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Abstract

This study explores the intricate dynamics of volatility within high-frequency financial mar-

kets, focusing on 225 of Chinese listed companies from 2016 to 2023. Utilizing 5-minute

high-frequency data, we analyze the realized volatility of individual stocks across six distinct

time scales: 5-minute, 10-minute, 30-minute, 1-hour, 2-hour, and 4-hour intervals. Our

investigation reveals a consistent power law decay in the auto-correlation function of real-

ized volatility across all time scales. After constructing cross-correlation matrices for each

time scale, we analyze the eigenvalues, eigenvectors, and probability distribution of Cij

based on Random Matrix Theory. Notably, we find stronger correlations between stocks at

higher frequencies, with distinct eigenvector patterns associated with large eigenvalues

across different time scales. Employing Planar Maximally Filtered Graphs method, we

uncover evolving community structures across the six time scales. Finally, we explore reac-

tion speed across multiple time scales following big events and compare industry-specific

reactions. Our findings underscore the faster reaction speed at higher frequency scales,

shedding light on the multifaceted dynamics of high-frequency financial markets.

Introduction

In modern financial markets, high-frequency trading (HFT) has become an essential aspect.

Advances in technology enable HFT participants to execute a large number of trades in very

short periods, significantly affecting market volatility. Studying the volatility in high-frequency

trading is crucial for understanding market behavior, predicting price changes, and developing

investment strategies.

In the current technological era, big data is a critical issue in both business and technology

domains [1]. The accumulation of extensive historical financial data in stock markets enables

the exploration of the fine structure of financial dynamics, leading to various empirical find-

ings [2–10]. It can also provide invaluable insights into market dynamics, risk management,
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and investment options. As financial markets grow more complex, data analysis has shifted

from simple reporting to a strategic tool for gaining a competitive edge [11, 12]. It is crucial in

multiple areas of finance management, such as risk assessment, portfolio management, fraud

detection, and strategic planning [12]. With the rise of online big data, new methods have

emerged, enhancing results. For instance, price changes can be predicted using collective

mood states from Twitter [13], and trading behavior can be quantified with Google Trends

and Wikipedia view times [14, 15]. Big data is also a significant factor in business process man-

agement and HR processes, supporting decision-making [16].

High-frequency data provides more detailed insights into the tail dependence between the

financial system and its institutions than daily returns. Previous studies have mostly relied on

low-frequency data with sampling frequencies of day, week, month, quarter, or year, which fail

to accurately capture intra-day volatility [17]. High-frequency data, sampled at hours, minutes,

or even shorter intervals, contains rich information about asset prices. With advancements in

information technology, accessing high-frequency data has become faster and cheaper. It is an

opportune time to use high-frequency data to explore the intrinsic mechanisms of the price

movements for each stock, and to obtain more information about stock prices.

Recent unexpected changes in macroeconomic conditions, international events, and eco-

nomic policies have increased financial market volatility [18]. Some research has detected

jump volatility in financial assets using high-frequency data [19]. Jump volatility, which repre-

sents infrequent but sharp changes in asset prices, describes market volatility more accurately

than continuous volatility [20]. For instance, Wright and Zhou (2007) found that jump volatil-

ity explains much of the counter-cyclical movements in bond risk premiums [21]. Zhang et al.

(2016) identified jump volatility as a significant component of the Dow Jones Industrial Aver-

age stocks’ volatility [22], and Audrino and Hu (2016) showed that it improves the forecast of

the S&P 500’s volatility [23]. Despite the extensive research on financial market volatility, most

studies rely on low-frequency data, which cannot accurately reflect intra-day volatility infor-

mation. Despite the insights provided by jump volatility, realized volatility, which captures

both continuous price movements and jumps by summing squared high-frequency returns,

offers a more comprehensive measure of market variability. Andersen et al. (2012) introduced

jump-robust estimators that enhance realized volatility measurement by mitigating the impact

of jumps [24]. Nevertheless, most studies rely on low-frequency data, which cannot accurately

reflect intra-day volatility information.

