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Abstract  
Predicting protein-ligand binding affinity is essential for understanding protein-ligand interactions and advancing drug 
discovery. Recent research has demonstrated the advantages of sequence-based models and graph-based models. In this 
study, we present a novel hybrid multimodal approach, DeepTGIN, which integrates transformers and graph isomorphism 
networks to predict protein-ligand binding affinity. DeepTGIN is designed to learn sequence and graph features efficiently. 
The DeepTGIN model comprises three modules: the data representation module, the encoder module, and the prediction 
module. The transformer encoder learns sequential features from proteins and protein pockets separately, while the graph 
isomorphism network extracts graph features from the ligands. To evaluate the performance of DeepTGIN, we compared 
it with state-of-the-art models using the PDBbind 2016 core set and PDBbind 2013 core set. DeepTGIN outperforms these 
models in terms of R, RMSE, MAE, SD, and CI metrics. Ablation studies further demonstrate the effectiveness of the ligand 
features and the encoder module. The code is available at: https:// github. com/ zhc- moush ang/ DeepT GIN.

Scientific contribution  
DeepTGIN is a novel hybrid multimodal deep learning model for predict protein-ligand binding affinity. The model 
combines the Transformer encoder to extract sequence features from protein and protein pocket, while integrating 
graph isomorphism networks to capture features from the ligand. This model addresses the limitations of existing 
methods in exploring protein pocket and ligand features.

Keywords Protein-ligand . affinity prediction, Transformer, Graph isomorphism network, Multimodal

Introduction
As a prominent topic in drug discovery research [1, 2], 
drug-target binding affinity prediction can significantly 
accelerate drug discovery [3, 4] and facilitate drug repo-
sitioning [5]. Drugs typically act as ligands, exerting their 
effects through specific interactions with target proteins 
[6–8]. The key metric for measuring these interactions 
is affinity [9]. Therefore, calculating protein-ligand affin-
ity (PLA) is essential in drug discovery [10]. However, 
experimentally determining the affinity between proteins 
and ligands is both time-consuming [11] and costly [2, 
12]. Deep learning methods offer a faster approach to 
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calculating affinity [13–15]. These methods can be cat-
egorized into sequence-based models [16–19], graph-
based models [20–23], and multimodal models [24–27].

As a typical sequence-based model, DeepDTA [16] 
uses protein sequences and SMILES (Simplified Molec-
ular Input Line Entry System) [28] representations of 
ligands as inputs. The DeepDTA model utilizes two con-
volutional neural network (CNN) blocks to learn fea-
tures of proteins and ligands, followed by a multi-layer 
perceptron (MLP) to predict affinity. A similar model, 
DeepCDA [17], combines CNN and long short-term 
memory (LSTM) networks to learn features of proteins 
and ligands and the occurrence patterns of local sub-
structures. This model introduces a two-sided attention 
mechanism to encode the interaction strength, enhanc-
ing the understanding of protein-ligand interactions, 
and finally uses a fully connected layer to predict affin-
ity. DeepDTAF [29] is another protein-ligand affinity pre-
diction model that integrates global and local features. 
Specifically, the entire protein is used as a global feature, 
and the protein binding pocket, which has direct bind-
ing properties with the ligand, is used as a local feature. 
Three different groups of CNN modules are employed to 
learn the features of the proteins, protein pockets, and 
ligands. Finally, three fully connected layers are used to 
predict affinity. The advantage of the sequence-based 
model is that it can learn the contextual information in 
the sequence and is relatively mature in the field of rep-
resenting proteins and ligands [30]. However, they have 
notable disadvantages, such as ignoring important struc-
tural features in proteins and ligands.

