
tor in angiogenesis within the heart and other tissues, 
potentially serving as a coordinator of pro-angiogenic 
signals, guiding cellular movement and multiplication to 
facilitate the migration and growth of vascular endothe-
lial cells [38], which indicated that WARS2 may mediate 
the association between BMI and IS by destructing the 
cerebral vascular microstructure. CHAF1A, CEP192, 
and AS3MT were reported to be associated with tumor 
progression involved with several tumors, such as hepa-
tocellular carcinoma [39] and lung cancer [40] Further 
explorations are needed to investigate the biological 
mechanisms of these 6 shared genes on IS and obesity. 
Recently, some studies have demonstrated a different 
pattern of circulating non coding miRNA-195-5p and 
−451a in acute IS and stroke including transient ischemic 
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attack and intracerebral hemorrhage [41–43]. However, 
whether there is an interplay between these non-coding 
miRNAs and the genes uncovered by this paper, or those 
involved in the complex pathogenetic chain linking IS to 
obesity, remains to be verified through further studies.

Although several investigations have revealed the 
causal association between IS and BMI in genetic epi-
demiology [26, 27], evidence on their common genetic 
structure was scarce. Globally, the continued rise in 
obesity prevalence posed a significant danger to pub-
lic health, but there were currently no effective meas-
ures to prevent the occurrence of IS. Hence, our study 
emphasized the significance of identifying and prevent-
ing IS at an early stage, especially in individuals who are 
overweight or obese. Exploring new therapeutics for 
the two diseases had promising potential for developing 
modalities that target both diseases based on their shared 
genetic architecture including CHAF1A, CEP192, ULK4, 
CYP2D6, AS3MT, and WARS2.

Our study has several limitations that should be taken 
into consideration. Firstly, the generalizability of our 
results to other ethnic groups may be limited since the 
data sources primarily consisted of individuals of Euro-
pean descent. Therefore, it is crucial to conduct similar 
analyses in diverse populations to validate our findings 
and develop targeted prevention strategies. Secondly, 
we were unable to observe a local genetic relationship 
between IS and BMI due to the lower liability-scale SNP 
heritability of IS. Consequently, further investigations are 
needed to explore the genetic connections between IS 
and BMI in more detail. Lastly, we did not include analy-
ses on the sex chromosomes in our study. This omission 
was due to the statistical methods used, which were not 
applicable to sex chromosome analyses.

Conclusion
In summary, our study revealed a significant genetic 
correlation and identified shared risk SNPs between 
BMI and IS. Several potential functional genes, includ-
ing CHAF1A, CEP192, ULK4, CYP2D6, AS3MT, and 
WARS2, were identified as common genetic factors 
linking obesity and IS. These findings provide valuable 
insights into the genetic basis underlying the relationship 
between obesity and IS, contributing to a better under-
standing of their development and potential therapeutic 
targets.

Abbreviations
IS 	� Ischemic stroke
BMI	�  Body mass index
SNPs 	� Single nucleotide polymorphisms
SMR	�  Summary-data-based Mendelian randomization
SVS 	� Small vessel stroke
MR 	� Mendelian randomization
GWAS 	� Genome-wide association study

GTEx 	� Genotype-Tissue Expression
GIANT 	� Genetic Investigation of Anthropometric Traits
LAS	�  Large vascular stroke
eQTL 	� Expression quantitative trait locus
LDSC	�  Linkage disequilibrium score regression
HDL	�  High-definition likelihood
LAVA 	� Local analysis of variant association
CPASSOC 	� Cross phenotype association
PPH4 	� Posterior probability of hypothesis 4
FUMA	�  Functional Mapping and Annotation
GO 	� Gene Ontology
KEGG 	� Kyoto Encyclopedia of Genes and Genomes
HEIDI 	� Heterogeneity in dependent instruments
IVs	�  Instrumental variables
MR-PRESSO 	� MR-Pleiotropy Residual Sum and Outlier

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s13098-​024-​01555-x.

Additional file 1.

Additional file 2.

Additional file 3.

Additional file 4.

Additional file 5.

Additional file 6.

Additional file 7.

Additional file 8.

Additional file 9.

Additional file 10.

Additional file 11.

Additional file 12.

Additional file 13.

Additional file 14.

Additional file 15.

Additional file 16.

Additional file 17.

Additional file 18.

Additional file 19.

