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Abstract
Background  Prolonged dependence on mechanical ventilation is a common occurrence in clinical ICU patients 
and presents significant challenges for patient care and resource allocation. Predicting prolonged dependence on 
mechanical ventilation is crucial for improving patient outcomes, preventing ventilator-associated complications, 
and guiding targeted clinical interventions. However, specific tools for predicting prolonged mechanical ventilation 
among ICU patients, particularly those with critical orthopaedic trauma, are currently lacking. The purpose of the 
study was to establish and validate an artificial intelligence (AI) platform to assess the prolonged dependence on 
mechanical ventilation among patients with critical orthopaedic trauma.

Methods  This study analyzed 1400 patients with critical orthopaedic trauma who received mechanical ventilation, 
and the prolonged dependence on mechanical ventilation was defined as not weaning from mechanical ventilation 
for ≧ 7 days. Patients were randomly classified into a training cohort and a validation cohort based on the ratio of 8:2. 
Patients in the training cohort were used to establish models using machine learning techniques, including logistic 
regression (LR), extreme gradient boosting machine (eXGBM), decision tree (DT), random forest (RF), support vector 
machine (SVM), and light gradient boosting machine (LightGBM), whereas patients in the validation cohort were 
used to validate these models. The prediction performance of these models was evaluated using discrimination and 
calibration. A scoring system was used to comprehensively assess and compare the prediction performance of the 
models, based on ten evaluation metrics. External validation of the model was performed in 122 patients with critical 
orthopaedic trauma from a university teaching hospital. Furthermore, the optimal model was deployed as an AI 
calculator, which was accessible online, to assess the risk of prolonged dependence on mechanical ventilation.
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Introduction
Prolonged dependence on mechanical ventilation is a sig-
nificant concern in intensive care units (ICUs) and poses 
various challenges for patient care [1]. The epidemiologi-
cal impact of prolonged mechanical ventilation in ICU 
patients includes increased susceptibility to ventilator-
associated complications, such as ventilator-associated 
pneumonia [2], lung and diaphragm injury [3], inspira-
tory muscle weakness [4], and longer ICU and hospital 
stays [1, 5], leading to a substantial healthcare burden. 
Patients requiring prolonged mechanical ventilation may 
also experience poor survival outcomes [6, 7]. Identifying 
factors contributing to prolonged mechanical ventilation 
is crucial for improving patient outcomes and optimizing 
resource allocation in critical care settings.

Several factors have been identified as influencing the 
duration of mechanical ventilation among ICU patients 
[1, 8, 9]. These factors include pre-existing comorbidities 
such as chronic lung diseases, hematologic malignan-
cies, and previous endotracheal intubation, cause of the 
respiratory failure [10], as well as critical illness-related 
factors like poor oxygenation, high peak inspiratory pres-
sures, and the need for renal replacement therapy [1, 8, 
9]. Understanding these factors is essential for risk strati-
fication and the development of targeted interventions to 
prevent and manage prolonged mechanical ventilation. In 
recent years, the application of artificial intelligence (AI) 
in critical care medicine has shown promise in predicting 
and managing critical outcomes [11–13]. Machine learn-
ing techniques have been utilized to develop predictive 
models for various clinical outcomes, including ventila-
tor-associated complications [14], extubation readiness 
[15], and mechanical ventilator dependence [16]. These 

models have the potential to improve risk stratification 
and guide individualized patient care in critical care set-
tings. However, prediction models for prolonged depen-
dence on mechanical ventilation particularly among 
patients with critical orthopaedic trauma are scarce. 
Patients suffering from severe orthopedic trauma often 
exhibit distinct clinical features compared to other criti-
cally ill populations. These individuals frequently endure 
multiple injuries, substantial blood loss [17], and the 
development of complications such as compartment syn-
drome, which often necessitate complex and prolonged 
surgical interventions [18]. The cumulative effect of 
systemic stress, compounded by extended immobiliza-
tion, significantly increases the risk of complications like 
infections, deep vein thrombosis, and respiratory failure. 
Consequently, mechanical ventilation becomes a crucial 
aspect of their critical care management. Given these 
challenges, early recognition of patients at risk for pro-
longed mechanical ventilation dependency is essential to 
improving outcomes and reducing morbidity [19]. How-
ever, there is a lack of specific tools in clinical practice for 
predicting prolonged dependence on mechanical ventila-
tion in ICU patients. This may be due to the absence of 
large-scale, trauma-specific datasets, as most research 
has focused on broader critical care populations, such as 
those with sepsis or acute respiratory distress syndrome. 
This absence of predictive tools makes it challenging for 
healthcare professionals to accurately assess the risk of 
prolonged mechanical ventilation for patients in the ICU, 
hindering the timely implementation of targeted clinical 
interventions.

Therefore, the objective of this study is to establish and 
validate an AI platform to predict prolonged dependence 

Results  Among the developed models, the eXGBM model had the highest score of 50, followed by the LightGBM 
model (48) and the RF model (37). In detail, the eXGBM model outperformed other models in terms of recall (0.892), 
Brier score (0.088), log loss (0.291), and calibration slope (0.999), and the model was the second best in terms of area 
under the curve value (0.949, 95%: 0.933–0.961), accuracy (0.871), F1 score (0.873), and discrimination slope (0.647). 
The SHAP revealed that the most important five features were respiratory rate, lower limb fracture, glucose, PaO2, 
and PaCO2. External validation of the eXGBM model also demonstrated favorable prediction performance, with an 
AUC value of 0.893 (95%CI: 0.819–0.967). The eXGBM model was successfully deployed as an AI platform, which was 
at https:/​/prolon​gedmech​anic​alvent​ilation​-lqsfm6​ecky​6dpd4ybkvohu.streamlit.app/. By simply clicking the link 
and inputting features, users were able to obtain the risk of experiencing prolonged dependence on mechanical 
ventilation for individuals. Based on the risk of prolonged dependence on mechanical ventilation, patients were 
stratified into the high-risk or the low-risk groups, and corresponding therapeutic interventions were recommended, 
accordingly.

Conclusions  The AI model shows potential as a valuable tool for stratifying patients with a high risk of prolonged 
dependence on mechanical ventilation. The AI model may offer a promising approach for optimizing patient care and 
resource allocation in critical care settings.

