Skip to main content
. 2024 Dec 30;24:492. doi: 10.1186/s12883-024-04001-7

Table 6.

Performance comparison for K-fold cross validation with different values of K for dataset #2

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean
K = 3
 MLP-NN 78.45 81.23 74.65 0.5612 0.8023 0.8345 0.7864
 RBF-NN 81.27 76.54 85.12 0.6138 0.8432 0.8117 0.798
 RNN 80.02 80.55 79.42 0.5914 0.8056 0.8015 0.8002
 LSTM 79.03 73.12 84.78 0.5784 0.7986 0.7623 0.7664
 SEFRON [Dataset#2] 86.12 85.23 87.34 0.7325 0.8724 0.8506 0.8652
K = 5
 MLP-NN 77.88 75.34 78.56 0.5431 0.791 0.7709 0.7736
 RBF-NN 84.11 90.67 77.25 0.6659 0.8154 0.8523 0.8459
 RNN 84.03 82.47 86.65 0.7199 0.8412 0.835 0.8325
 LSTM 81.67 78.22 82.4 0.6197 0.8061 0.8305 0.8183
 SEFRON [Dataset#2] 88.03 86.12 89.85 0.7551 0.9023 0.8825 0.8861
K = 8
 MLP-NN 82.14 78.67 85.42 0.6115 0.8189 0.8027 0.8049
 RBF-NN 86.32 81.25 92.1 0.7424 0.9057 0.8615 0.8722
 RNN 84.03 82.47 86.65 0.7199 0.8412 0.835 0.8325
 LSTM 83.09 80.21 85.18 0.6743 0.795 0.8202 0.8111
 SEFRON [Dataset#2] 90.14 89.45 91.32 0.7921 0.915 0.8913 0.8957
K = 10
 MLP-NN 83.33 79.32 88.67 0.6478 0.85 0.81 0.816
 RBF-NN 85.22 84.45 90.13 0.7115 0.9 0.87 0.877
 RNN 86 88.77 86.5 0.7521 0.873 0.8714 0.8750
 LSTM 84.53 86.67 82.22 0.6814 0.7905 0.8327 0.8141
 SEFRON [Dataset#2] 91.94 99.95 87.69 0.82 0.77 0.89 0.87