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Introduction
Aging is evolving into a worldwide trend, this is the 
development challenge faced by countries worldwide. 
The World Health Organization (WHO) projects that the 
elderly population will increase to 1.4 billion by 2030 and 
2.1  billion by 2050 [1]. As a result, the rapid growth of 
the frail elderly population will exert significant pressure 
on global medical infrastructure and the elderly them-
selves [2]. Frailty, characterized by a weakened ability to 
withstand health stress, often impacts the elderly and is 
linked to numerous negative health outcomes, including 
all-cause mortality [3], newly diagnosed chronic diseases 
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Abstract
Background The accelerated aging process worldwide is placing a heavy burden on countries. PM2.5 particulate 
matter exposure is a significant factor affecting human health and is crucial in the aging process.

Methods We utilized data from China Health and Retirement Longitudinal Study (CHARLS) and the Survey of 
Health, Aging, and Retirement in Europe (SHARE) to study the relationship between PM2.5 exposure and the frailty 
index. Acquire PM2.5 exposure data for China and Europe, match them according to geographic location within the 
database. Our study used frailty index to evaluate frailty, which comprises 29 items. We examined the association 
between PM2.5 and frailty index using fixed-effects regression models and Mendelian randomization (MR) analysis.

Results We first examined the association between PM2.5 and frailty index using fixed-effects regression 
models, revealing a notable positive link across populations in China (coefficient = 0.0003, P = 0.0380) and Europe 
(Coefficient = 0.0019, P < 0.0001). This suggests that PM2.5 exposure is a significant risk factor for frailty, leading to 
accelerated frailty. Moreover, our MR analysis uncovered a possible causal association (OR = 1.2933, 95%CI: 1.2045–
1.3820, P < 0.0001) between PM2.5 exposure and the frailty index.

Conclusions Our findings indicate that long-term exposure to PM2.5 in the environment is a risk factor for physical 
frailty and may have a potential causal relationship. Given the rapid global aging trend, public health measures are 
needed to reduce PM2.5 concentrations and prevent frailty.
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[4], depressive symptoms [5], and falls [6]. Additionally, 
research indicates that active improvement strategies can 
mitigate frailty [7, 8], improving the quality of life for the 
elderly.

Air pollution, as the greatest environmental risks to 
health, may contribute to the aging process and impact 
successful aging, which is especially significant in under-
standing aging [9]. In 2019, a staggering 99% of people 
worldwide resided in areas failing to comply with WHO’s 
air quality criteria [10]. Air pollution’s health impacts 
are diverse, encompassing respiratory diseases, allergic 
conditions [11], cardiovascular disorders [12], and brain 
health [13]. Epidemiological evidence indicates a poten-
tial link between these diseases and both long-term expo-
sure to air pollution and frailty [14–17].

In recent years, several studies have investigated the 
impact of air pollution on frailty. For example, research 
has reported a 30% increase in the likelihood of frailty 
for every 10 µg/m3 rise in PM2.5 levels in rural areas [18]. 
A population-based quasi-experimental study, utilizing 
propensity score matching and double difference analy-
sis, showed a significant decrease in individuals’ FI scores 
and the frailty status improved following the implemen-
tation of the Clean Air Action in China [19]. However, 
current research, despite their contributions, exhibits 
several limitations. Firstly, the evidence predominantly 
stems from cross-sectional studies, which inherently lack 
the capacity to establish causal relationships. However, 
research has shown that cohort studies and Mendelian 
randomization (MR) studies provide more convincing 
evidence than cross-sectional studies [20]. Secondly, the 
research subjects are primarily concentrated within a 
single region, resulting in a scarcity of cross-regional 
studies. Consequently, there is a pressing need for cross-
regional research to yield more universally applicable 
findings. Finally, there is a paucity of research examining 
the relationship between PM2.5 exposure and the Frailty 
Index (FI). Studies have shown that the FI is widely rec-
ognized as a standard measure of aging and can be used 
to assess the burden of age-related clinically significant 
health deficits [4, 21]. Furthermore, the FI demonstrates 
strong predictive ability and is effective in forecasting 
adverse health outcomes [22].

To investigate the association and causal relationship 
between PM2.5 exposure and FI, we utilized data from 
the China Health and Retirement Longitudinal Study 
(CHARLS), the Survey of Health, Ageing and Retirement 
in Europe (SHARE), and summary data from Genome-
Wide Association Studies (GWAS). Employing fixed 
effect regression models and MR methods, we aimed 
to provide a comprehensive analysis of the potential 
impacts of PM2.5 on FI.

Methods
Study design
The baseline survey of CHARLS, a nationally representa-
tive cohort study of Chinese residents aged 45 and above, 
began in 2011. It included 17,708 individuals and was 
followed up every two years [23]. The survey used multi-
stage probability sampling to select respondents. In addi-
tion, data from SHARE, the largest longitudinal study in 
Europe, are available for people aged 50 years and older. 
We used data from three follow-up visits from 2011 to 
2015. We obtained the following information from the 
two cohorts: gender, age, marital status, education, resi-
dence, smoking status, drinking status, retirement status, 
body mass index (BMI (kg/m2)), and a variety of chronic 
diseases. In addition, information was obtained on vari-
ables related to activities of daily living (ADL), instru-
mental activities of daily living (IADL), physical function 
limitations, cognitive abilities, and depression. Figure  1 
shows the data screening flowchart.