Effective policy making and regulation in financial markets depend on a deep understand-

ing of the complexity. Network analysis is an innovative method that enhances data mining

and knowledge discovery in financial data. Based on complex network theory, the topological

structures of a market can be extracted to uncover hidden information and relationships

among stocks [25]. Academically, network analysis can identify new features and dynamics of

international trade, both wholly and partially [26]. Complex network theory is widely applied

to analyze the topological characteristics, time evolution, community evolution, and competi-

tion patterns of mineral resource trade networks, such as coal [27], fossil fuels [28], boron ore

[29], lithium [30], nickel [31], and barite [32]. Additionally, previous research found that

eigenmodes for large eigenvalues are often dominated by a community of stocks associated

with a specific business sector based on Random Matrix Theory (RMT) [33]. Planar Maximally

Filtered Graphs (PMFG) method has also been introduced to uncover community structure

[34].

Motivated by the above discussion, in this paper, we construct realized volatility spillover

networks by employing the 5-min high frequency data of the Chinese listed companies. Based

on RMT, we analyze the statistical properties of the eigenvalues and eigenvectors of the corre-

lation matrix. With the the PMFG method [5, 8, 35–37], the community structures across six
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time scales are analyzed. To explore the reaction of the stocks and industries to the big events

happened in financial markets, we focus on two typical big events in China’s stock markets,

one in 2021 and another in 2022. The term ‘Big Events’ refers to environmental, economic,

and other major disruptions that cause social instability [38]. Examples include natural disas-

ters, political transitions, and economic recessions. These big events significantly affect the

stock markets, and draw the attention of the scientists in various fields. Investigating the effects

of these big events is important and necessary.

The remainder of the paper proceeds as follows. In Section 2, we describe the data and

methodology. In section 3, we present the results and our main findings. Section 4 is conclu-

sions and some discussions.

Materials and methods

Data description

Our study involves 5-min high-frequency price data on the constituent stocks of Shanghai and

Shenzhen stock markets. The data, spanning seven years (2016 to 2023), is freely accessible

from https://www.joinquant.com. The collection and analysis methods adhered to the terms

and conditions specified by the data source. Specifically, we collected 5-min data of 225 stocks

with the time period from 9:35 of 2016.1.4 to 15:00 of 2023.6.29. The time length for each

stock is 87360 data points.

Calculation of the realized volatility

To analyze this data, we first calculate the realized volatility for each stock. This calculation is

essential for understanding the immediate price movements and is performed for six distinct

time scales.

Here, we use Pi(t0) to denote the price of the i-th stock at time t0. To avoid long-term trends,

we define the logarithmic price return as

Riðt0;DtÞ ¼ ln½Piðt0;DtÞ=Piðt0 � 1;DtÞ�; ð1Þ

where Δt = 1, 2, 6, 12, 24, 48.

Then, we employ the estimated realized volatility RV introduced by Andersen et al. [24].

RViðt0;DtÞ ¼
XM

t0¼1

Riðt
0;DtÞ2; ð2Þ

where M = 48, 24, 8, 4, 2, 1, and i corresponds to the i-th stock. By capturing both continuous

price movements and discrete jumps, the estimated realized volatility offers a comprehensive

measure of market variability. Furthermore, realized volatility can be directly computed from

high-frequency data, facilitating a more precise and timely evaluation of market conditions.

Then we introduce the normalized realized volatility

rviðt0;DtÞ ¼ ½RViðt0;DtÞ � hRViðt0;DtÞi�=si; ð3Þ

where h� � �i represents the time average over time t0, and si ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hRViðt0;DtÞ
2
i � hRViðt0;DtÞi

2

q

is the standard deviation of RVi(t0, Δt) [8].

Afterwards, the auto-correlation function for each time scale is calculated. The auto-corre-

lation function of volatilities measures the persistence and temporal dependencies in market

volatility, which is crucial for accurate volatility forecasting. The auto-correlation function of

PLOS ONE Multiscale spatiotemporal dynamics of volatility in high-frequency financial markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0315308 December 30, 2024 3 / 18

https://www.joinquant.com
https://doi.org/10.1371/journal.pone.0315308


volatilities of the i-th stock for each time scale is defined as

Aiðt;DtÞ ¼ ½hjrviðt0;DtÞjjrviðt0 þ t;DtÞji � hjrviðt0;DtÞji
2
�=Aið0;DtÞ; ð4Þ

with Ai(0, Δt) = h|rvi(t0, Δt)|2i − h|rvi(t0, Δt)|i2. It is well known that the volatility in financial

dynamics is long-range correlated in time, i.e., A(t) decays by a power law [3, 4, 39, 40].