Clinical trial number  Not applicable.

Keywords  Artificial intelligence, Mechanical ventilation, Critical orthopaedic trauma, Machine learning, A 
comprehensive evaluation system
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on mechanical ventilation among patients with critical 
orthopaedic trauma. Building on the identified risk fac-
tors and leveraging machine learning techniques, our 
hypothesis is that the developed AI model will accurately 
stratify patients based on their risk of prolonged mechan-
ical ventilation, providing a valuable tool for optimiz-
ing patient care and resource allocation in critical care 
settings. Additionally, the study aims to further deploy 
the optimal model as an accessible and user-friendly 
AI application to support clinical decision-making and 
improve patient outcomes in the critical care setting.

Methods
Database and study design
This study analyzed 1400 patients with critical orthopae-
dic trauma who received mechanical ventilation from 
the Medical Information Mart for Intensive Care III 
(MIMIC-III) database, which is a freely accessible critical 
care database developed by the Massachusetts Institute 
of Technology. The MIMIC III database is widely used for 
clinical research and has been utilized to develop artifi-
cial intelligence models for various medical applications 
[20–24], and it is an invaluable resource for research-
ers to study critical care medicine, develop predictive 
models, and conduct observational studies. Access to 
the MIMIC III database is granted after completing the 
National Institutes of Health’s web-based training course 
on Protecting Human Research Participants and the 
Good Clinical Practice course. Once approved, research-
ers can access and download the de-identified data for 
their research studies. The use of the MIMIC-III database 
was approved by the Institutional Review Board of Beth 
Israel Deaconess Medical Center (32128436) [25]. Since 
the data in the MIMIC-III database has been de-identi-
fied, patient consent was not required.

In the context of this study, the MIMIC III database 
was used to extract data on 1400 patients with critical 
orthopaedic trauma who required mechanical ventila-
tion. This rich and extensive dataset provided a large 
observational cohort for the study, allowing for the devel-
opment and validation of a predictive model for pro-
longed dependence on mechanical ventilation among 
these patients. In the previous study, we extracted 2,662 
critically ill patients with orthopedic trauma to develop a 
model for predicting 30-day mortality [26]. In this study, 
we further excluded 26 individuals under the age of 18 
and 1,236 individuals who did not undergo mechani-
cal ventilation. Hence, in this study, we obtained 1,400 
patients for analysis.

The patients were randomly classified into a train-
ing cohort and a validation cohort based on the ratio of 
8:2. Patients in the training cohort were used to estab-
lish models using machine learning techniques, whereas 
patients in the validation cohort were used to validate 

these models (Fig.  1). External validation of the model 
was performed in 122 patients with critical orthopaedic 
trauma from a university teaching hospital, and the Eth-
ics Committee of our hospital approved the study. We 
commit to strictly adhere to ethical guidelines and legal 
regulations at all stages of the research and ensure the 
appropriate use and protection of patient privacy.

Primary outcome
The primary outcome of the study was to assess the pro-
longed dependence on mechanical ventilation. In this 
study, prolonged dependence on mechanical ventilation 
was defined as the inability to wean from mechanical ven-
tilation for a period of at least 7 days [8]. This outcome 
was chosen as it is a critical factor in the recovery and 
prognosis of patients requiring mechanical ventilation.

Clinical characteristics
We analyzed various clinical characteristics from the 
patients, including demographics such as age and gender, 
addiction history including alcohol abuse and tobacco 
use disorder, laboratory findings such as hemoglobin, 
glucose, hematocrit, and platelet count, information 
on injuries like spine, pelvic, low limb, and upper limb 
fractures, vital signs including PaO2, PaCO2, pH, heart 
rate, and respiratory rate, details on vasopressor use, 
severity of disease scores (Oxford Acute Severity of Ill-
ness Score [OASIS], Simplified Acute Physiology Score II 
[SAPSII], Sequential Organ Failure Assessment [SOFA]), 
and comorbidities like hypertension, diabetes, and obe-
sity. These characteristics are crucial for understanding 
the patients’ health status and analyzing their condi-
tion. All features were extracted at the first instance after 
the patient was admitted to the ICU. In addition, the 
selection of these parameters was guided by previous 
research, expert recommendations, and the availability 
of variables. Additionally, the proportion of missing data 
was a critical factor in our decision-making process.

Data preparation
In the data preparation phase for machine learning, we 
utilized the SMOTETomek resampling technique to bal-
ance the data. This method combines the SMOTE (Syn-
thetic Minority Over-sampling Technique) and Tomek 
links to address class imbalance. Additionally, a strati-
fied strategy was applied to ensure that the two outcome 
variables were consistent and adequately represented in 
the training and testing sets. This approach could help 
maintain the proportion of different classes in both the 
training and testing datasets. In detail, after applying 
SMOTETomek resampling, we obtained a total of 2,782 
samples, with the incidence of prolonged dependence on 
mechanical ventilation at 50%. This resulted in a com-
pletely balanced outcome following the SMOTETomek 
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Fig. 1  Study design and machine learning techniques used in the study
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resampling. Furthermore, in the model development 
cohort, the incidence of prolonged dependence on 
mechanical ventilation was 50%, and the model internal 
validation cohort showed an incidence of 50% for pro-
longed dependence on mechanical ventilation as well. 
Furthermore, data preprocessing pipelines were utilized 
to prepare the data in a format that could be fitted into 
scikit-learn algorithms. These pipelines included various 
steps such as scaling, encoding categorical variables, and 
data standardization to ensure the data is in a suitable 
format for training machine learning models.