To ensure study consistency, we limited the age range 
of both cohorts to those over 50 years of age. During the 
research process, for CHARLS, we excluded participants 
who lacked information on key variables for construct-
ing the FI, as well as participants data lacked geographi-
cal location information. Finally, we included 6,407 
research subjects. The SHARE data is consistent with the 
CHARLS data above, and participants from European 
countries with land areas smaller than or comparable to 
the largest cities in China were retained (include Estonia, 
Belgium, Czech Republic, Austria, Switzerland, Den-
mark, Slovenia). Finally, 17,029 research subjects were 
included. Figure  2 shows the 122 cities in China and 7 
countries in Europe included and the number of people 
surveyed. The darker the color, the more surveyed people 
are included.

Furthermore, MR analysis was performed using GWAS 
summary data to explore the causal association between 
FI and PM2.5. The summary data for PM2.5 was sourced 
from the IEU Open GWAS project (ID: ukb-b-10817). 
For the FI, GWAS data were derived from a study that 
investigated British individuals of European descent [24, 
25]. This study encompassed a GWAS meta-analysis of 
the FI conducted on Biobank participants and Swedish 
twin genome participants. Calculations for FI utilized 
self-reported health-related information from the UK 
Biobank (UKB) and Twin Genome, encompassing 49 to 
44 elements related to symptoms, disability, and identi-
fied illnesses.

Air pollution data
Ambient PM2.5 data were obtained from previously estab-
lished dataset through satellite-based remote sensing 
technology [26, 27]. The time span of air pollution data 
is consistent with that of the study population, which is 
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Fig. 2 122 Chinese cities and 7 European countries included and the number of respondents. The darker the color, the more respondents were included. 
A: China; B: Europe

 

Fig. 1 Data screening flowchart
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2011–2015. Specifically, air pollution data for China were 
sourced from the China High-Resolution, High-Quality 
Near Surface Air Pollutant dataset published by Wei et 
al. [26]. This dataset employs a comprehensive approach, 
integrating big data from various sources such as ground-
based measurements, satellite remote sensing products, 
atmospheric reanalysis, and model simulations. By incor-
porating artificial intelligence, the dataset effectively gen-
erates PM2.5 data while accounting for the spatiotemporal 
heterogeneity of air pollution. Notably, the dataset boasts 
a spatial resolution of 1  km × 1  km, offering enhanced 
accuracy and predictive capability compared to previ-
ously reported datasets. To integrate the mean concen-
tration of each grid cell with geographic data, ArcGIS 
software (ESRI Inc.) was utilized. This process involved 
using a geographic shapefile that contained the boundar-
ies of prefecture-level cities in mainland China. There-
fore, we were able to match and calculate the average 
PM2.5 concentration levels across 122 cities. These calcu-
lations were based on data collected from three follow-up 
visits conducted between 2011 and 2015.

European PM2.5 concentrations were obtained from 
the Atmospheric Composition Analysis Group Web site 
at Washington University, which is a 1 km × 1 km global 
model developed by HAMMER et al. [27]. HAMMER 
and colleagues combined aerosol optical depth (AOD) 
retrievals from NASA’s MODIS, MISR, SeaWIFS, and 
VIIRS with the GEOS-Chem chemical transport model. 
They then used a residual convolutional neural network 
(CNN) to calibrate these results against global ground 

observations, estimating annual and monthly surface 
PM2.5 from 2000 to 2019. Similar to China, to facilitate 
the matching of PM2.5 data for seven European coun-
tries, country-level geographic location information was 
obtained from SHARE. Figure 3 shows the average PM2.5 
concentrations from 2011 to 2015 across 122 cities in 
China and 7 European countries. The numbers represent 
the number of people surveyed included from each pro-
vincial-level unit in China or each European country.

In addition to PM2.5 concentration, NO2 concentration 
and temperature levels are considered influential fac-
tors. Therefore, global NO2 concentrations (with a spatial 
resolution of 1 km × 1 km) [28] and temperature data  (   
h t  t p s  : / / c  d s  . c l i m a t e . c o p e r n i c u s . e u / c d s a p p # ! / d a t a s e t / r e a 
n a l y s i s - e r a 5 - p r e s s u r e - l e v e l s     ) were incorporated as con-
trol variables in the model. This comprehensive approach 
ensures a thorough examination of the impact of PM2.5 
concentration while accounting for potential confound-
ing effects of NO2 concentration and temperature levels.

Assessment of the frailty index
In our study, we used the FI to evaluate frailty, which is 
characterized by the accumulation of various age-related 
health problems. During the follow-up period between 
2011 and 2015, three repeated measurements of FI were 
taken for individual. The FI was developed according to 
established procedures and principles outlined by Searle 
SD [29, 30], and informed by relevant previous research 
[3, 31]. Based on data from CHARLS and SHARE, a total 
of 29 items were selected for the construction of the FI. 

Fig. 3 The average PM2.5 concentrations from 2011 to 2015 across 122 cities in China and 7 European countries. The numbers represent the number of 
people surveyed included from each provincial-level unit in China or each European country. A: China; B: Europe

 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels
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These items included illness, disability in ADL and dis-
ability in IADL, physical functioning, depression, and 
cognition. Each item was scored as 1 (deficit present) 
or 0 (no deficit), respectively. The scores for items 1–29 
were summed to obtain the FI score, which ranged from 
0 to 29. Items 28 and 29 representing cognitive and 
depression scores, are continuous variables, their val-
ues spanning from 0 to 1. Currently, research focuses on 
categorizing FI. However, existing studies have revealed 
discrepancies in the classification of FI and in identifying 
older adults as “frail”, thereby limiting our understanding 
of frailty. Maintaining FI as a continuous variable may 
be beneficial until further research establishes the opti-
mal FI category for this population [32]. Therefore, the 
FI for each participant is calculated by dividing the total 
current health deficits by 29. As a continuous variable, FI 
ranges from 0 to 1, with higher values indicating greater 
frailty. The variables for constructing the FI are shown in 
the Supplementary table (Supplementary Table 1).