Acknowledgements
We would like to thank the UK Biobank and International Stroke Genetics 
Consortium for the GWAS summary data of BMI and stroke.

 Author contributions
Ren Yang, Tangfeng Zhang and Feng Han designed the study. Ren Yang and 
Tangfeng Zhang wrote and edited the manuscript. Ren Yang, Tangfeng Zhang 
and Feng Han collected and analyzed the data. Feng Han drew the figures. 
Ren Yang, Tangfeng Zhang had full access to all the data in the study and had 
final responsibility for the decision to submit for publication. All authors read 
and approved the final manuscript.

 Funding
This work was supported by the Scientific and Technological Fund Project of 
the Guizhou Provincial Health Commission (gzwkj2022-086).

Availability of data and materials
GWAS summary statistics for BMI are available by application from: http://​
porta​ls.​broad​insti​tute.​org/​colla​borat​ion/​giant/​index.​php/​GIANT_​conso​
rtium_​data_​files. GWAS statistics of stroke were obtained from MEGASTROKE 

https://doi.org/10.1186/s13098-024-01555-x
https://doi.org/10.1186/s13098-024-01555-x
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files
http://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_files


Page 10 of 11Yang et al. Diabetology & Metabolic Syndrome          (2024) 16:314 

consortium (https:// www. megas troke. org/). The eQTL summary data for 
eQTLGen and GTEx are available from: https://​www.​eqtlg​en.​org/​cis-​eqtls.​html; 
http://​yangl​ab.​westl​ake.​edu.​cn/​softw​are/​smr/#​eQTLs​ummar​ydata.

Declarations

Ethics approval and consent to participate
All analyses were based on publicly available summary statistics, which do not 
require ethical approval and consent.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 20 September 2024   Accepted: 4 December 2024

References
	1.	 Chen M, Zhang H, Chu Y-H, Tang Y, Pang X-W, Qin C, et al. Micro-

glial autophagy in cerebrovascular diseases. Front Aging Neurosci. 
2022;14:1023679.

	2.	 Campbell BCV, Khatri P. Stroke. Lancet. 2020;396:129–42.
	3.	 Hu K, Staiano AE. Trends in obesity prevalence among children and ado-

lescents aged 2 to 19 years in the US From 2011 to 2020. JAMA Pediatr. 
2022;176:1037.

	4.	 Guo Y, Yue X, Li H, Song Z, Yan H, Zhang P, et al. Overweight and obesity 
in young adulthood and the risk of stroke: a meta-analysis. J Stroke 
Cerebrovasc Dis. 2016;25:2995–3004.

	5.	 Dale CE, Fatemifar G, Palmer TM, White J, Prieto-Merino D, Zabaneh D, 
et al. Causal associations of adiposity and body fat distribution with 
coronary heart disease, stroke subtypes, and type 2 diabetes mellitus. 
Circulation. 2017;135:2373–88.

	6.	 Lu J, Gong S, Zhu J, Fang Q. Relationships between obesity and functional 
outcome after ischemic stroke: a Mendelian randomization study. Neurol 
Sci. 2024;45:3869–77.

	7.	 Watso JC, Fancher IS, Gomez DH, Hutchison ZJ, Gutiérrez OM, Robinson 
AT. The damaging duo: obesity and excess dietary salt contribute to 
hypertension and cardiovascular disease. Obesity Rev. 2023;24: e13589.

	8.	 Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. 
Meta-analysis of genome-wide association studies for height and body 
mass index in ∼700000 individuals of European ancestry. Hum Mol 
Genet. 2018;27:3641–9.

	9.	 Malik R, Chauhan G, Traylor M, Sargurupremraj M, Okada Y, Mishra A, 
et al. Multiancestry genome-wide association study of 520,000 subjects 
identifies 32 loci associated with stroke and stroke subtypes. Nat Genet. 
2018;50:524–37.

	10.	 Adams HP, Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. 
Classification of subtype of acute ischemic stroke. Definitions for use in a 
multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treat-
ment. Stroke. 1993;24:35–41.

	11.	 GTEx Consortium. Genetic effects on gene expression across human 
tissues. Nature. 2017;550:204–13.

	12.	 Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, et al. 
Heritability enrichment of specifically expressed genes identifies disease-
relevant tissues and cell types. Nat Genet. 2018;50:621–9.