Modeling and validation
In the study, we employed various machine learning 
models, including logistic regression (LR), extreme gra-
dient boosting machine (eXGBM), decision tree (DT), 
random forest (RF), support vector machine (SVM), 
and light gradient boosting machine (LightGBM). The 
introduction to the above machine learning algorithms 
is summarized in Supplementary Table 1. The hyper-
parameters for these models were optimized using grid 
search or random grid search techniques, involving 
an exhaustive search over a specified parameter grid to 
identify the best hyperparameters for the models. This 
parameter tuning process was essential for enhancing the 
models’ predictive performance. To evaluate the predic-
tion performance of these models, we employed methods 
to assess discrimination and calibration. Discrimination 
and calibration are important metrics for evaluating the 
models’ ability to distinguish between different classes 
and the agreement between predicted probabilities and 
actual outcomes. Furthermore, a scoring system [27, 28] 
was utilized to comprehensively assess and compare the 
prediction performance of the models. This scoring sys-
tem was based on ten evaluation metrics, including area 
under the curve (AUC), accuracy, precision, recall, F1 
score, Brier score, log loss, discrimination slope, calibra-
tion slope, and intercept-in-large value. These metrics 
provided a comprehensive evaluation of the models’ per-
formance, taking into account various aspects of predic-
tion accuracy, calibration, and model fit.

Model explanation of feature importance
Model explanation using SHAP assessment of variable 
importance was conducted to understand the impact 
of different features on the predictions made by the 
machine learning models. The SHAP (SHapley Additive 
exPlanations) values provide insights into the contribu-
tion of each feature in influencing the model’s output, 
thus offering a comprehensive understanding of variable 
importance [29].

Design of the application
The optimal model was deployed as an AI application, 
accessible online, to assess the risk of prolonged depen-
dence on mechanical ventilation. This AI application 
aimed to provide a user-friendly interface for healthcare 
professionals to input patient data, obtain risk predic-
tions, and receive personalized treatment recommenda-
tions, thereby supporting clinical decision-making for 
patients requiring mechanical ventilation. The AI appli-
cation was constructed in the following four main parts 
based on previous studies [30]. (1) Data input: Users 
can input patient data, including demographics, clinical 
characteristics, and laboratory findings. (2) Risk predic-
tion of prolonged dependence on mechanical ventilation 
and patient’s stratification: The application utilizes the 
deployed model to predict the risk of prolonged depen-
dence on mechanical ventilation and stratify patients 
based on their risk levels. (3) Variable importance rank-
ing based on SHAP: The application provides a ranking of 
risk factors based on their importance in influencing the 
predicted risk of prolonged dependence on mechanical 
ventilation, leveraging SHAP values to offer transparency 
and interpretability. (4) Personalized treatment recom-
mendations: Based on the risk assessment and variable 
importance ranking, the application generates personal-
ized treatment recommendations tailored to individual 
patient profiles, aiding clinicians in making informed 
decisions about patient care.

Statistical analysis
The statistical analysis section of the study involved the 
presentation of quantitative data in the form of median 
[IQR] and qualitative data in percentage format. Group 
comparisons for quantitative data were conducted using 
the Wilcoxon rank-sum test, while the Chi-square test 
was employed for qualitative data. Quantitative data were 
imputed using multiple imputation techniques, while 
qualitative data were filled in using the mode. Variables 
with more than 20% missing data were not included for 
analysis in this study. The machine learning modeling and 
validation were performed using the Python software, 
version 3.9.7, which included the implementation of vari-
ous machine learning algorithms for predictive modeling 
and the evaluation of model performance. In addition, 
standard statistical analyses were carried out using the 
R programming language, version 4.1.2, for tasks such as 
descriptive statistics and traditional inferential statistical 
tests. a significance level of p < 0.05 was used to deter-
mine statistical significance.

Results
Patient clinical characteristics
A total of 1400 patients were included in the study, 
with a median age of 55 years. The majority of patients, 
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constituting 65.0% of the total, were male. The median 
values for glucose, hematocrit, and platelet count were 
observed to be 137.70 mg/dL, 36.25%, and 237.50 K/uL, 
respectively. The spine was identified as the most com-
mon site of fracture, accounting for 50.4% of all patients. 
Analysis of vital signs revealed median values of 177.50 
mmHg for PaO2, 42.30 mmHg for PaCO2, 89.00 BPM for 
heart rate, and 17.00 BPM for respiratory rate. Hyperten-
sion emerged as the most prevalent comorbidity among 
the patients, with a prevalence of 31.9%, followed by dia-
betes at 17.3%. A more comprehensive overview of dis-
ease severity can be found in Table 1. The incidence rate 
of prolonged dependence on mechanical ventilation was 
15.64%.

Subgroup analysis of patients stratified by prolonged 
dependence on mechanical ventilation
Subgroup analysis revealed significant differences 
between patients with prolonged dependence on 
mechanical ventilation and those without in mul-
tiple variables. Patients with prolonged dependence 
on mechanical ventilation exhibited elevated glucose 
levels (P < 0.001), increased PaCO2 levels (P < 0.001), 
lower PaO2 levels (P = 0.006), decreased pH levels 
(P < 0.001), elevated heart rate (P = 0.006) and respira-
tory rate (P < 0.001), higher SAPS II (P < 0.001) and SOFA 
(P < 0.001) scores, a higher incidence of spine fractures 
(P < 0.001), a lower incidence of lower limb fractures 
(P = 0.025), a higher prevalence of obesity (P = 0.023), 
and a greater usage of vasopressors (P < 0.001). Thus, the 

Table 1  Patient’s clinical characteristics and a comparison according to the presence of prolonged dependence on mechanical 
ventilation among critically ill patients with orthopaedic trauma
Clinical characteristics Overall Prolonged dependence on mechanical ventilation P