Statistical analysis
After obtaining air pollution exposure data and FI out-
come data, we matched them based on the geographic 
location information provided by the CHARLS and 
SHARE databases. The data for each individual included 
three PM2.5 concentration data and FI measurements, 
as well as a series of covariate data. First, to reduce the 
impact of missing values on the analysis, we excluded 
individuals with missing information on key variables in 
the construction of the FI. For the remaining individuals, 

we performed multiple imputation of covariates to 
obtain complete data for analysis [33, 34]. The propor-
tion of missing variables is shown in the supplementary 
table (Supplementary Table 2). Fixed effects regression 
was used to evaluate the longitudinal data. Fixed effects 
regression can account for both observed and unob-
served time-invariant confounding variables [35]. Con-
sequently, fixed effect regression is deemed more robust 
than conventional regression models in investigating the 
correlation between predictor alterations and outcome 
variations.

The fixed effect regression model is as follows

 Yit=α+αi+β1X1it + β2X2it + ...βkXkit + εit

Y it is the dependent variable (the FI in this study), 
Xkit is the independent variable and the covariate that 
needs to be controlled (such as PM2.5 and BMI in this 
study), α is the intercept term, α i is the individual 
fixed effect, ϵit is the error bar, and β k is the regression 
coefficient.

European SHARE data was employed to explore the 
impact of regional variances on the link between PM2.5 
and FI. The following covariates were controlled for in 
the analysis: age, marital status, education, smoking sta-
tus, drinking status, retirement status, BMI, mean annual 
NO2 concentration and temperature.

Furthermore, to explore the causal association between 
the two variables, we performed MR analysis using 
GWAS summary data. In this analysis, we initially filtered 
out outlier single nucleotide polymorphisms (SNPs), 
retaining only those SNPs deemed reliable for further 
investigation. The MR analysis was primarily conducted 
employing the inverse variance weighted with modi-
fied weights (MW-IVW) method [36] as the main ana-
lytical approach. Additionally, sensitivity analyses were 
performed using the Inverse Variance Weighted (IVW) 
[37] and weighted median (WM) methods [38] to assess 
the robustness of the findings. To test for pleiotropy, the 
MR-Egger method was employed, and the F statistic was 
applied to gauge the strength of instrumental variables in 
the study [39, 40].

The statistical evaluations were performed utilizing R 
(version 4.2.3), ArcGIS (version 10.8), Stata 16, and SPSS 
25 software, considering a P-value less than 0.05 as statis-
tically significant.

Results
Basic characteristics of study participants
The baseline basic characteristics of CHARLS and 
SHARE participants are presented in Table 1. The mean 
age (SD) of 6,407 participants in CHARLS was 60.67 
years (7.11 years), with males comprising 49.9%. And 
the proportion of elderly people aged 65 and above is 

Table 1 Fundamental traits of the population studied
Characteristic CHARLS (N (%)) SHARE (N (%))
Total sample (N) 6,407 17,029
Males 3,194 (49.9%) 6,992 (41.1%)
≥ 65 years old 1,706 (26.63%) 7,940 (46.63%)
Age (Mean ± SD, years) 60.67 ± 7.11 65.06 ± 9.13
BMI (Mean ± SD, years) 23.42 ± 3.84 27.11 ± 4.80
Marital status (married) 5,964 (88.9%) 11,062 (65.0%)
Educational level
Less than lower secondary 5,740 (89.9%) 5,003 (29.4%)
Upper secondary & vocational 
training

594 (9.3%) 7,785 (45.7%)

Tertiary 72 (1.1%) 4,341 (24.9%)
Residence (Rural) 4,178 (65.2%) 5,993 (35.2%)
Smoking status (Smoker) 2,009 (32.8%) 3,348 (19.7%)
Drinking status (Drinker) 2,191 (34.2%) 8,081 (47.1%)
Frailty Index in 2011 
(Mean ± SD)

0.1268 ± 0.1078 0.1037 ± 0.1031

PM2.5 in 2011 (Mean ± SD, µg/
m3)

58.1757 ± 17.8567 14.8600 ± 3.6226

NO2 in 2011 (Mean ± SD, µg/
m3)

7.1756 ± 4.5943 5.3475 ± 2.3394

Temperature in 2011 
(Mean ± SD, ℃)

13.9071 ± 5.0140 8.2235 ± 1.6146
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25.63%. The mean annual exposure concentration of 
PM2.5 in 2011 at baseline was 58.1757 µg/m3, the average 
FI in 2011 was 0.1268. The mean age (SD) of all 17,029 
participants in SHARE was 65.06 years (9.13 years), with 
males comprising 41.2% and over 65 years old 46.63%. 
The mean annual exposure concentration of 14.8600 µg/
m3 of PM2.5 in 2011 at baseline, the average FI in 2011 
was 0.1037.

