Skip to main content
. 2025 Jan 21;31(3):102283. doi: 10.3748/wjg.v31.i3.102283

Table 2.

Diagnostic performance of the radiomic signature based on different machine learning models in the training and test cohorts

Model

AUC (95%CI)
ACC
SENS
SPEC
PPV
NPV
LR Training 0.950 (0.893-1.000) 0.927 0.842 0.972 0.941 0.921
Test 0.806 (0.598-1.000) 0.722 1.000 0.583 0.545 1.000
SVM Training 0.959 (0.887-1.000) 0.964 0.947 0.972 0.947 0.972
Test 0.944 (0.843-1.000) 0.889 0.833 0.917 0.833 0.917
ExtraTrees Training 0.965 (0.915-1.000) 0.945 0.895 0.972 0.944 0.946
Test 0.917 (0.783-1.000) 0.833 1.000 0.750 0.667 1.000
XGBoost Training 0.971 (0.938-1.000) 0.909 0.947 0.889 0.818 0.970
Test 0.882 (0.741-1.000) 0.778 1.000 0.667 0.600 1.000
LightGBM Training 0.932 (0.863-1.000) 0.891 0.895 0.914 0.810 0.941
Test 0.750 (0.506-0.994) 0.667 1.000 0.500 0.500 1.000

LR: Logistic regression; SVM: Support vector machine; ExtraTrees: Extremely randomized trees; XGBoost: Extreme gradient boosting; LightGBM: Light gradient boosting machine; ACC: Accuracy; AUC: Area under the receiver operating characteristic curve; 95%CI: 95% confidence interval; SENS: Sensitivity; SPEC: Specificity.