Construction and analysis of the cross-correlation matrix

The cross-correlation matrix helps in identifying the relationships between different stocks,

providing insights into how price movements are interlinked within the market. In this part,

we construct the cross-correlation matrix for each time scale.

The elements of the equal-time cross-correlation matrix C for the 225 stocks for time scale

Δt are defined by

CijðDtÞ ¼ hrviðt0;DtÞrvjðt0;DtÞi; ð5Þ

which measures the correlations between the returns of individual stocks. According to the

definition, C(Δt) is a real symmetric matrix, and the value of Cij(Δt) ranges from −1 to 1. Fol-

lowing this method, the equal-time cross-correlation matrix C(Δt) for different time scales is

constructed.

The reliability of financial correlation matrices is significantly impacted by noise, especially

in large datasets. Employing the RMT theory has become a critical methodology in financial

data analysis, as it effectively filters out noise, thereby providing more accurate and insightful

representations of the true underlying structure of financial markets [34].

The Wishart matrix is derived from non-correlated time series. Assuming that there are N
time series with a length T, statistical properties of such random matrices are well understood

[41, 42]. In the limit N!1 and T!1 with Q� T/N� 1, the probability distribution

Prm(λ) of the eigenvalue λ is given by [41, 42]

PrmðlÞ ¼
Q
2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl

ran
max � lÞðl � l

ran
minÞ

p

l
; ð6Þ

and the lower and upper bounds of λ are

l
ran
minðmaxÞ ¼

h
1� ð1=

ffiffiffiffi
Q
p
Þ
i2

: ð7Þ

For a real dynamic system, large eigenvalues deviating from Prm(λ) of the Wishart matrix

imply that there exist non-random interactions. Both mature and emerging stock markets

show such a phenomenon [5]. In our notations, the eigenvalues are arranged in the order of λα

> λα+1, with α = 0, . . ., N − 1, with N being the number of stocks.

Based on the RMT theory, the cross-correlation between two stocks can be decomposed

into different eigenmodes [43],

Cij ¼
XN

a¼1

laC
a

ij; Ca

ij ¼ Va;iVa;j; ð8Þ

where Vα,i is the i-th component in the eigenvector of λα, and Ca
ij represents the cross-correla-

tion in the α-th eigenmode, sorted by eigenvalue from largest to smallest.

Previous research has found that the eigenmodes for the large eigenvalues are dominated

by a community of stocks, usually associated with a business sector. Inspired by the work in

ref. [43], a methodology based on RMT is introduced. The largest eigenvalue λ0 represents the
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market mode, which is driven by interactions common for stocks in the entire market. Other

large eigenvalues usually correspond to the business sectors.

Building on this foundation, the identified modes associated with large eigenvalues illus-

trate how stocks behave collectively and relate to specific business sectors. These modes reveal

common patterns in price movements and volatility dynamics, indicating that stocks within

the same sector or across different sectors respond similarly to market fluctuations. Under-

standing these modes helps assess sectoral interactions and informs strategies for portfolio

diversification and risk management.

Results

Time scale analysis of realized volatility auto-correlation

In this section, we analyze the auto-correlation function of realized volatility across different

time scales. This analysis helps us understand the persistence and decay patterns of volatility

over time, providing insights into the temporal dynamics of financial markets. By examining

the auto-correlation function, we can identify how quickly information is assimilated into

prices and how past volatility influences future volatility.

The auto-correlation function for each time scale is calculated. Then we take the average

over the 225 stocks for each time scale, and the results are displayed in Fig 1(a). After analyzing

the auto-correlation function of realized volatilities for all the time scales, we observe that the

realized volatility in financial dynamics is also long-range correlated in time, i.e., for each time

scale A(t) decays by a power law. A(t) for the high-frequency time scale is more stable and less

deviating, while the behavior of the low-frequency is more deviating.