Association between PM2.5 and Frailty Index in 
cohort study
In Table  2, the association between PM2.5 and the FI is 
displayed. Initially, a significant positive correlation was 
identified without controlling for potential confound-
ing variables: The FI increases by 0.0030 for every 10 µg/
m3 rise in PM2.5 concentration, P = 0.0290. Upon adjust-
ing for these confounding factors, a positive relationship 
between PM2.5 and the FI persisted (coefficient = 0.0003, 
P = 0.0380). This suggests that with each 10  µg/m3 rise 
in PM2.5 concentration in the atmosphere, the FI also 
increases by 0.0030. In the SHARE data, we observed 
similar results. Prior to adjustment: coefficient = 0.0022, 
P < 0.0001, after adjustment: coefficient = 0.0019, 
P < 0.0001. This indicates that the FI was found to increase 
by 0.0190 for every 10 µg/m3 increase in PM2.5 concentra-
tion. Limiting the study to individuals aged 65 years and 
older revealed that PM2.5 remained a risk factor for frailty 
in the European population. While a positive associa-
tion was observed in the Chinese population, it was not 
statistically significant (P = 0.3140). Additionally, to fur-
ther explore the urban-rural associations. CHARLS data 
revealed a notable positive relationship between PM2.5 
and the FI in rural areas: coefficient = 0.0004, P = 0.0250. 
However, no such association was found in urban areas: 
coefficient = 0.0001, P = 0.6220. In the SHARE, the impact 
of PM2.5 on the FI remains consistent, indicating that it 
serves as a risk factor for frailty.

Casual association between PM2.5 and Frailty Index 
in MR
The F-statistic (MeanF = 23.9521) and MR-Egger results 
(P = 0.5290) demonstrated that the analysis was not 
influenced by weak instrumental variables and pleiot-
ropy. The MR results indicated that MWIVW: Odds 
ratio (OR) = 1.2933, 95% CI: 1.2045–1.3820, P < 0.0001; 
the results indicated that PM2.5 was a significant risk for 
the FI. Sensitivity analyses showed similar results: IVW: 
OR = 1.2820, 95% CI: 1.1874–1.3767, P < 0.0001; WM: 
OR = 1.2630, 95% CI: 1.1271–1.3989, P = 0.0008. Our find-
ings demonstrate that higher PM2.5 levels expedite the 
frailty process., with each standard deviation increase in 
PM2.5 associated with a 29.33% rise in frailty risk.

Discussion
The longitudinal study demonstrated a significant posi-
tive association between PM2.5 exposure and FI, and MR 
results indicated a causal association. Our study investi-
gated the association between PM2.5 and FI through a fol-
low-up design. It is noteworthy that a generally accepted 
instrument was used to measure frailty, and the FI was 
measured using a combination of 29 items. Through 
cross-ethnic studies, we obtained similar results in Euro-
pean populations, indicating that exposure to PM2.5 can 
accelerate frailty in people of different ethnic groups. 
Our study revealed that exposure to PM2.5 may speed 
up the aging process, similar findings were observed 
across different regions, and suggesting a possible causal 
relationship.

Numerous research efforts have focused on exploring 
the link between air pollution and frailty among older 
adults. Research involving prospective cohorts revealed 
a correlation between air pollutants, like PM2.5, and a 
heightened likelihood of frailty [41]. Consistent with the 
finding, a population-based study involving 220,079 UKB 
participants revealed that higher exposure to PM2.5 was 
associated with an elevated risk of frailty [42]. Likewise, 
studies derived from the Chinese Longitudinal Healthy 
Longevity Survey revealed an increased occurrence of 
frailty linked to heightened exposure to air pollution in 
the year preceding the interview [43]. Notably, frailty 
scores were significantly higher in older adults residing in 
areas with severe air pollution. This implies that air con-
tamination could be a major factor in shaping the pro-
gression of healthy aging [43]. Furthermore, after China 
implemented the air pollution control policy, namely 
the Clean Air Action Plan, the FI scores of healthy indi-
viduals were significantly reduced by 0.0205, while the FI 
scores of pre-frail individuals were significantly reduced 

Table 2 Main results
Method CHARLS SHARE

Coefficient P Coefficient P
Fixed effects regression 
(Model 1)

0.0003 0.0290 0.0022 < 0.0001

Fixed effects regression 
(Model 2)

0.0003 0.0380 0.0019 < 0.0001

Fixed effects regression 
(Rural)

0.0004 0.0250 0.0031 < 0.0001

Fixed effects regression 
(Urban)

0.0001 0.6220 0.0016 0.0005

Fixed effects regression 
(≥ 65 years old)

0.0003 0.3140 0.0025 < 0.0001

MR OR = 1.2933, 95%CI: 1.2045–1.3820, P < 
0.0001

Note: Model 1 is not adjusted. Model 2 adjusted for age, marital status, 
education, smoking status, drinking status, retirement status, BMI, mean annual 
NO2 concentration and temperature. OR: Odds ratio; CHARLS: the China Health 
and Retirement Longitudinal Study; SHARE: the Survey of Health, Aging and 
Retirement in Europe; MR: Mendelian randomization
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by 0.0114 [19]. Although these studies support the 
adverse effects of ambient air pollution on frailty, they 
do not include cross-regional research or explore causal 
relationships. Building on a long-term cohort study, we 
incorporated a MR study, resulting in findings that are 
more robust compared to existing results. Our research 
corroborates the negative impact of environmental air 
pollution on frailty. Exposure to PM2.5 is positively cor-
related with the FI, thereby accelerating the aging pro-
cess. Interestingly, when we restricted our study subjects 
to individuals aged 65 and above, we observed a positive 
correlation between PM2.5 exposure and FI. However, 
in the sample of the elderly population in China, this 
association did not reach statistical significance. This 
phenomenon may be related to significant lifestyle differ-
ences between elderly populations in China and Europe, 
which could influence the level of PM2.5 exposure among 
those aged 65 and above and differences in genetic back-
grounds and physiological characteristics might also 
contribute to this phenomenon [44–46]. In addition, 
our investigation brought to light disparities in results 
between China rural and urban settings. One potential 
explanation for this variation is that rural regions heavily 
rely on traditional energy sources like biomass burning, 
leading to higher levels of both outdoor and indoor air 
pollution [18]. Moreover, compared to urban residents, 
rural areas lack proper housing and transportation plan-
ning, which may exacerbate environmental exposures for 
rural residents and result in their limited understanding 
of the significance of air pollution prevention and control 
[47, 48].

