Skip to main content
. 2024 Dec 30;24:492. doi: 10.1186/s12883-024-04001-7

Table 5.

Performance comparison with different percentage split for dataset #1

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean
90% training set − 10% testing set
 MLP-NN 95 83.33 100 0.8819 1 0.9091 0.9129
 RBF-NN 85 66.67 92.86 0.6299 0.8 0.7273 0.7868
 RNN 90 87.5 100 0.7638 1.0 0.9333 0.9354
 LSTM 85 81.25 100 0.6813 1.0 0.8965 0.9014
 SEFRON [Dataset#1] 100 100 100 1 1 1 1
85% training set − 15% testing set
 MLP-NN 90 83.33 91.67 0.7092 0.7143 0.7692 0.8740
 RBF-NN 90 66.67 95.83 0.6708 0.8 0.7273 0.7993
 RNN 88.7 66 100 0.7512 1.0 0.7911 0.812
 LSTM 89.72 100 84.3 0.808 0.7767 0.8743 0.92
 SEFRON [Dataset#1] 93.33 100 91.67 0.8292 0.75 0.8571 0.9574
80% training set − 20% testing set
 MLP-NN 92.31 87.5 93.55 0.7767 0.7778 0.8235 0.9047
 RBF-NN 89.74 62.5 96.77 0.6633 0.8333 0.7143 0.7777
 RNN 92.86 100 90.11 0.85 0.80 0.89 0.95
 LSTM 90 74.5 94.24 0.9274 1.0 0.9836 0.9837
 SEFRON [Dataset#1] 92.31 87.5 93.55 0.7767 0.7778 0.8235 0.9047
70% training set − 30% testing set
 MLP-NN 93.22 84.62 95.65 0.8027 0.8462 0.8462 0.8996
 RBF-NN 84.74 53.85 93.47 0.5223 0.7 0.6087 0.71
 RNN 93.22 93.61 91.67 0.8068 0.9778 0.9565 0.9263
 LSTM 93.22 93.61 91.67 0.8068 0.9778 0.9565 0.9263
 SEFRON [Dataset#1] 89.83 100 86.96 0.7713 0.6842 0.8125 0.9325