Graph-based models can account for important struc-
tural features of proteins and ligands. DGraphDTA [20] 
is a graph-based model for drug-target affinity predic-
tion using graph neural network (GNN) and contact 
maps. The DGraphDTA converts protein sequences into 
graphs, with the ligand graph derived from SMILES. Two 
GNN blocks are used to learn the features of proteins and 
ligands, respectively. Finally, two fully connected layers 
are used to predict affinity. Similar models, such as Inter-
actionGraphNet (IGN) [21], convert the protein-ligand 
complex into three independent molecular graphs: the 
protein graph, the bipartite protein-ligand graph, and the 
ligand graph. The graph convolution module is used to 
learn their features, and a fully connected neural network 
(FCNN) is then used to predict affinity. These graph-
based models can effectively represent the structural 
information of proteins and ligands, thereby improving 
the prediction accuracy. However, these models also have 
certain limitations. For example, for computational con-
venience, IGN uses only the protein atoms of the bind-
ing sites in the protein graph. This approach ignores the 
influence of protein regions that are far away from the 

binding site on affinity. Using graph structure to repre-
sent proteins and ligands has certain limitations, such as 
the graph construction method significantly affecting the 
representation of proteins and ligands.

A category of multimodal models can leverage the 
advantages of both sequence-based and graph-based 
models. For example, the protein-ligand binding affinity 
prediction model via comprehensive molecular represen-
tations (PLA-MoRe) [26] utilizes a transformer encoder 
to learn features from protein sequences and GNNs to 
learn structural features of ligands. PLA-MoRe intro-
duces bioactivity data of ligands, which can improve 
the model’s predictive performance. Similarly, a mul-
timodal attention-based model (AttentionMGT-DTA) 
[27] employs two graph transformer modules to learn the 
structural features of ligand graphs and protein pocket 
graphs, while incorporating 1D sequence embeddings of 
proteins as protein sequence features. This model uses 
both sequence and structural features to further improve 
predictive performance.

Other multimodal models, such as GraphDTA [24] 
and DeepGLSTM [25], integrate various data features, 
considering protein and ligand features from multiple 
perspectives, thus effectively enhancing prediction per-
formance and model robustness [31]. However, there are 
still limitations in these models. For instance, the Graph-
DTA and AttentionMGT-DTA models use 5 and 8 atomic 
properties as node features in ligand molecular graphs, 
respectively. These models still do not consider enough 
atomic properties of ligands, making the comprehensive 
representation of ligand characteristics a challenge.

Protein pockets are regions that directly bind with 
ligands, typically composed of crucial residues [32] 
that interact with the ligand through various interac-
tions such as hydrogen bonds, van der Waals forces, and 
hydrophobic interactions [33–35]. However, considering 
only directly binding residues may overlook the influ-
ence of other residues on the ligands. For instance, global 
structural changes in proteins and residues far from the 
binding site may affect the affinity to the ligand [36]. In 
the study of PLA, accurately extracting the features of 
pockets remains a significant challenge [37]. In models 
that consider pockets, such as DeepDTAF, although the 
sequence features of pockets are used, the structural fea-
tures are neglected. IGN considers the structural features 
of pockets but neglects the global features of proteins. 
Therefore, these models have certain limitations.

To address these issues, we propose a novel multimodal 
model for protein-ligand affinity, named DeepTGIN. Our 
model utilizes a transformer encoder to learn sequence 
features of proteins and pockets, and a GIN encoder to 
learn structural features of ligand molecular graphs. Our 
model comprehensively incorporates sequence features, 
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structural features, both global and local features of 
proteins, and the atomic properties of ligands. We com-
pared DeepTGIN with other baseline models using two 
test sets, and the results demonstrated that DeepTGIN 
outperformed the other models. Ablation studies fur-
ther proved the importance of the key components of 
our model to the overall performance. Additionally, we 
visualized the attention scores of each residue to analyze 
the residues that contribute significantly to the protein-
ligand affinity prediction. These results indicate that 
DeepTGIN is a reliable and effective protein-ligand affin-
ity prediction model.

The contributions of our model are listed as follows.

• This study introduces a novel hybrid 
approach, termed DeepTGIN, which successfully 
integrates the strengths of sequence-based mod-
els and graph-based models, utilizing two identi-
cal transformers for protein sequence and protein 
pocket feature extraction, and GIN for ligand fea-
ture extraction.
• DeepTGIN features a modular architecture 
comprising three key components: the data rep-
resentation module, the encoder module, and the 
prediction module. This design facilitates efficient 
learning of both sequential and graph features, 
thereby improving predictive performance.
• Comparative evaluations using the PDBbind 
2016 and PDBbind 2013 core sets demonstrate 
that DeepTGIN outperforms state-of-the-art 
models across several metrics, including R, RMSE, 
MAE, SD, and CI. Ablation studies highlight the 
critical role of ligand features and the encoder 
module in the overall performance of the model, 
underscoring the importance of these components 
in achieving accurate predictions.