Exposure to air pollution is widely recognized for 
causing a range of detrimental health impacts, includ-
ing inflammatory reactions, oxidative stress, metabolic 
disorders, and epigenetic modifications. For instance, 
by upsetting mitochondria, air pollution can cause pro-
inflammatory reactions in different immune cells, and 
since inflammation is thought to be a possible source of 
weakness, thus collectively leading to the onset of weak-
ness [49, 50]. Moreover, air pollutants may disrupt the 
body’s balance and reduce its ability to handle stress, has-
tening the decline in functional abilities and capacities 
associated with aging levels of cells, organs, and the entire 
system, ultimately resulting in frailty [7]. Clearly, air pol-
lution plays a role in frailty to a certain extent, making 
the reduction of air pollution crucial for diminishing 
frailty in the elderly. With the rapid development of the 
global economy, environmental pollution and popula-
tion aging have emerged as two critical issues impacting 
public health. Air pollution, a pervasive and increas-
ingly severe environmental hazard, has long been a sig-
nificant factor contributing to chronic diseases such as 
respiratory disorders, cardiovascular diseases, and can-
cer [51]. This issue is particularly pronounced in regions 

experiencing rapid industrialization, where declining air 
quality poses a substantial threat to public health. Con-
currently, the global population is aging at an accelerated 
pace due to advancements in healthcare and declining 
birth rates, leading to an increasing proportion of elderly 
individuals [52]. This demographic shift not only alters 
the population structure but also presents challenges 
in healthcare, social security, and lifestyle adjustments. 
The elderly population typically faces a higher burden 
of chronic diseases, and as they age, their immune and 
recovery capacities diminish, heightening their sensitivity 
to environmental pollution [53]. The interplay between 
air pollution and aging exacerbates public health pres-
sures. Therefore, based on current research findings, it is 
imperative to implement measures to mitigate the impact 
of air pollution on the aging population. Such measures 
could include the development of effective public health 
policies by governments, enhancement of urban green 
spaces [54], dissemination of knowledge regarding air 
pollution and health risks to the public, and provision of 
personalized healthcare services for the elderly [55].

The present study has several significant strengths. 
Firstly, a cohort study design was employed to investi-
gate the longitudinal association between PM2.5 and FI 
in depth. During the research process, the effects of fac-
tors such as temperature, NO2 and important covariates 
were carefully controlled to ensure the reliability of the 
results. Secondly, we constructed a comprehensive FI, 
taking into account multiple factors, including disease, 
physical functional limitations, disability in ADL, dis-
ability in IADL, physical function, depression, and cogni-
tion, to comprehensively assess the FI. Finally, we utilized 
data from CHARLS and SHARE. Moreover, we ensured 
consistency in variables used to construct the FI between 
SHARE and CHARLS, with a consistent data timeframe 
from 2011 to 2015. Through cross-regional observations, 
we obtained consistent results. Additionally, we further 
established causal relationship through MR analysis. 
Therefore, our study findings are generalizable and dem-
onstrate the impact of PM2.5 on frailty, providing robust 
support for the credibility of our research.

Although our study yielded some important findings, 
its limitations must also be acknowledged. First, the 
pollutant data used in the study are based on city-level 
data, which may not fully capture small changes within 
cities. The lack of consideration for variability within 
the city may introduce bias into the results, as detailed 
geographic locations could more accurately capture the 
study subjects’ exposure levels, leading to more precise 
research outcomes. Second, we used a validated tool to 
detect FI, but we adapted it based on information avail-
able in the research database used. The use of existing 
data may introduce bias from the original version. Third, 
to ensure the maximum inclusion of the sample size, we 
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performed multiple imputation of cognitive variables 
required to construct FI in the SHARE database (such 
as: Orient variable: missing proportion: wave 4: 28.32%, 
wave 5: 99.62%, wave 6: 0.23%), which may have some 
impact on the results. However, the multiple imputation 
method we employed is widely recognized for address-
ing missing data in cohort studies, and its effectiveness 
is well-documented [34, 56]. Finally, we acknowledge that 
the data from CHARLS and SHARE may not fully repre-
sent populations in other regions with different socioeco-
nomic or environmental context. However, our research 
indicates that exposure to PM2.5 accelerates aging in both 
China and Europe, suggesting that the adverse health 
effects of PM2.5 are widespread to some extent. Therefore, 
it is important to be cautious in interpreting the findings 
and to address these limitations in future studies.

Conclusion
In conclusion, our research indicates that prolonged 
exposure to PM2.5 is a risk factor for frailty and has a 
potential causal relationship. Therefore, in the context of 
an aging population, it is crucial to address the adverse 
health effects of air pollution. Effective public health 
measures should be implemented to reduce the con-
centration of environmental particulates, such as PM2.5, 
while also mitigating the aging process to enhance overall 
public health.

