Skip to main content
. 2024 Dec 30;24:492. doi: 10.1186/s12883-024-04001-7

Table 4.

Performance comparison for K-fold Cross Validation with different values of K for dataset #1

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean
K = 3
 MLP-NN 94.36 89.03 96.79 0.8502 0.8860 0.8798 0.9262
 RBF-NN 84.61 51.32 95.06 0.5450 0.7906 0.6125 0.6937
 RNN 96.5 94 98.05 0.95 0.9988 0.9682 0.96
 LSTM 93.62 80.87 99.96 0.91 100 0.893 0.899
 SEFRON [Dataset#1] 99.49 96.97 100 0.9816 1 0.9841 0.9845
K = 5
 MLP-NN 94.36 85.68 97.53 0.8373 0.8933 0.8641 0.9116
 RBF-NN 83.08 49.62 93.61 0.4913 0.7110 0.5802 0.6743
 RNN 96.67 95.83 98 0.9063 1.0 0.9787 0.969
 LSTM 97.85 88.9 77 0.93 0.971 0.93 0.812
 SEFRON [Dataset#1] 99.48 96 100 0.9763 1 0.9778 0.9789
K = 8
 MLP-NN 94.35 83.54 98.09 0.8432 0.9292 0.8700 0.9019
 RBF-NN 83.63 49.27 94.15 0.5208 0.7833 0.5978 0.6780
 RNN 91.94 80.4 98.21 0.82 0.77 0.89 0.87
 LSTM 95.52 92.84 98 0.9017 0.9622 0.93 0.943
 SEFRON [Dataset#1] 98.96 95.63 100 0.9702 1 0.9756 0.9768
K = 10
 MLP-NN 95.39 88.42 98.13 0.8756 0.93 0.8997 0.9294
 RBF-NN 84.68 49.67 95.95 0.5270 0.7583 0.5946 0.6809
 RNN 92.11 100 88.69 0.84 0.78 0.86 0.93
 LSTM 93.87 84.56 98.33 0.90 0.9273 0.89 0.899
 SEFRON [Dataset#1] 99.47 95 100 0.9687 1 0.9667 0.9708