Materials and methods
Datasets
The PDBbind database [38] is a comprehensive collec-
tion of experimentally measured binding affinity data 
for biomolecular complexes deposited in the Protein 
Data Bank, including Kd, Ki, and IC50 values obtained 
through experimental verification. It is widely used for 
predicting protein-ligand binding affinity. In this study, 
we use the PDBbind2020 version as our primary data-
set, which is the latest open source. As depicted in 
Fig.  1, the PDBbind2020 database is divided into four 
subsets: the general set, the refined set, the PDBbind 
2016 core set, and the PDBbind 2013 core set. These 
subsets contain 14127, 5316, 285, and 195 protein-
ligand complexes, respectively.

We used the PDBbind 2016 core set [39] (also known 
as CASF-2016) as our test set and the PDBbind 2013 
core set [40] (CASF-2013) as an additional test set. The 
PDBbind2016 core set is a smaller collection of protein-
ligand complexes that serves as a popular and primary 
test set and does not change with the annual updates 
of PDBbind. Both of these core sets are widely recog-
nized and commonly used benchmarks in the field of 
protein-ligand affinity prediction. To obtain the train-
ing set and validation set, we followed a methodology 
similar to Kaili Wang et al. [29]. We combined the gen-
eral set and refined set and then removed any duplicate 
complexes in the test sets. Then, we randomly selected 
1,000 protein-ligand complexes as the validation set, 
with the remaining complexes used as the training set.

Overview of our DeepTGIN model
In this section, we introduce DeepTGIN, a novel mul-
timodal protein-ligand binding affinity prediction 
model that combines a Transformer with a GIN. The 

Fig. 1 Components of the PDBbind2020 dataset. The PDBbind2020 dataset is divided into a general set, a refined set, the PDBbind 2016 core set, 
and the PDBbind 2013 core set. The training set and the validation set are derived from the general set and refined set. The PDBbind 2016 core set 
and the PDBbind 2013 core set are used as the test sets. Among them, there are 107 duplicated complexes between v2016 and v2013
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model accepts three types of inputs: the protein resi-
due sequence, the pocket residue sequence, and the 
ligand molecular graph. The overall architecture of 
the model is illustrated in Fig.  2. The model comprises 
three main components: the data representation mod-
ule, the encoder module, and the prediction module. 
The encoder module consists of three sub-components: 
a GIN encoder and two identical Transformer encoders. 
The prediction module utilizes an MLP to generate the 
final predictions.

Data representation module
Previous studies have highlighted the importance of 
sequence information [16–18], graph structure [20, 21, 
41], and pocket structure [19, 27, 29] in understanding 
protein-ligand pairs. In our study, we use the sequence 
of the protein and the protein pocket, and the graph 
structure of the ligand for data representation. Therefore, 
the data representation includes ligand representation, 
pocket representation, and protein representation.

Ligand representation
To learn ligand representation, we first use the RDKit 
[42] tool to transform ligands into molecular graphs. In 
a molecular graph, each node represents an atom in the 
ligand, and each edge represents the relationship between 
two atoms. Ten different atom properties are included as 
node attributes, as listed in Table 1. We use 108-dimen-
sional one-hot encoding as the feature vector of the node, 
from which the original ligand representation is obtained.

Protein representation and pocket representation
To obtain the original protein representation, the protein 
sequence is used as the input. Each letter in the sequence 
represents a residue, and each residue type is encoded 
as an integer based on its corresponding alphabetical 
symbol. For example, Aspartic Acid (D) is 4, Glutamic 
Acid (E) is 5, Glycine (G) is 7, etc. This encoding method 
transforms the protein into an integer sequence. Simi-
larly, the original pocket representation is obtained in 
the same manner. Due to the varying lengths of proteins 
and protein pockets, truncation lengths are employed in 
this study. The thresholds for the protein sequence length 
and the protein pocket sequence length are set to 1000 
and 63, respectively, according to Wang et al. [29]. If the 