The consistent power-law decay observed across all time scales suggests that the market

dynamics have a universal characteristic in terms of volatility persistence.

Basic characteristics of the cross-correlation matrix

Next, we construct the cross-correlation matrix for each time scale to explore the interdepen-

dencies between different stocks. This matrix allows us to quantify the degree of synchroniza-

tion in price movements, revealing how information spreads across the market. By analyzing

the eigenvalues, eigenvectors, and probability distribution of the correlation coefficients, we

gain a deeper understanding of the structure and behavior of financial networks.

Fig 1. Sub-figure (a) shows the auto-correlation function of realized volatilities for all the time scales. Sub-figure (b) presents the probability distribution of

Cij of cross-correlation matrix for each time scale.

https://doi.org/10.1371/journal.pone.0315308.g001
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The probability distribution of Cij, i.e., P(Cij) is displayed for each matrix in Fig 1(b). The

average value of Cij is close to 0.27 for the 5-min time scale, 0.25 for the 10-min time scale, 0.22

for the 30-min time scale, 0.21 for the 1-hr time scale, 0.20 for the 2-hr time scale, and 0.18 for

the 4-hr time scale. It indicates that the correlation between stocks is larger in the high-fre-

quency time scales, showing that the high-frequency data contain more information about the

intra-day movement of the prices.

After that, we calculate the eigenvalues and eigenvectors of the cross-correlation matrix C

for each time scale. Following the cross-correlation decomposition, the eigenvalues are com-

puted for the cross-correlation matrix for each time scale. The largest four eigenvalues for each

time scale are displayed in Table 1. λmax for the 5-min time scale is the largest among the six

time scales, which is 62.9, while the λmax for the 4-hr time scale is the smallest which is 43.1.

It indicates that the stocks are more correlated, and some behaviors of the price movement

are only shown in the high-frequency time scale. The results showing the sector mode is more

microscopic than the market mode because high-frequency data have more information,

allowing for a more detailed distinction between global and local interactions. Therefore, we

tend to believe that low-frequency correlation matrices are not as accurate in characterizing

interactions as high-frequency data.

The largest four eigenvectors corresponding to the largest four eigenvalues are also obtained

for six time scales. We introduce a threshold Uc: |Ui(λα)|� Uc, to select the dominating com-

ponents in a particular eigenvector. The threshold Uc is set to be 0.08 in this research.

We calculate the correlation between eigenvectors, and the results for the largest four vec-

tors are displayed in Fig 2.

From the results we observe that the correlations between 5-min time scale and 4-hr time

scale are smaller than that between other time scales, indicating the behavior of 5-min time

scale is different from that of 4-hr time scale.

The analysis of the cross-correlation matrices reveals significant interdependencies between

stocks, particularly at shorter time scales. This high degree of correlation at finer time scales

highlights the importance of high-frequency data in capturing detailed intra-day price move-

ments. The differences in eigenvectors across time scales illustrate the dynamic nature of mar-

ket relationships, which has implications for portfolio diversification and systemic risk

assessment.

Community structures across six time scales

To further understand the structural properties of the financial market, we perform a commu-

nity structure analysis using the PMFG and Infomap method [44]. Assuming that there are N
stocks, the solution generates a graph embedded on a surface with a particular genus g. The

Table 1. The values of the largest four eigenvalues for each time scale.

λmax λ1 λ2 λ3

5 min 62.86 9.18 6.75 5.41

10 min 59.46 9.04 6.62 5.36

30 min 51.89 8.49 6.35 5.46

1 h 49.00 8.58 6.10 5.11

2 h 46.51 8.72 6.08 5.20

4 h 43.05 8.94 6.34 5.24

λmax represents the largest eigenvalue, λ1, λ2, λ3 are the second, third and the fourth largest eigenvalues, respectively.