Supplementary Information
The online version contains supplementary material available at  h t t  p s : /  / d o  i .  o r 
g / 1 0 . 1 1 8 6 / s 1 2 8 8 9 - 0 2 4 - 2 1 1 2 1 - 4     .  

Supplementary Material 1

Acknowledgements
The authors sincerely thank the CHARLS and SHARE data management teams 
for data collection and management, as well as GWAS and related consortia 
for the collection and management of large-scale data resources. Thanks to 
the financial support provided by the National Natural Science Foundation of 
China.

Author contributions
Yanchao Wen: Data Curation, Writing-Original Draft, Writing-Review & 
Editing, Visualization. Guiming Zhu: Data Curation, Writing-Review & Editing, 
Visualization.Kexin Cao: Data Curation, Writing-Review & Editing. Jie Liang: 
Writing-Review & Editing, Funding acquisition. Xiangfeng Lu: Writing-Review 
& Editing. Tong Wang: Writing-Review & Editing, Supervision, Funding 
acquisition.

Funding
This study was supported by the National Natural Science Foundation of 
China (Grant numbers: No.82073674, No.82373692&No.82304254).

Data availability
The China Health and Retirement Longitudinal Study (CHARLS):  h t t  p s : /  / c h  a r  l 
s . c h a r l s d a t a . c o m / p a g e s / d a t a / 1 1 1 / e n . h t m l     . The Survey of Health, Ageing and 
Retirement in Europe (SHARE): http:// www.sha re-proj ect. org/data-access.html. 
Harmonized data for CHARLS and SHARE can be accessed via:  h t t  p s : /  / g 2  a g  i n g 
. o r g / h r d / g e t - d a t a     . GWAS summary data for PM2.5:  h t t  p s : /  / g w  a s  . m r c i e u . a c . u k / d 
a t a s e t s / u k b - b - 1 0 8 1 7 /     . GWAS summary data for frailty  i n d e x :    h t t  p s :  / /  fi  g  s h a r  e . c  

o m  / a r  t i c l  e s /  d a  t a s  e t / G  e n o  m e  - W i d e _ A s s o c i a t i o n _ S t u d y _ o f _ t h e _ F r a i l t y _ I n d e x 
_ - _ A t k i n s _ e t _ a l _ 2 0 1 9 / 9 2 0 4 9 9 8      

Declarations

Ethical approval
CHARLS received ethical approval from the Biomedical Ethics Review 
Committee of Peking University (IRB00001052-11015) and all participants 
provided informed written consent. SHARE received ethical approval from 
the Ethics Council of the Max Planck Society and all participants provided 
informed written consent. GWAS summary data and air pollution data are 
public data and do not require ethical approval.

Consent for publication
All authors approved the final manuscript and the submission to this journal.

Competing interests
The authors declare no competing interests.

Received: 29 September 2024 / Accepted: 17 December 2024

References
1. http:// www.who .int/ne ws-r oom/fa ct-shee ts/deta il/a geing-and-health2022; 

Aging and Health.
2. Dent E, Martin FC, Bergman H, Woo J, Romero-Ortuno R, Walston JD. Man-

agement of frailty: opportunities, challenges, and future directions. Lancet. 
2019;394(10206):1376–86.

3. Fan J, Yu C, Guo Y, Bian Z, Sun Z, Yang L, Chen Y, Du H, Li Z, Lei Y, et al. Frailty 
index and all-cause and cause-specific mortality in Chinese adults: a prospec-
tive cohort study. Lancet Public Health. 2020;5(12):e650–60.

4. Jang J, Jung H, Shin J, Kim DH. Assessment of Frailty Index at 66 years of Age 
and Association with Age-Related diseases, disability, and Death over 10 
years in Korea. JAMA Netw Open. 2023;6(3):e2248995.

5. Zhu J, Zhou D, Nie Y, Wang J, Yang Y, Chen D, Yu M, Li Y. Assessment of the 
bidirectional causal association between frailty and depression: a mendelian 
randomization study. J Cachexia Sarcopenia Muscle. 2023;14(5):2327–34.

6. de Vries OJ, Peeters GM, Lips P, Deeg DJ. Does frailty predict increased risk of 
falls and fractures? A prospective population-based study. Osteoporos Int. 
2013;24(9):2397–403.

7. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. 
Lancet. 2013;381(9868):752–62.

8. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical 
practice: a review. Eur J Intern Med. 2016;31:3–10.

9. Cohen G, Gerber Y. Air Pollution and successful aging: recent evidence and 
New perspectives. Curr Environ Health Rep. 2017;4(1):1–11.

10.  h t t  p s : /  / w w  w .  w h o . i n t / n e w s - r o o m / f a c t - s h e e t s / d e t a i l / a m b i e n t - ( o u t d o o r ) - a i r - q 
u a l i t y - a n d - h e a l t h     , Ambient (outdoor) air pollution.

11. Sierra-Vargas MP, Teran LM. Air pollution: impact and prevention. Respirology. 
2012;17(7):1031–8.

12. Lee KK, Miller MR, Shah ASV. Air Pollution and Stroke. J Stroke. 
2018;20(1):2–11.

13. Russ TC, Reis S, van Tongeren M. Air pollution and brain health: defining the 
research agenda. Curr Opin Psychiatry. 2019;32(2):97–104.