Fig. 2 Architecture of DeepTGIN. A Data representation module: This module includes three inputs: the ligand molecular graph, the pocket residue 
sequence, and the protein residue sequence. B Encoder Module: This module learns the features of the ligand molecular graph using the GIN 
Encoder and learns the features of the protein residue sequence and pocket residue sequence using the Transformer Encoder. C Prediction Module: 
This module predicts the binding affinity. D GIN Encoder: The GIN Encoder comprises 4 layers of GIN. E Transformer Encoder: The Transformer 
Encoder consists of 4 layers of a single transformer encoder. F Single Transformer Encoder: Details about the single transformer encoder

Table 1 Properties of ligand atoms used in this study

Feature type Type values

Atom type C, N, O, S, F, Si, P, Cl, Br, ....

Implicit valence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Chiral tag unspecified, tetrahedral-cw, 
tetrahedral-ccw, other

Degree 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Formal charge − 5, − 4, − 3, − 2, − 1, 0, 1, 2, 3, 4, 5

Number of hydrogens 0, 1, 2, 3, 4, 5, 6, 7, 8

Number of radical electrons 0, 1, 2, 3, 4

Hybridization SP, SP2, SP3, SP3D, SP3D2

Is aromatic 0, 1

Is in ring 0, 1
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sequence length exceeds the threshold, the correspond-
ing representation vector is truncated. Otherwise, the 
shorter sequences are padded with zeros.

Encoder module
Ligand GIN encoder
In the ligand graph encoder, four GIN [43] layers and a 
pooling layer are designed to encode the ligand molecu-
lar graph. Unlike the original GIN, each GIN layer in 
our model includes a batch normalization operation to 
improve the model’s training stability. Each GIN layer 
uses summation as the aggregation function. According 
to Xu et al. [43], each GIN layer can be formulated as a 
graph-level representation learning process, as shown in 
Eq. 1.

In Eq.  1, hG represents the graph G representation, hkv 
represents the node v representation, fr represents the 
readout function that calculates all node representations 
in graph G, and CONCAT represents a concatenation 
operation that combines the output values from the read-
out function.

In our ligand graph encoder, each GIN layer includes 
an additional batch normalization operation, as shown in 
Eq. 2.

In Eq. 2, h̄G represents the mean value of the graph rep-
resentation hG , δ(hG) represents the standard deviation, 
and these values are calculated per dimension over the 
mini-batches. γ is a learnable parameter vector ranging 
from zero to one, and ǫ is a small value used to avoid divi-
sion by zero.

Protein and pocket transformer encoder
As shown in Fig. 2, both the protein transformer encoder 
and the pocket transformer encoder consist of four trans-
former encoder layers [44]. The protein transformer 
encoder and the pocket transformer encoder use an 
embedding layer and predefined position encoding to 
encode the input sequences. Each encoder comprises 
four transformer encoder blocks, utilizing multi-head 
attention mechanisms and feed-forward neural networks.

The equations for Multi-Head Attention is as follows:

(1)hG = CONCAT(fr({hkv |v ∈ G}))

(2)ĥG = γ × ĥG − h̄G√
δ(hG)+ ǫ

+ (1− γ )

(3)Qi =X ×WQi,Ki = X ×WKi,Vi = X ×WVi

(4)headi =Attention(Qi,Ki,Vi)

In these equations, i ∈ {1, · · · , 4} , WQi ∈ R
d×dk , 

WKi ∈ R
d×dk , WVi ∈ R

d×dv , and WO ∈ R
hdv×dk . The 

dimensionality d is set to 120, h is set to 4, and the size 
of the hidden layer in the feed-forward network is set to 
512.

The parameters in the protein and pocket Transformer 
encoders are identical. We feed the integer encoding of 
the input into the embedding layer, converting a sparse 
vector into a dense vector. Proteins and pockets are rep-
resented as matrices of dimensions (1000, 120) and (63, 
120), respectively. To adapt to the input of the trans-
former, we add the predefined position encoding to the 
input matrix, forming the final input to the transformer.

Prediction module
In the prediction module, the outputs from the three 
encoder modules are first concatenated. These combined 
results are then fed into a prediction module, which uti-
lizes an MLP to generate the final prediction outcome.

Loss function
Our work is a regression task, so we choose the com-
monly used MSE as our loss function. Its formula is as 
follows.