	13.	 Bulik-Sullivan B, Finucane HK, Anttila V, Gusev A, Day FR, Loh P-R, et al. An 
atlas of genetic correlations across human diseases and traits. Nat Genet. 
2015;47:1236–41.

	14.	 Sheerin CM, Bountress KE, Meyers JL, Saenz de Viteri SS, Shen H, Maihofer 
AX, et al. Shared molecular genetic risk of alcohol dependence and post-
traumatic stress disorder (PTSD). Psychol Addict Behav. 2020;34:613–9.

	15.	 Ning Z, Pawitan Y, Shen X. High-definition likelihood inference of genetic 
correlations across human complex traits. Nat Genet. 2020;52:859–64.

	16.	 Zhu Z, Hasegawa K, Camargo CA, Liang L. Investigating asthma heteroge-
neity through shared and distinct genetics: Insights from genome-wide 
cross-trait analysis. J Allergy Clin Immunol. 2021;147:796–807.

	17.	 Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. 
PLINK: A tool set for whole-genome association and population-based 
linkage analyses. Am J Hum Genet. 2007;81:559–75.

	18.	 Yang Y, Musco H, Simpson-Yap S, Zhu Z, Wang Y, Lin X, et al. Investigating 
the shared genetic architecture between multiple sclerosis and inflam-
matory bowel diseases. Nat Commun. 2021;12:5641.

	19.	 Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional map-
ping and annotation of genetic associations with FUMA. Nat Commun. 
2017;8:1826.

	20.	 Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, 
et al. Gene set enrichment analysis: A knowledge-based approach for 
interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102:15545–50.

	21.	 de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: Generalized 
gene-set analysis of GWAS data. PLoS Comput Biol. 2015;11: e1004219.

	22.	 Krishnamoorthy S, Li GH-Y, Cheung C. Transcriptome-wide summary 
data-based Mendelian randomization analysis reveals 38 novel genes 
associated with severe COVID-19. J Med Virol. 2023;95: e28162.

	23.	 Hubert HB, Feinleib M, McNamara PM, Castelli WP. Obesity as an inde-
pendent risk factor for cardiovascular disease: a 26-year follow-up of 
participants in the Framingham Heart Study. Circulation. 1983;67:968–77.

	24.	 Qi W, Ma J, Guan T, Zhao D, Abu-Hanna A, Schut M, et al. Risk factors for 
incident stroke and its subtypes in China: A prospective study. J Am Heart 
Assoc. 2020;9: e016352.

	25.	 Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G. Meta-
bolic mediators of the effects of body-mass index, overweight, and 
obesity on coronary heart disease and stroke: a pooled analysis of 97 pro-
spective cohorts with 1·8 million participants. Lancet. 2014;383:970–83.

	26.	 Marini S, Merino J, Montgomery BE, Malik R, Sudlow CL, Dichgans M, et al. 
Mendelian randomization study of obesity and cerebrovascular disease. 
Ann Neurol. 2020;87:516–24.

	27.	 Larsson SC, Scott RA, Traylor M, Langenberg CC, Hindy G, Melander O, 
et al. Type 2 diabetes, glucose, insulin, BMI, and ischemic stroke subtypes. 
Neurology. 2017;89:454–60.

	28.	 Song Y-M, Sung J, Smith GD, Ebrahim S. Body mass index and ischemic 
and hemorrhagic stroke. Stroke. 2004;35:831–6.

	29.	 Bragina EY, Goncharova IA, Garaeva AF, Nemerov EV, Babovskaya AA, 
Karpov AB, et al. Molecular relationships between bronchial asthma and 
hypertension as comorbid diseases. J Integr Bioinform. 2018;15:20180052.

	30.	 Alexander MR, Hank S, Dale BL, Himmel L, Zhong X, Smart CD, et al. A 
single nucleotide polymorphism in SH2B3/LNK promotes hypertension 
development and renal damage. Circ Res. 2022;131:731–47.

	31.	 Han X, Zhang L, Zhang Z, Zhang Z, Wang J, Yang J, et al. Association 
between phosphatase related gene variants and coronary artery disease: 
case-control study and meta-analysis. Int J Mol Sci. 2014;15:14058–76.

	32.	 Jansen H, Willenborg C, Schlesinger S, Ferrario PG, König IR, Erdmann 
J, et al. Genetic variants associated with celiac disease and the risk for 
coronary artery disease. Mol Genet Genom. 2015;290:1911–7.