No Yes
n 1400 1181 219
Demographics
  Age (years, median [IQR]) 55.00 [36.00, 73.00] 55.00 [35.00, 73.20] 56.00 [40.00, 72.00] 0.832
  Gender (male/female, %) 910/490 (65.0/35.0) 759/422 (64.3/35.7) 151/68 (68.9/31.1) 0.209
Addiction
  Alcohol abuse (no/yes, %) 1246/154 (89.0/11.0) 1053/128 (89.2/10.8) 193/26 (88.1/11.9) 0.740
  Tobacco use disorder (no/yes, %) 1268/132 (90.6/9.4) 1070/111 (90.6/9.4) 198/21 (90.4/9.6) 1.000
Laboratory examination
  Hemoglobin (g/dL, median [IQR]) 12.30 [10.80, 13.83] 12.40 [10.80, 13.80] 12.30 [10.80, 13.90] 0.765
  Glucose (mg/dL, median [IQR]) 137.70 [115.00, 171.00] 134.00 [114.00, 165.00] 150.00 [128.00, 188.00] < 0.001
  Hematocrit (%, median [IQR]) 36.25 [31.90, 40.12] 36.30 [31.90, 40.10] 36.10 [31.95, 40.70] 0.723
  Platelet count (K/uL, median [IQR]) 237.50 [187.00, 296.00] 238.00 [186.00, 296.00] 232.00 [190.50, 287.00] 0.581
Injury information
  Spine fracture (no/yes, %) 694/706 (49.6/50.4) 612/569 (51.8/48.2) 82/137 (37.4/62.6) < 0.001
  Pelvic fracture (no/yes, %) 1125/275 (80.4/19.6) 957/224 (81.0/19.0) 168/51 (76.7/23.3) 0.166
  Low limb fracture (no/yes, %) 881/519 (62.9/37.1) 728/453 (61.6/38.4) 153/66 (69.9/30.1) 0.025
  Upper limb fracture (no/yes, %) 906/494 (64.7/35.3) 775/406 (65.6/34.4) 131/88 (59.8/40.2) 0.115
Vital signs
  pO2 (mmHg, median [IQR]) 177.50 [96.00, 300.25] 183.00 [99.00, 306.00] 149.00 [81.50, 267.00] 0.006
  pCO2 (mmHg, median [IQR]) 42.30 [38.00, 49.00] 42.00 [37.00, 49.00] 44.80 [39.00, 53.00] < 0.001
  pH (unit, median [IQR]) 7.34 [7.27, 7.40] 7.34 [7.28, 7.40] 7.31 [7.23, 7.38] < 0.001
  Heart rate (BPM, median [IQR]) 89.00 [76.00, 104.00] 88.00 [75.00, 103.00] 94.00 [77.00, 110.00] 0.006
  Respiratory rate (BPM, median [IQR]) 17.00 [14.00, 21.00] 17.00 [14.00, 20.00] 19.00 [15.00, 24.00] < 0.001
  Vasopressors (no/yes, %) 847/553 (60.5/39.5) 763/418 (64.6/35.4) 84/135 (38.4/61.6) < 0.001
Severity of disease
  OASIS (median [IQR]) 35.00 [31.00, 41.00] 35.00 [30.00, 41.00] 36.00 [31.00, 41.00] 0.150
  SAPSII (median [IQR]) 33.00 [24.00, 43.00] 32.00 [23.00, 43.00] 36.00 [27.00, 45.00] < 0.001
  SOFA (median [IQR]) 4.00 [2.00, 6.00] 3.00 [2.00, 6.00] 5.00 [2.00, 7.00] < 0.001
Comorbidities
  Hypertension (no/yes, %) 953/447 (68.1/31.9) 799/382 (67.7/32.3) 154/65 (70.3/29.7) 0.485
  Diabetes (no/yes, %) 1158/242 (82.7/17.3) 987/194 (83.6/16.4) 171/48 (78.1/21.9) 0.061
  Obesity (no/yes, %) 1331/69 (95.1/4.9) 1130/51 (95.7/4.3) 201/18 (91.8/8.2) 0.023
IQR, Interquartile range; BPM, Beats per minute; OASIS, Oxford acute severity of illness score; SAPS II, Simplified acute physiology score II; SOFA, Sequential organ 
failure assessment score
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above variables were used as model features for further 
analysis.

Prediction performance
The eXGBM model outperformed other models in terms 
of recall (0.892), Brier score (0.088), and log loss (0.291) 
(Fig.  2; Table  2), and the model was the second best in 
terms of AUC value (0.949, 95%: 0.933–0.961) (Fig.  3), 
accuracy (0.871), F1 score (0.873). Calibration curve 
showed that the majority of the models had favorable cal-
ibration ability (Supplementary Fig. 1), with the eXGBM 
model had the best calibration slope (0.999), which was 
very close to 1 (Supplementary Fig. 2). Probability density 
curve analysis depicted that the models, particularly the 

eXGBM model, the RF model, and the LightGBM model, 
had very favorable discrimination ability, as the peaks of 
the density curves were well separated between patients 
with and without prolonged dependence on mechani-
cal ventilation (Fig.  4). Violin plots also demonstrated 
that the LightGBM model had the highest discrimina-
tion slope (0.749), followed by the eXGBM model (0.647) 
and the RF model (0.422) (Supplementary Fig. 3). Based 
on the evaluation scoring system, the eXGBM model had 
the highest score of 50, closely followed by the Light-
GBM model (48) and the RF model (37) (Fig. 5). Regard-
ing the external validation cohort, the incidence rate of 
prolonged dependence on mechanical ventilation was 
14.75%. In addition,

Table 2  Prediction performance for each model in the validation cohort
Metrics LR eXGBM DT SVM RF LightGBM
AUC (95%CI) 0.769 (0.727–0.804) 0.949 (0.933–0.961) 0.710, (0.670–0.756) 0.771 (0.726–0.813) 0.936 (0.912–0.956) 0.953 (0.938–0.965)
Accuracy 0.707 0.871 0.636 0.709 0.866 0.890
Precise 0.700 0.855 0.678 0.692 0.857 0.902
Recall 0.724 0.892 0.517 0.754 0.879 0.875
F1 score 0.712 0.873 0.587 0.722 0.868 0.888
Brier score 0.198 0.088 0.224 0.198 0.116 0.094
Log loss 0.580 0.291 0.646 0.580 0.389 0.427
Discrimination slope 0.188 0.647 0.171 0.180 0.422 0.749
Calibration slope 1.169 0.999 0.625 1.275 2.074 0.375
Intercept-in-large value 0.049 -0.108 0.047 0.037 -0.112 0.100
Total score 28 50 17 32 37 48
AUC, area under the curve; CI, confident interval

Fig. 2  Prediction performance of machine learning models developed in the study. (A) Accuracy; (B) Precise; (C) Recall; (D) F1 score; (E) Brier score; (F) 
Log loss
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external validation of the eXGBM model also demon-
strated favorable prediction performance, with an AUC 
value of 0.893 (95%CI: 0.819–0.967) (Supplementary 
Fig. 4), and it had the highest AUC value in comparison 
to other models. Therefore, the eXGBM model was con-
sidered optimal due to its superior performance across 
both internal and external validation. The feature impor-
tance analysis and the development of the AI application 
were both carried out using the eXGBM model.

