Table 2.
Diagnostic performance of the radiomic signature based on different machine learning models in the training and test cohorts
|
Model
|
|
AUC (95%CI)
|
ACC
|
SENS
|
SPEC
|
PPV
|
NPV
|
| LR | Training | 0.950 (0.893-1.000) | 0.927 | 0.842 | 0.972 | 0.941 | 0.921 |
| Test | 0.806 (0.598-1.000) | 0.722 | 1.000 | 0.583 | 0.545 | 1.000 | |
| SVM | Training | 0.959 (0.887-1.000) | 0.964 | 0.947 | 0.972 | 0.947 | 0.972 |
| Test | 0.944 (0.843-1.000) | 0.889 | 0.833 | 0.917 | 0.833 | 0.917 | |
| ExtraTrees | Training | 0.965 (0.915-1.000) | 0.945 | 0.895 | 0.972 | 0.944 | 0.946 |
| Test | 0.917 (0.783-1.000) | 0.833 | 1.000 | 0.750 | 0.667 | 1.000 | |
| XGBoost | Training | 0.971 (0.938-1.000) | 0.909 | 0.947 | 0.889 | 0.818 | 0.970 |
| Test | 0.882 (0.741-1.000) | 0.778 | 1.000 | 0.667 | 0.600 | 1.000 | |
| LightGBM | Training | 0.932 (0.863-1.000) | 0.891 | 0.895 | 0.914 | 0.810 | 0.941 |
| Test | 0.750 (0.506-0.994) | 0.667 | 1.000 | 0.500 | 0.500 | 1.000 |
LR: Logistic regression; SVM: Support vector machine; ExtraTrees: Extremely randomized trees; XGBoost: Extreme gradient boosting; LightGBM: Light gradient boosting machine; ACC: Accuracy; AUC: Area under the receiver operating characteristic curve; 95%CI: 95% confidence interval; SENS: Sensitivity; SPEC: Specificity.