In Eq.  6, n is the number of protein-ligand com-
plexes,  yp(i) and yt(i) represent the predicted and 
true affinity values of the i-th protein-ligand complex, 
respectively.

Experimental results
Hyperparameter settings
Detailed hyperparameter details can be found in Supple-
mentary Sec.1. The parameter details of other baselines 
are in Supplementary Sec.2.

Evaluation metrics
In this study, five widely used evaluation metrics are 
employed to assess the performance of different models. 
These metrics include the Pearson correlation coefficient 
(R), root mean square error (RMSE), mean absolute error 
(MAE), standard deviation (SD), and concordance index 
(CI).

The Pearson correlation coefficient (R) measures the 
degree of linear relationship between two variables. It is 
calculated as follows:

(5)
MultiHead(Q,K ,V ) =CONCAT(head1, · · · , head4)WO

(6)MSE = 1

N

∑N
i=1(yt(i)− yp(i))

2
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In Eq. 7, yp(i) and yt(i) represent the predicted and true 
affinity values of the i-th protein-ligand complex, respec-
tively. ȳp and ȳt represent the mean values of yp(i) and 
yt(i) , respectively. N is the number of protein-ligand 
complexes. A larger R-value indicates a better model.

Root mean square error (RMSE) quantifies the average 
magnitude of the errors between predicted and true val-
ues, giving more weight to larger errors. It is calculated as 
follows:

In Eq. 8, yp(i) and yt(i) represent the predicted and true 
affinity values of the i-th protein-ligand complex, respec-
tively. N is the number of protein-ligand complexes. 
Lower RMSE values indicate better model performance.

Mean absolute error (MAE) measures the average 
absolute difference between predicted and true values. It 
is calculated as follows:

In Eq.  9, yp(i) and yt(i) represent the predicted and 
true affinity values of the i-th protein-ligand complex, 
respectively. Lower MAE values indicate better model 
performance.

Standard deviation (SD) measures the amount of varia-
bility or dispersion in a dataset. It is calculated as follows:

In Eq. 10, yp(i) and yt(i) represent the predicted and true 
affinity values of the i-th protein-ligand complex, respec-
tively. N is the number of protein-ligand complexes, 
and a and b represent the slope and intercept of the line 
between the true and predicted values. Lower SD values 
indicate better model performance.

The concordance index (CI) estimates the probability 
that the predicted results are consistent with the true 
results. It is calculated as follows:

(7)R =
∑N

i=1(yt(i)− ȳt)(yp(i)− ȳp)
√

∑N
i=1(yt(i)− ȳt)

2
∑N

i=1(yp(i)− ȳp)
2

(8)RMSE =
√

1

N

∑N
i=1(yt(i)− yp(i))2

(9)MAE = 1

N

∑N
i=1

∣

∣yp(i)− yt(i)
∣

∣

(10)SD =
√

1

N − 1

∑N
i=1[yp(i)− (a · yt(i)+ b)]2

(11)CI = 1

N

∑

yp(i)>yp(j)

f (yp(i)− yp(j))

(12)f (x) =







1.0, if x > 0

0.5, if x = 0

0.0, if x < 0

In Eq.  11, yp(i) and yt(i) represent the predicted and 
true affinity values of the i-th protein-ligand complex, 
respectively, and N is the number of protein-ligand 
complexes. The function f(x) is a segmented function as 
shown in Eq. 12. A larger CI value indicates better model 
performance.

Baselines
Several representative state-of-the-art models are chosen 
as baselines to evaluate the performance of DeepTGIN. 
These models include DeepDTA [16], DeepDTAF [29], 
IGN [21], GraphDTA [24], DeepGLSTM [25], TEFDTA 
[18], CAPLA [19], and GIGN [22].

Performance of our DeepTGIN model
To test the performance of our DeepTGIN model, we 
used the PDBbind2016 and PDBbind2013 core sets, nam-
ing them the PDBbind2016 test set and PDBbind2013 
test set, respectively. Our DeepTGIN model was trained 
on the training set and validated on the validation set 
over 100 epochs. After the training process, the evalua-
tion metric values of our trained DeepTGIN model are 
summarized in Table 2.