Feature importance
The SHAP revealed that the most important five fea-
tures were respiratory rate, lower limb fracture, glucose, 
PaO2, and PaCO2 in the both training (Supplementary 
Fig. 5A) and validation (Supplementary Fig. 5B) cohorts. 
The respiratory rate and SOFA score both exhibited lin-
ear relationships with their SHAP values (Supplementary 
Fig. 6), indicating larger value represented greater contri-
bution to the outcome. Interestingly, the SAPS II score 
and its corresponding SHAP values exhibited a curve 
that initially rises and then declines. To elaborate, the 
relationship between the SAPS II score and its SHAP val-
ues was characterized by an “n” shape curve. Specifically, 
as the SAPS II score increased, the negative SHAP values 
gradually decreased and approached zero, followed by an 
increase in negative SHAP values as the SAPS II score 
continued to rise. This curve suggested that both low and 
high SAPS II scores could significantly impact the out-
come variable.

AI platform and prediction
Based on the optimal model, we further deployed it 
online as an AI platform, and the code is available at 
https:/​/github​.com/St​arxu​eshu/ventilationfor7days. In 
this platform (Fig. 6), the risk of prolonged dependence 
on mechanical ventilation for individuals can be obtained 
after inputting features and submitting the data. In addi-
tion, risk stratification was conducted based on the 
threshold of the model, and stratified interventions were 
recommended based on the risk stratification. For exam-
ple, a case report was summarized in the following. The 
patient, who had a spine fracture and low limb fracture, 
presented with a glucose level of 139 mg/dL, PaO2 of 149 
mmHg, PaCO2 of 36 mmHg, pH of 7.49, heart rate of 93 
beats per minute, respiratory rate of 8 breaths per min-
ute, SAPS-II of 36, and SOFA of 6, and was classified into 
the low-risk group based on the risk of prolonged depen-
dence on mechanical ventilation (10.03%).

Discussion
Main findings
The main finding of the study was the successful develop-
ment and validation of an AI model for predicting pro-
longed dependence on mechanical ventilation among 
patients with critical orthopaedic trauma. The study 
analyzed data from 1400 patients and used machine 
learning techniques to establish and validate predictive 
models. The eXGBM model demonstrated the high-
est performance scores, outperforming other models in 
various metrics such as recall, Brier score, log loss, and 

Fig. 3  The area under the curve of machine learning models
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calibration slope. In addition, external validation of the 
model also showed favorable prediction performance. 
In addition, the AI tool was designed with user-friendly 
features to facilitate clinical use. Healthcare profession-
als could input patient data and receive risk predictions, 
which stratified patients into high- or low-risk categories. 
The platform also provided personalized treatment rec-
ommendations based on individual risk profiles, help-
ing optimize care strategies. This seamless integration 

of machine learning into clinical decision-making rep-
resents a promising step toward improving patient out-
comes and resource allocation in ICU settings.

Risk factors for prolonged dependence on mechanical 
ventilation
In the study, we found that the incidence of prolonged 
dependence on mechanical ventilation was 15.6%, and 
it was consistent with other studies. For instance, a 

Fig. 4  Density curve of machine learning models. (A) logistic regression; (B) eXGBoosting machine; (C) decision tree; (D) support vector machine; (E) 
random forest; (F) light gradient boosting machine
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prospective study enrolled a total of 915 patients receiv-
ing mechanical ventilation in medical intensive care 
units, with 18.8% classified as experiencing prolonged 
weaning [8]. In addition, several risk factors have been 
found to be associated with prolonged dependence 
on mechanical ventilation. In the study conducted by 
Na et al. [8], the prolonged weaning group had higher 
proportions of patients with previous endotracheal 
intubation, chronic lung disease, and hematologic malig-
nancies. Additionally, they had a longer median duration 
of mechanical ventilation before the first spontaneous 
breathing trial, a higher rate of tracheostomy, higher peak 
inspiratory pressures, and lower PaO2/FiO2 ratios com-
pared to the non-prolonged weaning group [8]. Multi-
variate analyses revealed that the duration of mechanical 
ventilation before the first spontaneous breathing trial, 
tracheostomy status, poor oxygenation, and the need for 
renal replacement therapy were independently associated 
with prolonged weaning [8]. Notably, a study pointed out 
that there were no gender differences in weaning status 
and ventilator dependence among patients requiring 
prolonged mechanical ventilation [9]. More recently, a 
review summarized that systemic comorbidities, includ-
ing chronic respiratory diseases (COPD, bronchiectasis, 

and pulmonary fibrosis), heart failure, cerebrovascular 
diseases, neuromuscular diseases, end-stage renal dis-
ease, Liver cirrhosis, malignancy Infection (sepsis and 
multi-drug resistant infection), malnutrition, ventilator-
induced diaphragm dysfunction, critical illness neuro-
myopathy, and critical illness encephalopathy were risk 
factors for prolonged dependence on mechanical venti-
lation [1]. In comparison to previous studies, our study 
found similar risk factors for prolonged dependence on 
mechanical ventilation, such as poor oxygenation. How-
ever, our study also identified additional risk factors such 
as elevated glucose levels, higher SAPS II and SOFA 
scores, and a higher incidence of spine fractures. These 
findings suggest that a combination of physiological and 
clinical variables may contribute to the prolonged depen-
dence on mechanical ventilation, and further research is 
needed to explore the interplay between these factors and 
their impact on patient outcomes. Additionally, our study 
did not find gender differences in weaning status and 
ventilator dependence, which is consistent with previous 
research [9]. Overall, the identification of these risk fac-
tors can aid in the development of targeted interventions 
to improve outcomes for patients with prolonged depen-
dence on mechanical ventilation. One of the innovations 

Fig. 5  Heatmap of comprehensively evaluating the prediction performance of machine learning models based on the scoring system
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of this study was the integration of SHAP values to 
explain the model’s predictions. This feature enhanced 
the interpretability of the model, allowing clinicians to 
understand which variables (such as respiratory rate, glu-
cose levels, and fracture types) had the most significant 
impact on prolonged mechanical ventilation.