14. Chen H, Goldberg MS, Villeneuve PJ. A systematic review of the relation 
between long-term exposure to ambient air pollution and chronic diseases. 
Rev Environ Health. 2008;23(4):243–97.

15. Peters R, Peters J, Booth A, Mudway I. Is air pollution associated with 
increased risk of cognitive decline? A systematic review. Age Ageing. 
2015;44(5):755–60.

16. Vetrano DL, Palmer K, Marengoni A, Marzetti E, Lattanzio F, Roller-Wirnsberger 
R, Lopez Samaniego L, Rodríguez-Mañas L, Bernabei R, Onder G. Frailty and 
Multimorbidity: a systematic review and Meta-analysis. J Gerontol Biol Sci 
Med Sci. 2019;74(5):659–66.

17. Pilotto A, Custodero C, Maggi S, Polidori MC, Veronese N, Ferrucci L. A 
multidimensional approach to frailty in older people. Ageing Res Rev. 
2020;60:101047.

https://doi.org/10.1186/s12889-024-21121-4
https://doi.org/10.1186/s12889-024-21121-4
https://charls.charlsdata.com/pages/data/111/en.html
https://charls.charlsdata.com/pages/data/111/en.html
http://www.share-project.org/data-access.html
https://g2aging.org/hrd/get-data
https://g2aging.org/hrd/get-data
https://gwas.mrcieu.ac.uk/datasets/ukb-b-10817/
https://gwas.mrcieu.ac.uk/datasets/ukb-b-10817/
https://figshare.com/articles/dataset/Genome-Wide_Association_Study_of_the_Frailty_Index_-_Atkins_et_al_2019/9204998
https://figshare.com/articles/dataset/Genome-Wide_Association_Study_of_the_Frailty_Index_-_Atkins_et_al_2019/9204998
https://figshare.com/articles/dataset/Genome-Wide_Association_Study_of_the_Frailty_Index_-_Atkins_et_al_2019/9204998
http://www.who.int/news-room/fact-sheets/detail/ageing-and-health
http://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
http://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health


Page 9 of 9Wen et al. BMC Public Health         (2024) 24:3612 

18. Guo YF, Ng N, Kowal P, Lin H, Ruan Y, Shi Y, Wu F. Frailty Risk in older adults 
Associated with Long-Term exposure to ambient PM2.5 in 6 Middle-Income 
Countries. J Gerontol Biol Sci Med Sci. 2022;77(5):970–6.

19. Guo Y, Yang F. Effects of China’s Clean Air Act on Frailty Levels Among Middle-
Aged and Older Adults: A Population-Based Quasi-Experimental Study. J 
Gerontol Biol Sci Med Sci 2024;79(4).

20. Arsenault BJ. From the garden to the clinic: how mendelian randomization is 
shaping up atherosclerotic cardiovascular disease prevention strategies. Eur 
Heart J. 2022;43(42):4447–9.

21. Mitnitski AB, Mogilner AJ, Rockwood K. Accumulation of deficits as a proxy 
measure of aging. ScientificWorldJournal. 2001;1:323–36.

22. Kaskirbayeva D, West R, Jaafari H, King N, Howdon D, Shuweihdi F, Clegg A, 
Nikolova S. Progression of frailty as measured by a cumulative deficit index: a 
systematic review. Ageing Res Rev. 2023;84:101789.

23. Zhao Y, Hu Y, Smith JP, Strauss J, Yang G. Cohort profile: the China Health and 
Retirement Longitudinal Study (CHARLS). Int J Epidemiol. 2014;43(1):61–8.

24. Pilling L et al. Genome-Wide Association Study of the Frailty Index - Atkins. 
2021. figshare. Dataset. 2019.

25. Atkins JL, Jylhävä J, Pedersen NL, Magnusson PK, Lu Y, Wang Y, Hägg S, Melzer 
D, Williams DM, Pilling LC. A genome-wide association study of the frailty 
index highlights brain pathways in ageing. Aging Cell. 2021;20(9):e13459.

26. Wei Jing LIZ. ChinaHighPM2.5: High-resolution and High-quality Ground-level 
PM2.5 Dataset for China (2000–2023). In. Edited by National Tibetan Plateau 
Data C: National Tibetan Plateau Data Center; 2024.

27. Hammer MS, van Donkelaar A, Li C, Lyapustin A, Sayer AM, Hsu NC, Levy RC, 
Garay MJ, Kalashnikova OV, Kahn RA, et al. Global estimates and long-term 
trends of fine particulate matter concentrations (1998–2018). Environ Sci 
Technol. 2020;54(13):7879–90.

28. Mohegh A, Anenberg S. Global surface NO2 concentrations 1990–2020; 
figshare. Dataset. In.; 2020.

29. Searle SD, Mitnitski A, Gahbauer EA, Gill TM, Rockwood K. A standard proce-
dure for creating a frailty index. BMC Geriatr. 2008;8:24.

30. Searle SD, Rockwood K. What proportion of older adults in hospital are frail? 
Lancet. 2018;391(10132):1751–2.

31. He D, Wang Z, Li J, Yu K, He Y, He X, Liu Y, Li Y, Fu R, Zhou D, et al. Changes in 
frailty and incident cardiovascular disease in three prospective cohorts. Eur 
Heart J. 2024;45(12):1058–68.

32. Fletcher JA, Logan B, Reid N, Gordon EH, Ladwa R, Hubbard RE. How frail is 
frail in oncology studies? A scoping review. BMC Cancer. 2023;23(1):498.