For the training set, our DeepTGIN model achieved an 
R value of 0.927, an RMSE value of 0.693, an MAE value 
of 0.539, an SD value of 0.690, and a CI value of 0.881. 
Similarly, on the validation set, our model achieved an R 
value of 0.736, an RMSE value of 1.277, an MAE value of 
0.981, an SD value of 1.254, and a CI value of 0.768.

Subsequently, we evaluated our DeepTGIN model on 
the two test sets: the PDBbind2016 test set and the PDB-
bind2013 test set. The detailed results are provided in 
Table 2 and Fig. 3.

Results on PDBbind2016 test set and PDBbind2013 test set
Comparison with other models on PDBbind 2016 test set
To evaluate the performance of our DeepTGIN model, 
we conducted a comparative analysis against eight 
representative models using the PDBbind2016 and 
PDBbind2013 test sets. The experimental results are 
summarized in Tables  3 and 4. According to Table  3, 
our DeepTGIN model consistently outperforms the 
compared models across all five evaluation metrics: R, 

Table 2 Performance of the DeepTGIN model

↑ indicates that larger values indicate better performance, while ↓ indicates that 
smaller values indicate better performance

Models R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

Training 0.927 0.693 0.539 0.690 0.881

Validation 0.736 1.277 0.981 1.254 0.768

PDBbind2016 test set 0.834 1.203 0.949 1.197 0.823

PDBbind2013 test set 0.787 1.388 1.123 1.386 0.792
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RMSE, MAE, SD, and CI. The CAPLA model achieves 
the second-best results on the PDBbind2016 test set 
in terms of R, RMSE, SD, and CI evaluation metrics, 
while the GIGN model follows with the third-best per-
formance. Notably, the MAE evaluation of the GIGN 
model is relatively higher than that of the CAPLA 
model. Compared to CAPLA, DeepTGIN shows 
improvements of 4.3% , 9.1% , 10.7% , 8.4% , and 3.2% in R, 
RMSE, MAE, SD, and CI, respectively. Moreover, com-
pared to GraphDTA, DeepTGIN achieves substantial 
enhancements of 18.1% , 22.0% , 19.7% , 22.2% , and 9.0% 
across the same metrics.

Fig. 3 Performance of the DeepTGIN model on the training set A, validation set B, PDBbind2016 test set C, and PDBbind2013 test set D 
for the prediction of binding affinity

Table 3 Results of the DeepTGIN model and other compared 
models on the PDBbind2016 test set

↑ indicates that larger values indicate better performance, while ↓ indicates that 
smaller values indicate better performance. The best results are shown in bold

Models R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

GraphDTA 0.706 1.543 1.183 1.539 0.755

DeepGLSTM 0.722 1.516 1.147 1.512 0.768

DeepDTAF 0.758 1.438 1.148 1.416 0.778

TEFDTA 0.772 1.390 1.065 1.379 0.782

DeepDTA 0.782 1.351 1.038 1.352 0.787

IGN 0.786 1.342 1.049 1.341 0.791

GIGN 0.788 1.351 1.045 1.336 0.792

CAPLA 0.799 1.324 1.063 1.307 0.797

DeepTGIN 0.834 1.203 0.949 1.197 0.823
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Comparison with other models on PDBbind 2013 test set
The experimental results of the compared models on 
the PDBbind2013 test set are presented in Table 4. Our 
DeepTGIN model outperforms all other models in terms 
of all five evaluation metrics. Specifically, compared to 
IGN, DeepTGIN shows improvements of 0.6% , 1.6% , 1% , 
1.4% , and 0.5% in terms of R, RMSE, MAE, SD, and CI, 
respectively. Moreover, DeepTGIN achieves significant 
improvements of 16.7% , 16.4% , 12.7% , 16.5% , and 7% over 
GraphDTA across the same metrics.

Based on these results, we attribute the improved 
performance of DeepTGIN to its effective utilization of 
protein pockets as crucial features for binding affinity 
prediction. IGN, GIGN, CAPLA, and DeepTGIN lever-
age protein pockets as key model inputs, demonstrating 
their effectiveness. While DeepDTAF also incorporates 
protein pockets, it does not emphasize the critical com-
ponents of these pockets nor establish strong connec-
tions between protein pockets and ligands, resulting in 
comparatively poorer performance. IGN and GIGN are 
graph-based models, CAPLA is a sequence-based model, 
and DeepTGIN combines multimodal approaches, har-
nessing the strengths of both graph-based and sequence-
based methodologies to achieve superior predictive 
accuracy.

