Skip to main content
. 2024 Dec 30;24:492. doi: 10.1186/s12883-024-04001-7

Table 7.

Performance comparison with different percentage Split for dataset #2

Technology Accuracy (in %) Sensitivity (in %) Specificity (in %) MCC Precision F1 Score Gmean
90% training set − 10% testing set
 MLP-NN 79.16 84.61 72.73 0.5795 0.7857 0.8148 0.7844
 RBF-NN 80.56 77.78 83.33 0.612 0.8223 0.7999 0.8050
 RNN 79.17 72.72 84.62 0.5795 0.8 0.7619 0.7844
 LSTM 79.17 81.82 76.92 0.5853 0.75 0.7826 0.7933
 SEFRON [Dataset#2] 85.41 82.61 88 0.7079 0.8636 0.8445 0.8526
85% training set − 15% testing set
 MLP-NN 77.78 73.68 82.35 0.5604 0.8235 0.7778 0.7789
 RBF-NN 83.33 92.30 72.72 0.6693 0.8 0.8571 0.7844
 RNN 72.22 66.67 77.78 0.4472 0.75 0.7059 0.72
 LSTM 80.56 77.78 83.33 0.612 0.823 0.799 0.805
 SEFRON [Dataset#2] 86.61 84.21 88.23 0.7233 0.1389 0.8649 0.8619
80% training set − 20% testing set
 MLP-NN 81.25 78.26 84 0.6242 0.8181 0.8 0.8108
 RBF-NN 87.5 82.61 92 0.7513 0.9048 0.8260 0.8636
 RNN 81.25 83.33 79.17 0.6255 0.8 0.8163 0.8122
 LSTM 81.25 87.5 75 0.6299 0.7778 0.8235 0.81
 SEFRON [Dataset#2] 89.58 91.3 88 0.7923 0.875 0.8936 0.8963
70% training set − 30% testing set
 MLP-NN 83.33 77.78 88.89 0.6708 0.875 0.823 0.8314
 RBF-NN 84.72 77.78 91.68 0.7012 0.9032 0.8358 0.8443
 RNN 87.5 89.19 85.71 0.7499 0.8684 0.88 0.8743
 LSTM 83.33 89.19 77.14 0.6696 0.8049 0.8461 0.8295
 SEFRON [Dataset#2] 88.89 89.47 88.23 0.7771 0.8947 0.8947 0.8885