Prediction of prolonged dependence on mechanical 
ventilation
Several studies have used machine learning to develop 
models for early detecting extubation readiness [15], 
mechanical ventilation-associated severe acute kid-
ney injury [14], and mechanical ventilator dependence 
among patients who survived sepsis/septic shock with 
respiratory failure [16]. To elaborate, a study developed 
a decision support model using convolutional neural 
networks to predict extubation readiness, and by analyz-
ing historical ICU data extracted from MIMIC-III, the 
developed model achieved an accuracy of 86% and AUC 
value of 0.94 [15]. The model incorporated 25 features, 
among which inspired O2 fraction, ventilator model, 
and peak inspiratory pressure emerged as the most sig-
nificant positive factors. Conversely, the Richmond-RAS 
scale, plateau pressure, and spontaneous breathing traits 
were identified as the most important negative factors 

influencing the outcome. Yan’s model differed from the 
model in this study. Our study specifically focused on 
orthopedic trauma patients, while Yan’s model targeted 
all ICU patients. Additionally, this study applied various 
machine learning algorithms to identify the best-per-
forming model, whereas Yan’s model only used Convo-
lutional Neural Networks. Furthermore, the predicted 
outcomes differed: our study aimed to predict prolonged 
dependence on mechanical ventilation, while Yan’s model 
predicted successful weaning without considering time. 
Therefore, the model in this study was fundamentally dif-
ferent from Yan’s model, and thus the CNN model was 
not tested in this study.

In addition, a study developed and validated a clini-
cal prediction model for the early detection of mechani-
cal ventilation-associated severe acute kidney injury in 
the ICU settings [14]. The study found that the random 
forest algorithm outperformed the logistic regression 
algorithm in model development. The developed mod-
els were internally and externally validated, demonstrat-
ing good predictive performance, with the AUC value 
being around 0.80 in the both internal and external vali-
dation cohorts. Lastly, a study aimed to develop a scor-
ing system to predict mechanical ventilator dependence 
among patients who survived sepsis/septic shock with 

Fig. 6  AI application. (A) Feature input; (B) Risk calculation; (C) Model information
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respiratory failure. After evaluating 251 adult patients 
in medical ICUs over a period of two years, the research 
identified risk factors for ventilator dependence and con-
structed a ventilator dependence risk score based on four 
variables. The ventilator dependence risk score demon-
strated good predictive performance, with the area under 
the curve being 0.725 in the derivation group and 0.658 
in the validation group. This suggests that the ventila-
tor dependence risk score could be effectively applied to 
predict prolonged mechanical ventilation in patients who 
survive sepsis/septic shock [16]. To our best knowledge, 
in comparison to previous studies, our study was the first 
to develop machine learning models to predict prolonged 
dependence on mechanical ventilation specifically among 
patients with critical orthopaedic trauma. Our study 
found that the eXGBM model outperformed other mod-
els, demonstrating high accuracy, recall, and area under 
the curve value. Additionally, the model was deployed as 
an AI calculator, providing a user-friendly interface for 
healthcare professionals to input patient data, receive 
risk predictions, and access personalized treatment rec-
ommendations tailored to individual patient profiles. 
Furthermore, the AI application was deployed online, 
allowing clinicians to assess the risk of prolonged depen-
dence on mechanical ventilation, thereby supporting 
clinical decision-making for patients requiring mechani-
cal ventilation. The AI application allows for the classi-
fication of patients into high-risk or low-risk categories, 
enabling tailored interventions to be implemented. For 
low-risk patients, proactive measures could involve reg-
ular assessment and monitoring to facilitate early iden-
tification of respiratory improvement, with a focus on 
gradually reducing ventilator support and transitioning 
to less invasive forms of respiratory assistance. Addition-
ally, initiating physical therapy and mobilization may help 
prevent muscle weakness and deconditioning associated 
with prolonged bed rest. Conversely, high-risk patients 
may necessitate more aggressive interventions, including 
close monitoring and frequent assessments to promptly 
identify and address potential complications. Advanced 
ventilator management strategies, such as lung-protec-
tive ventilation techniques, prone positioning, and con-
sideration of extracorporeal membrane oxygenation in 
refractory cases, may be warranted. Furthermore, close 
collaboration between multidisciplinary teams, including 
critical care specialists, respiratory therapists, and physi-
cal therapists, is essential to tailor individualized man-
agement plans and provide comprehensive support for 
high-risk patients. This approach facilitates the optimi-
zation of patient care and resource allocation in critical 
care settings. However, it is important to note that the AI 
model developed in this study should not replace clini-
cal judgment. Rather, it should serve as a supplementary 
tool to assist healthcare providers in risk stratification 

and treatment planning. Clinical expertise and patient-
specific factors should still be considered when making 
treatment decisions for individual patients.

Limitations
Limitations of this study may include the following 
aspects. Firstly, the cohort used for model development 
and validation was specific to patients with critical ortho-
paedic trauma. The generalizability of the AI model to 
patients with different types of injuries or medical con-
ditions may require further investigation. Secondly, the 
study relied on retrospective data from a single obser-
vational cohort, which may have inherent limitations 
such as missing data, potential biases, or unmeasured 
confounders. Prospective data collection and verifica-
tion in a multi-center setting could enhance the reliability 
of the model. Thirdly, while the AI model demonstrated 
promising prediction performance, the actual clinical 
impact and utility of the model in decision-making pro-
cesses, patient outcomes, and resource allocation were 
not directly assessed. Clinical impact assessment requires 
extensive validation through clinical trials or real-world 
studies to ensure that the model’s predictions lead to 
improved outcomes. Thus, further research on the prac-
tical implementation and impact of the AI platform in 
clinical settings is extremely warranted. Addressing these 
limitations in future research could further enhance the 
applicability and reliability of the AI model in predicting 
prolonged dependence on mechanical ventilation.