Results visualization
Visualization of model learning features
To gain deeper insights into the features learned by our 
model, we examined the outputs from the embedding 
layer, encoder module, and the second linear layer in 
MLP. Subsequently, we applied t-distributed Stochastic 
Neighbor Embedding (t-SNE) to reduce the high-dimen-
sional representations into lower-dimensional visuali-
zations, as depicted in Fig.  4. Figure  4A illustrates that 
many points of varying colors cluster closely together, 
appearing indistinguishable and sparsely distributed. In 

contrast, Fig.  4B shows distinct clustering of dark and 
light points after passing through the encoder mod-
ule. Finally, Fig.  4C demonstrates improved separation 
of points with different colors after traversing two lin-
ear layers in MLP. These visualizations indicate that our 
model effectively learns to differentiate protein-ligand 
complexes based on their binding affinities, progressively 
refining its representations through successive layers of 
the model architecture.

Attention visualization
To interpret the results of our model, we visualized 
attention scores and utilized PyMOL [45] to visualize a 
protein-ligand complex pair. Figure  5A and B demon-
strate that our model places significant attention on PRO 
residues (P) within both the protein and protein pocket 
regions. Notably, PRO residues exhibit the highest atten-
tion scores and are involved in crucial interactions with 
ligands. For instance, PRO151 forms a hydrogen bond 
with the ligand [46], while PRO152, PRO153, PRO219, 
PRO222, and PRO223 engage in hydrophobic interac-
tions. The attention visualization highlights DeepTGIN’s 
capability to identify pivotal residues involved in protein-
ligand binding, offering insights that can aid researchers 
in identifying critical residues efficiently and reducing 
experimental time costs.

Ablation study
To demonstrate the impact of protein pocket and ligand 
chemical properties on model performance, we per-
formed two groups of ablation studies.

Protein pocket ablation studies
In the first group, we removed the input and transformer 
encoder of the protein pocket part, resulting in a model 
named DeepTGINwithout_pocket . The results obtained 
by retraining are shown in Tables 5 and 6. According to 
Table 5, the five evaluation metrics all decrease to vary-
ing degrees without the pocket feature. Specifically, the 
R-value decreased by 13.6% , the RMSE increased by 
26.3% , the MAE increased by 24.7% , the SD increased 
by 25.8% , and the CI decreased by 7.6% . According to 
Table  6, DeepTGINwithout_pocket , the R-value decreased 
by 18.5% , the RMSE increased by 24.8% , the MAE 
increased by 23.5% , the SD increased by 24.5% , and the 
CI decreased by 19%.

To prove the effect of the Transformer encoder on pro-
tein pocket sequences, we used CNN and LSTM to learn 
the sequence features of protein pockets, and the results 
obtained after retraining are shown in Tables  5 and   6, 
named DeepTGINcnn and DeepTGINlstm . Using CNN to 
learn sequence features of pockets, the R, RMSE, MAE, 

Table 4 Results of the DeepTGIN model and other compared 
models on the PDBbind2013 test set

↑ indicates that larger values indicate better performance, while ↓ indicates that 
smaller values indicate better performance. The best results are shown in bold

Models R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

GraphDTA 0.674 1.661 1.287 1.660 0.740

DeepGLSTM 0.676 1.654 1.276 1.651 0.742

DeepDTAF 0.728 1.581 1.277 1.547 0.769

TEFDTA 0.736 1.536 1.210 1.522 0.762

IGN 0.782 1.411 1.135 1.406 0.788

GIGN 0.780 1.407 1.133 1.409 0.780

CAPLA 0.744 1.524 1.233 1.502 0.767

DeepTGIN 0.787 1.388 1.123 1.386 0.792
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Fig. 4 t-SNE visualization results. A The result after embedding layer. B The result after encoder module. C The output of the second linear layer 
in MLP

Fig. 5 Visualization of attention scores: A Attention scores for protein. B Attention scores for protein pocket. C Visualization of a protein-ligand 
complex in PyMOL. Green residues represent important residues identified by DeepTGIN, while the yellow part denotes the ligand. Notably, PRO151 
forms a hydrogen bond with the ligand