https://doi.org/10.1371/journal.pone.0315308.t001
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genus of a surface is the number of holes in the surface and g = 0 corresponds to a topological

sphere, g = 1 to a torus, g = 2 to a double torus, etc. The graph generated by the PMFG algo-

rithm is a triangulation of the surface and it contains 3N + 6g—6 links, which maximize the

sum of Cij. The simplest case is the graph with g = 0 [43]. We first generated PMFG graph

from the cross-correlation matrix Cij of the financial market. Then the Infomap method is

applied to capture the interaction structure of the communities from the PMFG graph. This

approach helps us identify clusters of stocks that exhibit similar behavior, providing insights

into the market’s organization and the role of different sectors. With the PMFG and Infomap

method, we investigate the community structures for six time scales, and the results are dis-

played in Fig 3. The abbreviations of the business sectors are listed in Table 2.

There are 14 business sectors for the 5-min time scale, the most important business sector

is IT & NBF, and the other three dominating ones are FB, NFM, and MB. There are 17 sectors

for the 10-min time scale, with IT & NBF, FB, DG, and PS being the dominant ones. For the

30-min time scale, there are 18 sectors, and the dominating ones are NBF, FB, Chem I, and PS.

For the 1-hr time scale, there are 18 sectors, and the dominating ones are NBF, NFM, Coal I,

and DG. For the 2-hr time scale, there are 18 sectors, and the dominating ones are NBF, FB,

PS, and CM. For the 4-hr time scale, there are 17 sectors, and the dominating ones are NBF,

FB, DG & MB, and Ener & Tran.

Fig 2. The correlations between the four largest eigenvectors, i.e., V0, V1, V2, and V3 for the six time scales. Sub-

figures (a)– (d) correspond to V0, V1, V2, and V3, respectively.

https://doi.org/10.1371/journal.pone.0315308.g002
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From the results, we can observe that the community structure varies for different time

scales, and among all the time scales the NBF is a dominating business sector, indicating the

Non-Bank Financial sector plays a very important role in the Shanghai and Shenzhen stock

markets. Except for NBF, business FB is also a dominating one for all the time scales. As we

know, financial bank plays an important role in economic development, promoting capital cir-

culation, risk management, money supply, and innovative development.

Fig 3. The community structures for different time scales. Sub-figures (a)– (f) represent the community structures

of 5-min, 10-min, 30-min, 1-hr, 2-hr, and 4-hr time scales, respectively. The abbreviations of the business sectors are

introduced in the caption of Table 2.

https://doi.org/10.1371/journal.pone.0315308.g003
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To test the robustness of the above results, we divide the data into three periods: 2016–

2018, 2018–2020, and 2020–2022. The community structures for the 5-min and 4-hr time

scales in each period are examined. From Fig 4, we can observe that the community structure

of the 4-hr time scale is more complicated than that of the 5-min time scale, which indicates

that the community structure for the 5-min scale differs significantly from that of the 4-hr

scale in each time period. It is consistent with the former conclusion and confirms the robust-

ness of our findings.

We further explore how the network’s topological properties, such as node degree and

closeness centrality distributions, vary across different time scales [45]. We calculate the corre-

lation between degree and closeness centrality for each node in the PMFG graphs, ranging

from the 5-min time scale to 4-hr time scale. The results are presented in Fig 5. The findings

indicate that the correlation between the 5-min and 4-hr time scales is lower than that of other

time scale pairs, suggesting that the network’s topological properties at the 5-min scale differ

significantly from those at the 4-hr scale. This divergence reflects the distinct market dynamics

and interaction patterns observed at shorter intervals, where high-frequency trading activity

has a more pronounced impact.

The community structure analysis demonstrates that market organization is time-scale

dependent, with dominant sectors such as NBF and FB consistently playing key roles. These

findings suggest that certain sectors have a stable influence on market dynamics, regardless of

the time scale. Understanding these stable community structures can aid in better market seg-

mentation and targeted investment strategies, enhancing overall market efficiency.

Table 2. The names of the business sectors and their corresponding abbreviations.