Conclusions
Our study successfully establishes and validates an AI 
platform for assessing the risk of prolonged dependence 
on mechanical ventilation among patients with critical 
orthopaedic trauma. The eXGBM model demonstrates 
superior predictive performance, outperforming other 
models in terms of various evaluation metrics. Nota-
bly, the model’s deployment as an online AI calculator 
provides a user-friendly tool for individual risk assess-
ments, enabling the stratification of patients into high-
risk or low-risk groups. This approach has the potential 
to optimize patient care and resource allocation in criti-
cal care settings, offering a promising avenue for tai-
lored therapeutic interventions based on individual risk 
assessments. The AI model represents a valuable tool for 
identifying patients at high risk of prolonged mechanical 
ventilation and may contribute to improving patient out-
comes in critical care settings.

Supplementary Information
The online version contains supplementary material available at ​h​t​t​​p​s​:​/​​/​d​o​​i​.​​o​r​
g​/​1​0​.​1​1​8​6​/​s​1​2​8​9​1​-​0​2​4​-​0​8​2​4​5​-​9​​​​​.​​

Supplementary Figure 1: Calibration curve and histogram of machine 
learning models. Supplementary Figure 2: Calibration curve of machine 

https://doi.org/10.1186/s12891-024-08245-9
https://doi.org/10.1186/s12891-024-08245-9


Page 13 of 14Jiang et al. BMC Musculoskeletal Disorders         (2024) 25:1089 

learning models. (A) logistic regression; (B) eXGBoosting machine; (C) 
decision tree; (D) support vector machine; (E) random forest; (F) light gra-
dient boosting machine. Supplementary Figure 3: Volin plot of showing 
discrimination slope of machine learning models. (A) logistic regression; 
(B) eXGBoosting machine; (C) decision tree; (D) support vector machine; 
(E) random forest; (F) light gradient boosting machine. Supplementary 
Figure 4: Area under the curve analysis in the external validation cohort. 
Supplementary Figure 5: Feature importance analysis based on the 
SHAP analysis. (A) Training cohort; (B) Validation cohort. Supplementary 
Figure 6: Association analysis between variables and SHAP values. (A) 
Respiratory rate in the training cohort; (B) SOFA in the training cohort; (C) 
SAPS II in the training cohort; (D) Respiratory rate in the validation cohort; 
(E) SOFA in the validation cohort; (F) SAPS II in the validation cohort

Supplementary Table 1: A brief introduction to the machine learning 
models in the study

Supplementary Table 2: The baseline characteristics of patients in the 
external validation cohort

Author contributions
Weigang Jiang, Tao Liu, Baisheng Sun, and Mingxing Lei participated in 
designing and writing the manuscript. Zhencan Han, Baisheng Sun, Mingxing 
Lei, and Lixia Zhong were involved in data extraction, collection, and analysis. 
Minhua Lu and Mingxing Lei supervised the study. All authors read and 
approved the final manuscript. All authors took part in designing and writing 
the manuscript.

Funding
This study was supported by Hainan Province Clinical Medical Center 
and National Clinical Research Center for Orthopedics, Sports Medicine & 
Rehabilitation.

Data availability
The datasets of the current study are available under reasonable request from 
the corresponding author.

Declarations

Ethics approval and consent to participate
The use of the MIMIC-III database was approved by the Institutional Review 
Board of Beth Israel Deaconess Medical Center (32128436). Since the data 
in the MIMIC-III database has been de-identified, patient consent was not 
required. External validation of the model was performed in 122 patients with 
critical orthopaedic trauma from a university teaching hospital, and the Ethics 
Committee of our hospital approved the study. We commit to strictly adhere 
to ethical guidelines and legal regulations at all stages of the research and 
ensure the appropriate use and protection of patient privacy.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Department of Orthopedics, The Fourth Affiliated Hospital of Soochow 
University (Suzhou Dushu Lake Hospital), Suzhou City 215000, Jiang Su 
Province, People’s Republic of China
2Department of Orthopedics, The 9 th Medical Centre of Chinese PLA 
General Hospital, Beijing, China
3Department of Critical Care Medicine, The First Medical Centre of 
Chinese PLA General Hospital, Beijing, China
4Chinese PLA Medical School, Beijing, China
5Department of Intensive Care Medicine, Beijing Friendship Hospital, 
Capital Medical University, Beijing, China
6Department of Orthopedics, Peking University Third Hospital, Beijing, 
China
7Department of Orthopedics, Hainan Hospital of PLA General Hospital, 
Hainan, China

8Department of Orthopedics, National Clinical Research Center for 
Orthopedics, Sports Medicine & Rehabilitation, PLA General Hospital, 51 
Fucheng Road, Haidian District, Beijing 100142, People’s Republic of China

Received: 15 February 2024 / Accepted: 23 December 2024

References
1.	 Huang HY, Huang CY, Li LF. Prolonged mechanical ventilation: outcomes and 

management. J Clin Med 2022, 11(9).
2.	 Papazian L, Klompas M, Luyt CE. Ventilator-associated pneumonia in adults: a 

narrative review. Intensive Care Med. 2020;46(5):888–906.
3.	 Goligher EC, Dres M, Patel BK, Sahetya SK, Beitler JR, Telias I, Yoshida T, Vaporidi 

K, Grieco DL, Schepens T, et al. Lung- and diaphragm-protective ventilation. 
Am J Respir Crit Care Med. 2020;202(7):950–61.

4.	 Ratti LSR, Tonella RM, Figueir≖do LCd, Saad IAB, Falcão ALE. Oliveira PPMd: 
Inspiratory Muscle Training Strategies in Tracheostomized critically ill indi-
viduals. Respir Care. 2022;67(8):939–48.

5.	 Loss SH, de Oliveira RP, Maccari JG, Savi A, Boniatti MM, Hetzel MP, Dallegrave 
DM, Balzano Pde C, Oliveira ES, Höher JA, et al. The reality of patients requir-
ing prolonged mechanical ventilation: a multicenter study. Rev Bras Ter Inten-
siva. 2015;27(1):26–35.

6.	 Huang C. The survival outcomes of patients requiring prolonged mechanical 
ventilation. Med (Kaunas Lithuania) 2023, 59(3).

7.	 Damuth E, Mitchell J, Bartock J, Roberts B, Trzeciak S. Long-term survival of 
critically ill patients treated with prolonged mechanical ventilation: a system-
atic review and meta-analysis. Lancet Respir Med. 2015;3(7):544–53.