Table 5 The ablation experimental result on the PDBbind2016 
test set

↑ indicates that larger values indicate better performance, while ↓ indicates that 
smaller values indicate better performance

Models R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

DeepTGINwithout_pocket 0.720 1.520 1.184 1.506 0.760

DeepTGINwithout_ligand 0.723 1.512 1.185 1.501 0.763

DeepTGINcnn 0.745 1.458 1.132 1.449 0.769

DeepTGINlstm 0.725 1.502 1.130 1.495 0.763

DeepTGIN 0.834 1.203 0.949 1.197 0.823

Table 6 The ablation experimental result on the PDBbind2013 
test set

↑ indicates that larger values indicate better performance, while ↓ indicates that 
smaller values indicate better performance

Models R(↑) RMSE(↓) MAE(↓) SD(↓) CI(↑)

DeepTGINwithout_pocket 0.641 1.733 1.387 1.726 0.641

DeepTGINwithout_ligand 0.686 1.653 1.349 1.635 0.748

DeepTGINcnn 0.700 1.610 1.304 1.605 0.748

DeepTGINlstm 0.674 1.670 1.312 1.661 0.737

DeepTGIN 0.787 1.388 1.123 1.386 0.792



Page 10 of 12Wang et al. Journal of Cheminformatics          (2024) 16:147 

SD, and CI on the PDBbind2016 test set varied by 10.6% , 
21.1% , 19.2% , 21% and 6.5% respectively. On the PDB-
bind2013 test set, they varied by 11% , 15.9% , 16.1% , 15.8% , 
and 5.5% . We replace CNN with LSTM, and compare 
the results on the PDBbind2016 test set, showing varia-
tions of 13% , 24.8% , 19% , 19.8% , and 6.9% . On the PDB-
bind2013 test set, they varied by 14.3% , 20.3% , 16.8% , 
19.8% , and 6.9%.

Ligand properties ablation studies
In the second group, we modified the input features of 
the ligand graph part, and we reduced the 10 proper-
ties per atom to 5, the same as GraphDTA [24]. The 
properties we removed were chiral tag , formal charge , 
number of radical electrons , hybridization, and 
is in ring . The results are shown in the Tables  5 and   6, 
named DeepTGINwithout_ligand . From Table 5 we can see, 
that the results of five evaluation metrics also showed 
varying degrees of decline. The R value decreased by 
13.3% , the RMSE increased by 25.6% , the MAE increased 
by 24.8% , the SD increased by 25.3% , and the CI 
decreased by 7.2% . From Table 6, the R value decreased 
by 12.8% , the RMSE increased by 19% , the MAE 
increased by 20.1% , the SD increased by 17.9% , and the 
CI decreased by 5.8%.

In summary, the incorporation of protein pockets and 
the careful selection of properties of ligand atoms can 
markedly improve the performance of the model. With 
the advancement of technology, we anticipate that inte-
grating additional chemical characteristics of ligand atoms 
as input to the ligand graph may yield even better results.

Conclusion
This study presents DeepTGIN, a hybrid multimodal 
approach that integrates transformers and GINs for pre-
dicting protein-ligand binding affinity. DeepTGIN effec-
tively combines the advantages of sequence-based and 
graph-based models, utilizing transformers to extract 
features from protein sequences and protein pockets, and 
graph isomorphism networks to capture features from 
ligands. The architecture of DeepTGIN, consisting of a 
data representation module, an encoder module, and a 
prediction module, facilitates efficient learning of both 
sequential and graph features, improving the model’s pre-
dictive capabilities. Evaluation of the PDBbind 2016 and 
PDBbind 2013 core sets shows that DeepTGIN surpasses 
state-of-the-art models in terms of R, RMSE, MAE, SD, 
and CI metrics. Ablation studies confirm the importance 
of ligand atomic properties and the encoder module in 
boosting the model’s performance, highlighting their 
crucial roles in achieving accurate predictions. DeepT-
GIN marks a significant improvement in protein-ligand 

binding affinity prediction. Its robust framework lays the 
foundation for incorporating additional chemical char-
acteristics of ligand atoms, potentially leading to further 
advancements in drug discovery.
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