Abv Sector Name

IT Computer

NBF Non-Bank Financial

FB Financial Bank

NFM Non-ferrous Metal

MB Medical Biology

CI Chemical Industry

PS Public Service

MI Military Industry

Coal I Coal Industry

EE Electrical Equipment

RE Real Estate

Tran Transportation

Comm Communication

AI Automobile Industry

EI Electronic Industry

DG Daily Consumer Goods

ME Mechanical Equipment

BD Building Decoration

HEA Household Electric Appliances

FB-I State-owned bank

FB-II Joint-stock bank or private bank

Agri Agriculture

Null No obvious category

The first column display the abbreviations for the Sector Names. “Null” represents the one we could not identify.

https://doi.org/10.1371/journal.pone.0315308.t002
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Reaction speed following big events across six time scales

In this part, we first investigate the reaction speed for each time scale average for all stocks

after big events. Among the year from 2016 to 2023, we choose two big events to investigate

the reaction of the stocks among different time scales. The two events are displayed in Table 3.

Stock markets will be volatile after big events, therefore, for better investigation we compute

the realized volatility averaged for 225 stocks for different time scales. The results are displayed

in Fig 6. The reaction time (speed) is defined by the time (speed) the first peak of the averaged

realized volatility appears. The shorter time indicates a faster reaction speed. With this defini-

tion, we investigate the reaction speed for each time scale.

Fig 4. The community structures of 5-min time scale and 4-hr time scale for the three time periods. Sub-figures

(a)– (f) represent the community structures of 5-min and 4-hr time scales for the three time periods. From top to

bottom are those for 2016-2018, 2018-2020, and 2020-2022, respectively. Left are those of the 5-min time scale, while

right are those of the 4-hr time scale. The abbreviations of the business sectors are introduced in the caption of Table 2.

https://doi.org/10.1371/journal.pone.0315308.g004
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We find that the reaction time for the high-frequency time scale is much earlier than that

for the low-frequency. For Event 1, the average volatility increases quickly for the 5-min,

10-min, and 30-min time scales, within less than 1 day. However, for the 4-hr time scale, it

decreases after the first day, increases until the fourth day, then decreases and remains stable

for three days, and increases again after the seventh day. For the 5-min time scale, the average

volatility decreases after two days and becomes stable for three days, while it remains volatile

for the low-frequency time scale.

For Event 2, the average volatility for the 5-min time scale increases within one day, also

faster than that for the 4-hr time scale. From Fig 6b, we can observe that it decreases on the sec-

ond day, remains stable for four days, and increases again after the sixth day. For the 4-hr time

scale, the average volatility increases after one day. From these observations we conclude that

the reaction speed after big events for the high-frequency time scale is much faster than the

low-frequency, and it is volatile for the high-frequency time scale while that for the low-fre-

quency time scale is stable, indicating some information only appears or can be observed in

the high-frequency time scale. Some research uncovers that minute data can provide price vol-

atility information in a shorter period of time and can quickly respond to market changes [17,

19, 46–48]. In contrast, the daily price data reflects the overall price trend within a trading day.

The daily price data is relatively stable because it covers a long period of time and is less

affected by short-term factors. This may be why the reaction speed after big events for the

high-frequency time scale is much faster than the low-frequency.

After investigating the reaction speed across multiple time scales following big events, we

gain a better understanding that high-frequency data contain more information about the

price movement, especially the information that cannot observed in the day time scale. It may

help to make better investment strategies for the investors, as it may be helpful for getting

some risk early warnings and more information about the stock price.

Secondly, we investigate the reaction speed of different industries to major market events

across multiple time scales. This analysis helps us understand how quickly different industries

Fig 5. The correlations between the degree and closeness of each node for the six time scales. Sub-figure (a) shows

the correlations between node degree corresponding to the 5-min and 4-hr time scales, respectively. Sub-figure (b)

illustrates the correlations between node closeness for the 5-min and 4-hr time scales, respectively.

https://doi.org/10.1371/journal.pone.0315308.g005

Table 3. The information about the two big events.

Event 1 2021.1.28 The individual investors “blood washing” Wall Street.

Event 2 2022.4.1 The Shanghai blockade because of the COVID-19.

https://doi.org/10.1371/journal.pone.0315308.t003
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respond to significant information, which is crucial for market timing and risk management.