8.	 Na SJ, Ko RE, Nam J, Ko MG, Jeon K. Factors associated with prolonged wean-
ing from mechanical ventilation in medical patients. Ther Adv Respir Dis. 
2022;16:17534666221117005.

9.	 Huang C. Gender differences in prolonged mechanical Ventilation patients - 
A Retrospective Observational Study. Int J Gen Med. 2022;15:5615–26.

10.	 Huang C. How prolonged mechanical ventilation is a neglected 
disease in chest medicine: a study of prolonged mechanical ventila-
tion based on 6 years of experience in Taiwan. Ther Adv Respir Dis. 
2019;13:1753466619878552.

11.	 Yoon JH, Pinsky MR, Clermont G. Artificial Intelligence in critical Care Medi-
cine. Crit Care. 2022;26(1):75.

12.	 Gutierrez G. Artificial Intelligence in the Intensive Care Unit. Crit Care. 
2020;24(1):101.

13.	 Tang R, Zhang S, Ding C, Zhu M, Gao Y. Artificial Intelligence in Intensive Care 
Medicine: bibliometric analysis. J Med Internet Res. 2022;24(11):e42185.

14.	 Huang S, Teng Y, Du J, Zhou X, Duan F, Feng C. Internal and external valida-
tion of machine learning-assisted prediction models for mechanical ventila-
tion-associated severe acute kidney injury. Aust Crit Care. 2023;36(4):604–12.

15.	 Jia Y, Kaul C, Lawton T, Murray-Smith R, Habli I. Prediction of weaning from 
mechanical ventilation using Convolutional neural networks. Artif Intell Med. 
2021;117:102087.

16.	 Chang YC, Huang KT, Chen YM, Wang CC, Wang YH, Tseng CC, Lin MC, 
Fang WF. Ventilator dependence risk score for the prediction of prolonged 
mechanical ventilation in patients who survive Sepsis/Septic shock with 
respiratory failure. Sci Rep. 2018;8(1):5650.

17.	 Dilday J, Lewis MR. Transfusion management in the trauma patient. Curr Opin 
Crit Care. 2022;28(6):725–31.

18.	 Tisherman SA, Stein DM. ICU management of Trauma patients. Crit Care Med. 
2018;46(12):1991–7.

19.	 Kung SC, Lin WT, Tsai TC, Lin MH, Chang CH, Lai CC, Chao CM. Epidemiologic 
characteristics and outcomes of major trauma patients requiring prolonged 
mechanical ventilation. Med (Baltim). 2017;96(52):e9487.

20.	 Zhang Z, Ho KM, Hong Y. Machine learning for the prediction of volume 
responsiveness in patients with oliguric acute kidney injury in critical care. 
Crit Care. 2019;23(1):112.

21.	 Yue S, Li S, Huang X, Liu J, Hou X, Zhao Y, Niu D, Wang Y, Tan W, Wu J. Machine 
learning for the prediction of acute kidney injury in patients with sepsis. J 
Transl Med. 2022;20(1):215.

22.	 Li F, Xin H, Zhang J, Fu M, Zhou J, Lian Z. Prediction model of in-hospital 
mortality in intensive care unit patients with heart failure: machine 
learning-based, retrospective analysis of the MIMIC-III database. BMJ Open. 
2021;11(7):e044779.



Page 14 of 14Jiang et al. BMC Musculoskeletal Disorders         (2024) 25:1089 

23.	 Lei M, Han Z, Wang S, Han T, Fang S, Lin F, Huang T. A machine learning-
based prediction model for in-hospital mortality among critically ill 
patients with hip fracture: an internal and external validated study. Injury. 
2023;54(2):636–44.

24.	 Lei M, Han Z, Wang S, Guo C, Zhang X, Song Y, Lin F, Huang T. Biological 
signatures and prediction of an immunosuppressive status-persistent critical 
illness-among orthopedic trauma patients using machine learning tech-
niques. Front Immunol. 2022;13:979877.

25.	 Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, 
Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care data-
base. Sci Data. 2016;3:160035.

26.	 Han T, Xiong F, Sun B, Zhong L, Han Z, Lei M. Development and validation of 
an artificial intelligence mobile application for predicting 30-day mortality in 
critically ill patients with orthopaedic trauma. Int J Med Inf. 2024;184:105383.

27.	 Cui Y, Shi X, Wang S, Qin Y, Wang B, Che X, Lei M. Machine learning 
approaches for prediction of early death among lung cancer patients with 
bone metastases using routine clinical characteristics: an analysis of 19,887 
patients. Front Public Health. 2022;10:1019168.

28.	 Shi X, Cui Y, Wang S, Pan Y, Wang B, Lei M. Development and validation of a 
web-based AI prediction model to assess intraoperative massive blood loss 
among metastatic spinal disease using machine learning techniques. The 
Spine J 2023:In Press.

29.	 Xiong F, Cao X, Shi X, Long Z, Liu Y, Lei M. A machine learning-based model 
to predict early death among bone metastatic breast cancer patients: a large 
cohort of 16,189 patients. Front Cell Dev Biol. 2022;10:1059597.

30.	 Shi X, Cui Y, Wang S, Pan Y, Wang B, Lei M. Development and validation of a 
web-based artificial intelligence prediction model to assess massive intra-
operative blood loss for metastatic spinal disease using machine learning 
techniques. Spine J 2023.

Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.


	﻿An artificial intelligence application to predict prolonged dependence on mechanical ventilation among patients with critical orthopaedic trauma: an establishment and validation study
	﻿Abstract
	﻿Introduction
	﻿Methods
	﻿Database and study design
	﻿Primary outcome
	﻿Clinical characteristics
	﻿Data preparation
	﻿Modeling and validation
	﻿Model explanation of feature importance
	﻿Design of the application
	﻿Statistical analysis

	﻿Results
	﻿Patient clinical characteristics
	﻿Subgroup analysis of patients stratified by prolonged dependence on mechanical ventilation
	﻿Prediction performance
	﻿Feature importance
	﻿AI platform and prediction

	﻿Discussion
	﻿Main findings
	﻿Risk factors for prolonged dependence on mechanical ventilation
	﻿Prediction of prolonged dependence on mechanical ventilation
	﻿Limitations

	﻿Conclusions
	﻿References