	33.	 Jamshidi Y, Gooljar SB, Snieder H, Wang X, Ge D, Swaminathan R, et al. 
SHP-2 and PI3-kinase genes PTPN11 and PIK3R1 may influence serum 
apoB and LDL cholesterol levels in normal women. Atherosclerosis. 
2007;194:e26-33.

	34.	 Zhuang Z, Yao M, Wong JYY, Liu Z, Huang T. Shared genetic etiology and 
causality between body fat percentage and cardiovascular diseases: a 
large-scale genome-wide cross-trait analysis. BMC Med. 2021;19:100.

	35.	 Mahmoud M, Abdel-Rasheed M. Influence of type 2 diabetes and obesity 
on adipose mesenchymal stem/stromal cell immunoregulation. Cell Tis-
sue Res. 2023;394:33–53.

	36.	 Wang Z, Hou J, Zheng H, Wang D, Tian W, Zhang D, et al. Genetic and 
phenotypic frequency distribution of ACE, ADRB1, AGTR1, CYP2C9*3, 
CYP2D6*10, CYP3A5*3, NPPA and factors associated with hypertension in 
Chinese Han hypertensive patients. Medicine. 2023;102: e33206.

	37.	 Shen X, Espin-Garcia O, Qiu X, Brhane Y, Liu G, Xu W. Haplotype approach 
for association analysis on hypertension. BMC Proc. 2014;8:S57.

	38.	 Agnew T, Goldsworthy M, Aguilar C, Morgan A, Simon M, Hilton H, et al. 
A Wars2 mutant mouse model displays OXPHOS deficiencies and activa-
tion of tissue-specific stress response pathways. Cell Rep. 2018;25:3315-
3328.e6.

https://www.eqtlgen.org/cis-eqtls.html
http://yanglab.westlake.edu.cn/software/smr/#eQTLsummarydata


Page 11 of 11Yang et al. Diabetology & Metabolic Syndrome          (2024) 16:314 	

	39.	 Liu Y, Liang W, Chang Y, He Z, Wu M, Zheng H, et al. CEP192 is a novel 
prognostic marker and correlates with the immune microenvironment in 
hepatocellular carcinoma. Front Immunol. 2022;13: 950884.

	40.	 Sun M, Cheng H, Yu T, Tan J, Li M, Chen Q, et al. Involvement of a AS3MT/ 
c-Fos /p53 signaling axis in arsenic-induced tumor in human lung cells. 
Environ Toxicol. 2023;38:615–27.

	41.	 Giordano M, Trotta MC, Ciarambino T, D’Amico M, Schettini F, Di Sisto A, 
et al. Circulating miRNA-195-5p and -451a in patients with acute hemor-
rhagic stroke in emergency department. Life. 2022;12:763.

	42.	 Giordano M, Trotta MC, Ciarambino T, D’Amico M, Galdiero M, Schettini 
F, et al. Circulating MiRNA-195-5p and -451a in diabetic patients with 
transient and acute ischemic stroke in the emergency department. Int J 
Mol Sci. 2020;21:7615.

	43.	 Giordano M, Ciarambino T, D’Amico M, Trotta MC, Di Sette AM, Marfella 
R, et al. Circulating MiRNA-195-5p and -451a in transient and acute 
ischemic stroke patients in an emergency department. J Clin Med. 
2019;8:130.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Disentangling the genetic overlap between ischemic stroke and obesity
	Abstract 
	Objective 
	Methods 
	Results 
	Conclusion 

	Introduction
	Methods
	Data resources
	GWAS datasets
	Transcriptome data

	Statistical analyses
	General genetic correlation analysis
	Local genetic correlation analysis
	Cross-trait GWAS meta-analysis
	Colocalization analysis

	Functional mapping and annotation
	Tissue and functional enrichment analysis
	Multi-marker analysis of GenoMic annotation
	Summary-data-based Mendelian randomization
	Mendelian randomization

	Results
	Evidence for causality between BMI and IS
	Genetic correlations
	Local genetic correlations
	Identification of shared SNPs by cross trait meta-analysis
	Colocalization analysis
	Tissue and functional level SNP heritability enrichment
	Identification of shared functional genes for IS and BMI

	Discussion
	Conclusion
	Acknowledgements
	References