By grouping stocks into various industries, we can identify which industries are more sensitive

to big events and how their reactions vary across time scales. Following this concept, we group

the 225 stocks into eight different industries, i.e., Health care, Electronic industry, Basic mate-

rials, Public service, Light industry, Real estate and finance, Energy, and Daily consumer

goods. Then, we compare the reaction speed after big events for different time scales of the

eight industries.

To obtain a better understanding of the reaction speed for each industry, we introduce a

threshold. The threshold is set as 0.8 times its own standard deviation. With this threshold, we

investigate the reactions of different industries to big events and compare the difference

between time scales, especially for the 5-min scale and 4-hr scale. The results are displayed in

Figs 7 and 8. For Figs 7b and 8b we were unable to obtain meaningful information, indicating

the data of high-frequency time scale contain more information, which will be helpful for

understanding the stock price movement.

So we focus on the behavior of 5-min time scale. From Fig 7a we observe that the Basic

materials, Light industry, Real estate and finance, and Energy are stable after the event 2021,

while the Health care, Electronic industry, Public service, and Daily consumer goods are more

volatile after the event 2021, especially for the Electronic industry and Daily consumer goods.

Among these industries, the Basic materials and Light industry are long period, and are less

influenced by the event, showing more stability compared to the other industries.

Fig 6. The reaction of stocks across different time scales after big events is illustrated, ranging from the 5-min

scale at the top to the 4-hr scale at the bottom. Sub-figure (a) corresponds to Event1, while sub-figure (b)

corresponds to Event2.

https://doi.org/10.1371/journal.pone.0315308.g006
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In Fig 8a we observe the Public service, Light industry, Real estate and finance, and Daily

consumer goods are stable after the event 2022. The Public service, Light industry, and Daily

consumer goods are very close to people’s daily life, and the consumers of these industries are

not very sensitive to external events in the market. Among these industries, the Health care,

Electronic industry, Basic materials, and Energy are more sensitive to the event.

We all know that after the year 2020, COVID-19 swept the world and affected all aspects of

human society, such as life and health, and population mobility. This may be the reason that

the Health care, Electronic industry, Public service, Basic materials, and Energy are more vola-

tile after the event 2022.

The faster reaction speed observed at high-frequency scales indicate that certain sectors

quickly assimilate and respond to significant market events. Identifying these responsive

industries can provide valuable insights for investors seeking to capitalize on short-term

opportunities and for policymakers aiming to enhance market stability. These findings under-

score the importance of high-frequency data in capturing timely market reactions and inform-

ing strategic decisions.

The Volatility Impulse Response Function (VIRF) simulates how financial market volatility

responds to shocks over time [49]. It measures the effects of a one-time shock across various

time horizons, revealing the duration, magnitude, and speed of market reactions. The process

involves estimating a volatility model, like a GARCH model, using historical data to describe

Fig 7. The reactions of different industries to Event 1. Sub-figure (a) corresponds to 5-min time scale, while sub-

figure (b) corresponds to 4-hr time scale. From top to bottom, the industries are Health care, Electronic industry, Basic

materials, Public service, Light industry, Real estate and finance, Energy, and Daily consumer goods, respectively.

https://doi.org/10.1371/journal.pone.0315308.g007
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volatility behavior without shocks. Consider a GARCH(1,1) model defined as

rt ¼ mþ �t; ð9Þ

�t ¼ stzt; ð10Þ

where rt represents asset returns, μ is the mean return, �t is the error term, zt is a white noise

process (usually assumed to be normally distributed), and the conditional variance s2
t is mod-

eled as

s2
t ¼ a0 þ a1�

2
t� 1
þ b1s

2
t� 1
: ð11Þ

Here α0, α1, and β1 are model parameters to be estimated based on the historical returns. To

analyze the impact of a shock, assume a one standard deviation shock occurs at time t = 0 (e.g.,

