Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1974 Dec;143(3):575–586. doi: 10.1042/bj1430575

The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester

Christopher W Wharton 1
PMCID: PMC1168426  PMID: 4462742

Abstract

1. Purified stem bromelain (EC 3.4.22.4) was eluted from Sephadex G-100 as a single peak. The specific activity across the elution peak was approximately constant towards p-nitrophenyl hippurate but increased with elution volume with N2-benzoyl-l-arginine ethyl ester as substrate. 2. The apparent molecular weight, determined by elution analysis on Sephadex G-100, is 22500±1500, an anomalously low value. 3. Purified stem bromelain was eluted from CM-cellulose CM-32 as a single peak and behaved as a single species during column electrophoresis on Sephadex G-100. 4. Purified stem bromelain migrates as a single band during polyacrylamide-gel electrophoresis under a wide variety of conditions. 5. The molecular weight determined by polyacrylamide-gel electrophoresis in the presence of sodium dodecyl sulphate is 28500±1000. 6. Sedimentation-velocity and equilibrium-ultracentrifugation experiments, under a variety of conditions, indicate that bromelain is an apparently homogeneous single peptide chain of mol.wt. 28400±1400. 7. The N-terminal amino acid composition is 0.64±0.04mol of valine and 0.36±0.04mol of alanine per mol of enzyme of mol.wt. 28500. (The amino acid recovery of the cyanate N-terminal amino acid analysis was standardized by inclusion of carbamoyl-norleucine at the cyclization stage.) 8. The pH-dependence of the Michaelis parameters of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester was determined. 9. The magnitude and pH-dependence of the Michaelis parameters have been interpreted in terms of the mechanism of the enzyme. 10. The enzyme is able to bind N-benzyloxycarbonyl-l-phenylalanyl-l-serine methyl ester relatively strongly but seems unable to make use of the binding energy to promote catalysis.