33. Van Buuren S. Flexible Imputation of Missing Data, Second Edition edn: Chap-
man & Hall/CRC. Boca Raton, FL.; 2018.

34. Huque MH, Carlin JB, Simpson JA, Lee KJ. A comparison of multiple imputa-
tion methods for missing data in longitudinal studies. BMC Med Res Meth-
odol. 2018;18(1):168.

35. Isong IA, Richmond T, Kawachi I, Avendaño M. Childcare attendance and 
obesity risk. Pediatrics 2016;138(5).

36. Bowden J, Del Greco MF, Minelli C, Zhao Q, Lawlor DA, Sheehan NA, Thomp-
son J, Davey Smith G. Improving the accuracy of two-sample summary-data 
mendelian randomization: moving beyond the NOME assumption. Int J 
Epidemiol. 2019;48(3):728–42.

37. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis 
with multiple genetic variants using summarized data. Genet Epidemiol. 
2013;37(7):658–65.

38. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in 
mendelian randomization with some Invalid instruments using a weighted 
median estimator. Genet Epidemiol. 2016;40(4):304–14.

39. Pierce BL, Ahsan H, Vanderweele TJ. Power and instrument strength require-
ments for mendelian randomization studies using multiple genetic variants. 
Int J Epidemiol. 2011;40(3):740–52.

40. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid 
instruments: effect estimation and bias detection through Egger regression. 
Int J Epidemiol. 2015;44(2):512–25.

41. Guo X, Su W, Wang X, Hu W, Meng J, Ahmed MA, Qu G, Sun Y. Assessing 
the effects of air pollution and residential greenness on frailty in older 
adults: a prospective cohort study from China. Environ Sci Pollut Res Int. 
2024;31(6):9091–105.

42. Veronese N, Maniscalco L, Matranga D, Lacca G, Dominguez LJ, Barbagallo M. 
Association between Pollution and Frailty in Older people: a cross-sectional 
analysis of the UK Biobank. J Am Med Dir Assoc. 2023;24(4):475–e481473.

43. Hu K, Keenan K, Hale JM, Börger T. The association between city-level air 
pollution and frailty among the elderly population in China. Health Place. 
2020;64:102362.

44. Kodavanti UP. Susceptibility variations in Air Pollution Health effects: incorpo-
rating neuroendocrine activation. Toxicol Pathol. 2019;47(8):962–75.

45. Jiang L, Chen X, Liang W, Zhang B. Alike but also different: a spatiotemporal 
analysis of the older populations in Zhejiang and Jilin provinces, China. BMC 
Public Health. 2023;23(1):1529.

46. A look at. The lives of the elderly in the EU today is a web tool released by 
Eurostat, the statistical office of the European Union  [   h t  t p s  : / / e  c .  e u r  o p a  . e u /  e u  
r o s t a t / c a c h e / i n f o g r a p h s / e l d e r l y / i n d e x . h t m l       

47. Zhao S, Liu S, Hou X, Sun Y, Beazley R. Air pollution and cause-specific mortal-
ity: a comparative study of urban and rural areas in China. Chemosphere. 
2021;262:127884.

48. Mueller N, Rojas-Rueda D, Basagaña X, Cirach M, Cole-Hunter T, Dadvand 
P, Donaire-Gonzalez D, Foraster M, Gascon M, Martinez D, et al. Urban and 
Transport Planning related exposures and mortality: a Health Impact Assess-
ment for cities. Environ Health Perspect. 2017;125(1):89–96.

49. Glencross DA, Ho TR, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and 
its effects on the immune system. Free Radic Biol Med. 2020;151:56–68.

50. Zhang L, Zeng X, He F, Huang X. Inflammatory biomarkers of frailty: a review. 
Exp Gerontol. 2023;179:112253.

51. Karimi SM, Maziyaki A, Moghadam SA, Jafarkhani M, Zarei H, Moradi-Lakeh 
M, Pouran H. Continuous exposure to ambient air pollution and chronic 
diseases: prevalence, burden, and economic costs. Rev Environ Health. 
2020;35(4):379–99.

52. Public Health and Aging. Trends in Aging—United States and Worldwide. 
JAMA. 2003;289(11):1371–3.

53. Martens DS, Nawrot TS. Ageing at the level of telomeres in association to 
residential landscape and air pollution at home and work: a review of the 
current evidence. Toxicol Lett. 2018;298:42–52.

54. Prüss-Üstün A, Wolf J, Corvalán C, Bos R, Neira M. Preventing disease through 
healthy environments: a global assessment of the burden of disease from 
environmental risks. World Health Organization, 2016.

55. Beard JR, Bloom DE. Towards a comprehensive public health response to 
population ageing. Lancet. 2015;385(9968):658–61.

56. Pedersen AB, Mikkelsen EM, Cronin-Fenton D, Kristensen NR, Pham TM, 
Pedersen L, Petersen I. Missing data and multiple imputation in clinical epide-
miological research. Clin Epidemiol 2017:157–66.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://ec.europa.eu/eurostat/cache/infographs/elderly/index.html
https://ec.europa.eu/eurostat/cache/infographs/elderly/index.html

	The association between PM2.5 and frailty: evidence from 122 cities in China and 7 countries in Europe
	Abstract
	Introduction
	Methods
	Study design

	Air pollution data
	Assessment of the frailty index
	Statistical analysis

	Results
	Basic characteristics of study participants

	Association between PM2.5 and Frailty Index in cohort study
	Casual association between PM2.5 and Frailty Index in MR
	Discussion
	Conclusion
	References


