Skip to main content
. 2024 Dec 23;11:e60003. doi: 10.2196/60003

Table 2. Hyperparameters of the multitask 1D-convolutional neural network–based architecture.

Layer Type Hyperparameters
Input Input Features size
Conv1D Convolution Input=1, output=20, K=8, stride=1, padding
ReLu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Conv Convolution layer Input=20, output=40, K=8, stride=1, padding
Relu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Conv Convolution layer Input=40, output=60, K=8, stride=1, padding
Relu Activation function ReLu
Pooling Pooling Stride=2, max pooling
Fully connected 1 Fully connected layer Input=360, output=100
Fully connected 2 Fully connected layer Input=100, output=300
Linear 1 Input: 100, output: 2 Output=2 affect classes, activation function:linear
Linear 2 Input: 300, output: N Output=N identity classes, activation function:linear