�0 = σ), where σ represents the standard deviation of the returns rt. This shock is intended to

model a significant event, such as a policy announcement. The conditional variance at this

time can be expressed as

s2
t jt¼0
¼ a0 þ a1 � s

2 þ b1 � s
2
t� 1
: ð12Þ

The VIRF quantifies the response of volatility

VIRFðhÞ ¼ E½s2
tþhj�0 ¼�s � E½s2

tþhj�0 ¼ 0�: ð13Þ

Fig 8. The reactions of different industries to Event 2. Sub-figure (a) corresponds to 5-min time scale, while sub-

figure (b) corresponds to 4-hr time scale. From top to bottom, the industries are Health care, Electronic industry, Basic

materials, Public service, Light industry, Real estate and finance, Energy, and Daily consumer goods, respectively.

https://doi.org/10.1371/journal.pone.0315308.g008
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Here, we define rt as Ri(t0, Δt) to simulate the VIRF respectively and take the average across all

stocks for each time period. The time lag h ranges from 1 to 60 days.

To explore the dynamics of the market’s reaction to significant events, we simulate the

VIRFs for the volatility following Event 2021 across various time scales, ranging from 5-min

time scale to 4-hr time scale. As illustrated in Fig 9, the results reveal that the 5-min time scale

exhibits more peaks, with the initial peak occurring significantly earlier than the 4-hr time

scale. Other time scales also consistently exhibit this pattern. The results for Event 2022 are

also similar. This observation is consistent with our empirical findings, suggesting that markets

operating at higher frequencies are more sensitive and respond more rapidly to shocks. In

other words, time series data at shorter intervals not only exhibit higher volatility but also indi-

cate a faster reaction speed when absorbing and adjusting to new information, compared to

longer, low-frequency intervals. This underscores the importance of analyzing market dynam-

ics across multiple time scales to fully understand the temporal characteristics of volatility and

market behavior.

Conclusion

Based on the 5-min high-frequency data of China’s financial institutions from 2016 to 2023,

we have obtained the realized volatility for each stock for six time scales, i.e., 5-min, 10-min,

30-min, 1-hr, 2-hr and 4-hr. The auto-correlation function of the realized volatility for each

time scale is calculated, showing a similar power-law decay across all time scales. Then we con-

struct the cross-correlation matrix for each time scale, the eigenvalues, eigenvectors, and the

probability distribution of Cij are investigated. The correlation between stocks is larger in the

Fig 9. VIRFs for Event 1 corresponding to 5-min time scale (up) and 4-hr time scale (bottom) respectively.

https://doi.org/10.1371/journal.pone.0315308.g009
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high-frequency time scales, indicating that the high-frequency data contain more detailed

information about intra-day price movements. Additionally, the eigenvectors corresponding

to large eigenvalues differ across time scales.

Afterward, with the PMFG method, the community structures across six time scales are

analyzed. We observe that the community structure varies for different time scales. Notably,

the Non-Bank Financial (NBF) sector consistently dominates, highlighting its significant role

in the Shanghai and Shenzhen stock markets. Alongside NBF, the Financial Bank (FB) sector

also remains prominent across all time scales, underscoring its crucial role in economic devel-

opment, capital circulation, risk management, money supply, and innovation.

Furthermore, the reaction speed across multiple time scales following big events is investi-

gated. Our analysis reveals that high-frequency time scales react much faster than low-fre-

quency scales. By categorizing stocks into eight industries and examining their reactions to

major events, especially at the 5-min time scale, we identified which industries are more sensi-

tive to these events. The results of this part may help to make better investment strategies for

the investors, as the high-frequency data contain more information about the stock price

movement, it may be helpful for getting some risk early warnings for the financial policy-

makers and regulators in policy-making, regulations design, portfolio management, risk man-

agement, and trading.

These findings not only enhance our understanding of the complex dynamics of financial

markets but also provide practical applications. High-frequency data analysis offers a more

precise tool for predicting market volatility and improving market stability. Future research

should further explore the application of high-frequency data under diverse market conditions

and integrate multiple data sources for comprehensive market analysis. This will provide

richer references and support for financial market research and practical applications.

This study faces some challenges, particularly related to the use of high-frequency data

intervals, which can capture intra-day market dynamics but may also introduce noise from

market microstructure effects, such as bid-ask spreads and transaction costs. Future research

could expand on this work by analyzing international markets for comparative volatility

dynamics and investigating the effects of external macroeconomic variables or news sentiment

on high-frequency market behavior.
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