Full text

PDF
575

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews P. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem J. 1964 May;91(2):222–233. doi: 10.1042/bj0910222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berger A., Schechter I. Mapping the active site of papain with the aid of peptide substrates and inhibitors. Philos Trans R Soc Lond B Biol Sci. 1970 Feb 12;257(813):249–264. doi: 10.1098/rstb.1970.0024. [DOI] [PubMed] [Google Scholar]
  3. Bobb D. Isolation of stem bromelain by affinity chromatography and its partial characterization by gel electrophoresis. Prep Biochem. 1972;2(4):347–354. doi: 10.1080/00327487208065671. [DOI] [PubMed] [Google Scholar]
  4. Brocklehurst K., Carlsson J., Kierstan M. P., Crook E. M. Covalent chromatography. Preparation of fully active papain from dried papaya latex. Biochem J. 1973 Jul;133(3):573–584. doi: 10.1042/bj1330573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brocklehurst K., Crook E. M., Kierstan M. The mutability of stem bromelain: evidence for perturbation by structural transitions of the parameters that characterize the reaction of the essential thiol group of bromelain with 2,2'-dipyridyl disulphide. Biochem J. 1972 Jul;128(4):979–982. doi: 10.1042/bj1280979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brubacher L. J., Bender M. L. The preparation and properties of trans-cinnamoyl-papain. J Am Chem Soc. 1966 Dec 20;88(24):5871–5880. doi: 10.1021/ja00976a032. [DOI] [PubMed] [Google Scholar]
  7. Chervenka C. H. Long-column meniscus depletion sedimentation equilibrium technique for the analytical ultracentrifuge. Anal Biochem. 1970 Mar;34:24–29. doi: 10.1016/0003-2697(70)90082-5. [DOI] [PubMed] [Google Scholar]
  8. Dunker A. K., Rueckert R. R. Observations on molecular weight determinations on polyacrylamide gel. J Biol Chem. 1969 Sep 25;244(18):5074–5080. [PubMed] [Google Scholar]
  9. EL-GHARBAWI M., WHITAKER J. R. FRACTIONATION AND PARTIAL CHARACTERIZATION OF THE PROTEOLYTIC ENZYMES OF STEM BROMELAIN. Biochemistry. 1963 May-Jun;2:476–481. doi: 10.1021/bi00903a014. [DOI] [PubMed] [Google Scholar]
  10. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  11. Englund P. T., King T. P., Craig L. C., Walti A. Studies on ficin. I. Its isolation and characterization. Biochemistry. 1968 Jan;7(1):163–175. doi: 10.1021/bi00841a021. [DOI] [PubMed] [Google Scholar]
  12. FEINSTEIN G., WHITAKER J. R. ON THE MOLECULAR WEIGHTS OF THE PROTEOLYTIC ENZYMES OF STEM BROMELAIN. Biochemistry. 1964 Aug;3:1050–1054. doi: 10.1021/bi00896a007. [DOI] [PubMed] [Google Scholar]
  13. HAMMOND B. R., GUTFREUND H. The mechanism of ficin-catalysed reactions. Biochem J. 1959 Jun;72(2):349–357. doi: 10.1042/bj0720349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. INAGAMI T., MURACHI T. KINETIC STUDIES OF BROMELAIN CATALYSIS. Biochemistry. 1963 Nov-Dec;2:1439–1444. doi: 10.1021/bi00906a041. [DOI] [PubMed] [Google Scholar]
  15. Lowe G., Yuthavong Y. Kinetic specificity in papain-catalysed hydrolyses. Biochem J. 1971 Aug;124(1):107–115. doi: 10.1042/bj1240107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lowe G., Yuthavong Y. pH-dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides. Biochem J. 1971 Aug;124(1):117–122. doi: 10.1042/bj1240117. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. MURACHI T., NEURATH H. Fractionation and specificity studies on stem bromelain. J Biol Chem. 1960 Jan;235:99–107. [PubMed] [Google Scholar]
  18. MURACHI T., YASUI M., YASUDA Y. PURIFICATION AND PHYSICAL CHARACTERIZATION OF STEM BROMELAIN. Biochemistry. 1964 Jan;3:48–55. doi: 10.1021/bi00889a009. [DOI] [PubMed] [Google Scholar]
  19. Maggio E. T., Shafer J. A. The interaction of papain and certain S-alkylated papains with dextran and polyacrylamide gels used in thin-layer gel chromatography. Anal Biochem. 1973 Aug;54(2):616–618. doi: 10.1016/0003-2697(73)90396-5. [DOI] [PubMed] [Google Scholar]
  20. Murachi T., Yamazaki M. Changes in conformation and enzymatic activity of stem bromelain in alkaline media. Biochemistry. 1970 Apr 28;9(9):1935–1938. doi: 10.1021/bi00811a012. [DOI] [PubMed] [Google Scholar]
  21. OTA S., MOORE S., STEIN W. H. PREPARATION AND CHEMICAL PROPERTIES OF PURIFIED STEM AND FRUIT BROMELAINS. Biochemistry. 1964 Feb;3:180–185. doi: 10.1021/bi00890a007. [DOI] [PubMed] [Google Scholar]
  22. Ota S., Horie K., Hagino F., Hashimoto C., Date H. Fractionation and some properties of the proteolytically active components of bromelains in the stem and the fruit of the pineapple plant. J Biochem. 1972 May;71(5):817–830. doi: 10.1093/oxfordjournals.jbchem.a129831. [DOI] [PubMed] [Google Scholar]
  23. STARK G. R., SMYTH D. G. The use of cyanate for the determination of NH2-terminal residues in proteins. J Biol Chem. 1963 Jan;238:214–226. [PubMed] [Google Scholar]
  24. Shinitzky M., Goldman R. Fluorometric detection of histiine-tryptophan complexes in peptides and proteins. Eur J Biochem. 1967 Dec;3(2):139–144. doi: 10.1111/j.1432-1033.1967.tb19508.x. [DOI] [PubMed] [Google Scholar]
  25. Sluyterman L. A., de Graaf M. J. The fluorescence of papain. Biochim Biophys Acta. 1970 Mar 31;200(3):595–597. doi: 10.1016/0005-2795(70)90123-6. [DOI] [PubMed] [Google Scholar]
  26. Suzuki K., Abiko T., Endo N. Synthesis of every kinds of peptide fragments of bradykinin. Chem Pharm Bull (Tokyo) 1969 Aug;17(8):1671–1678. doi: 10.1248/cpb.17.1671. [DOI] [PubMed] [Google Scholar]
  27. Takahashi N., Yasuda Y., Goto K., Miyake T., Murachi T. Multiple molecular forms of stem bromelain. Isolation and characterization of two closely related components, SB1 and SB2. J Biochem. 1973 Aug;74(2):355–373. [PubMed] [Google Scholar]
  28. WILKINSON G. N. Statistical estimations in enzyme kinetics. Biochem J. 1961 Aug;80:324–332. doi: 10.1042/bj0800324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  30. Wharton C. W., Cornish-Bowden A., Brocklehurst K., Crook E. M. Kinetics of the hydrolysis of N-benzoyl-L-serine methyl ester catalysed by bromelain and by papain. Analysis of modifier mechanisms by lattice nomography, computational methods of parameter evaluation for substrate-activated catalyses and consequences of postulated non-productive binding in bromelain- and papain-catalysed hydrolyses. Biochem J. 1974 Aug;141(2):365–381. doi: 10.1042/bj1410365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Wharton C. W., Crook E. M., Brocklehurst K. The preparation and some properties of bromelain covalently attached to O-(carboxymethyl)-cellulose. Eur J Biochem. 1968 Dec 5;6(4):565–571. doi: 10.1111/j.1432-1033.1968.tb00482.x. [DOI] [PubMed] [Google Scholar]
  32. YPHANTIS D. A. EQUILIBRIUM ULTRACENTRIFUGATION OF DILUTE SOLUTIONS. Biochemistry. 1964 Mar;3:297–317. doi: 10.1021/bi00891a003. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES