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Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease, 
characterized by heterogeneous subpleural patches of  fibrotic 
remodeled lung, that follows a bronchocentric distribution (1–3). 
The median survival is 3–5 years after diagnosis (1). While the etiol-
ogy of  IPF was initially unknown (thus, the nomenclature), we now 
understand that IPF is etiologically complex, with well-documented 
genetic and nongenetic origins. Lung fibrosis genetic risk variants 
demonstrate an autosomal dominant pattern of  inheritance with 
incomplete penetrance (4), and in aggregate, these genetic risk vari-
ants account for at least 30% of  the etiology of  IPF (5). Cigarette 
smoke (6) and aging (7–9) also promote the development of  IPF. 
How these nongenetic factors interact with specific genetic variants 
is not clear, but cigarette smoke and aging are known to contrib-
ute to epigenetic programming of  the lung. Genetic susceptibility, 
epigenetic programming, and maladaptive homeostatic responses 
likely interact in ways that are yet to be described, reprogramming 
cells toward a fibroproliferative phenotype in the distal lung.

Genetic studies have identified dozens of  rare and common 
genetic risk variants for IPF within key biological pathways that 

primarily affect the bronchiolar and alveolar epithelia (Table 1) 
(10). Although the gain-of-function MUC5B promoter variant is the 
dominant risk factor for this disease (11), accounting for at least 
50% of  the genetic risk of  developing IPF (5), multiple biological 
mechanisms involving dysregulation of  host defense, cell adhesion, 
telomere biology, mitotic spindle assembly, surfactant protein biol-
ogy, and GTPase activity are implicated in the risk of  developing 
IPF. Importantly, all genetic variants, except possibly a rare mis-
sense mutation in SFTPC (12), demonstrate incomplete penetrance 
for lung fibrosis, suggesting that ectopic expression or gain/loss of  
function of  these genes establishes a biologically vulnerable pheno-
type that requires subsequent insults to trigger development of  IPF.

Multiple types of  environmental exposures promote the devel-
opment of  fibrotic interstitial lung disease (ILD; IPF is a type of  
ILD) and are candidate second hits within the appropriate genetic 
context. The dominant nongenetic factors that enhance the risk of  
IPF are aging (1, 7, 8, 13) and cigarette smoking (6, 14, 15), with 
each one-year increase in age associated with an approximately 6% 
increase in IPF prevalence (16) and cigarette smoking associated 
with an approximately 3- to 5-fold increase in the risk of  IPF (4, 
6). Aerosolized pollutants resulting from wildfires and other com-
bustions, ozone, particulate matter (PM

2.5 and PM10), metal dust, 
asbestos, farming, and livestock (14, 15, 17–19) have also been 
associated with interstitial lung abnormalities (considered a sign of  
early ILD or IPF, ref. 20), IPF incidence (21), and acute exacerba-
tions of  IPF (22–25). These nongenetic IPF risk factors suggest that 
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TGF-β, p53, Notch, Sonic hedgehog (Shh), bone morphogenetic pro-
tein (BMP), and Wnt (45, 58–64).

In murine airways, bronchioles terminate directly into alveolar 
duct openings at the bronchioalveolar duct junction and are popu-
lated by bronchioalveolar stem cells (BASCs) that exhibit transcrip-
tional profiles of  both airway secretory and ATII cells (SCGB1A1 
and SFTPC) (41). Following distal lung injury, BASCs can differ-
entiate into airway or alveolar epithelial cells (39) or to proximal 
epithelial cells after airway-specific injury (40–42). Separately, rare 
ITGB4β+H2-K1hi progenitor cells located in proximal airways were 
shown to engraft into bleomycin-injured mouse lungs following 
intratracheal transplantation with subsequent differentiation into 
ATII cells (43, 44). Intralobular serous cells that coexpress SCG-
B3A2+SCGB1A1+ and KRT5, a marker of  airway basal stem cells, 
were identified in an influenza acute lung injury model and may 
contribute to bronchiolization in IPF (45–47). These observations 
suggest that the plasticity of  existing progenitor cells localized at 
the site of  injury and the migration of  anatomically distant epi-
thelial cells following injury may dictate normal versus excessively 
fibrotic repair outcomes.

In humans, terminal respiratory bronchioles and alveolar ducts 
are separated by structures called respiratory bronchioles that 
contain airway, alveolar, and BASC-like cells. Among these, air-
way epithelial progenitors termed terminal airway secretory cells 
(TASCs, marked by SCGB3A2+SFTPB+) (48), respiratory airway 
secretory cells (RASCs, marked by SCGB3A1+SCGB3A2+SFTP-
B+CEACAM6+) (49, 50), and AT0 cells (marked by SCGB3A2+S-
FTPB+SFTPC+) (50) were identified as cell types of  interest (Figure 
2). Loss of  anatomical structures in humans, such as terminal respi-
ratory bronchioles and bronchoalveolar ducts that house the newly 
identified TASC/RASC populations, may play a significant role in 
the aberrant repair process that occurs in fibrosis (16). Recent work 
has demonstrated a loss of  progenitor ATII cells and an increase 
in the number of  BASCs during aging (65). It will be critical for 
the field to address the initial role and eventual loss of  these pro-
genitor populations in IPF. The role of  genetic risk variants and/
or aging in the generation of  a vulnerable epithelium and poten-
tial consequences for the differentiation trajectory of  these cells in 
vivo are incompletely understood. However, in patients with IPF, 
and especially those with the MUC5B promoter variant, MUC5B 
is ectopically expressed in the respiratory bronchiole (11, 66), a 
region of  the lung that does not normally express MUC5B (67). 
This suggests that MUC5B may influence the cellular composition 
of  these localized fibrotic regions of  the lung. Furthermore, in vivo 
and human studies that examine the role of  these newly identified 
progenitor populations during fibrosis development and in the con-
text of  a vulnerable lung epithelia are still needed, as much of  our 
current knowledge stems from in vitro differentiation experiments. 
These should be complemented with studies in higher-order ani-
mals, including ferrets and pigs, as these species contain respirato-
ry bronchioles with similar cellular composition and morphology 
found in the human lung (68).

MUC5B and host defense. In animal models and humans, MUC5B 
is essential for respiratory tract host defense (69–71). This require-
ment is met by tissue- and cell type–specific restriction of  MUC5B 
to the tracheobronchial airways and submucosal glands, where 
cells are programmed to handle its biosynthesis and secretion.  

mechanisms involving particle deposition (20, 25, 26), mucociliary 
dysfunction, epithelial injury with attendant persistent inflamma-
tion (27–29), stem cell exhaustion (30–32), and cell senescence 
(32–35) represent key drivers of  the persistent fibrotic process. 
These risk factors may also be influenced by genetic variants. Such 
observations led to the two-hit hypothesis (36); in our model, the 
first hit establishes a vulnerable bronchoalveolar epithelium, and 
the second triggers mechanisms that reprogram distal epithelia to 
initiate and perpetuate a profibrotic phenotype (Figure 1).

In this Review, we discuss the two-hit hypothesis with an 
emphasis on MUC5B as the primary genetic risk factor, as it is 
an emerging aspect of  IPF pathogenesis that has not been com-
prehensively addressed in prior reviews. We will also discuss how 
detrimental endoplasmic reticulum (ER) stress involving apopto-
sis, a persistent cycle of  injury and repair, and activation of  lung 
fibroblasts develop following additional damage to the terminal 
respiratory bronchiole. While IPF has been further characterized 
by dysregulation of  immune cells and noncoding RNA signaling, 
these contributions are beyond the scope of  the present discussion, 
and readers are directed elsewhere for comprehensive reviews of  
these topics (37, 38).

Mechanisms initiating epithelial vulnerability
Peripheral remodeling and loss of  alveolar gas exchange surfaces in 
IPF highlight a need to understand how vulnerable lung epithelial 
cells may be reprogrammed to perpetuate a profibrotic phenotype. 
Early work emphasized alveolar type II (ATII) cells as the main tar-
gets of  injury and drivers of  fibrosis. Recently, multipotent epithe-
lial progenitors that give rise to both terminal airway and alveolar 
cells have been shown to be susceptible to injury and may contrib-
ute to fibrosis (39–51). When challenged with ongoing exposures, a 
rodent model demonstrated that epithelial progenitors fail to return 
to homeostasis and instead promote persistent injury and fibrosis 
through maladaptive repair, which was exacerbated in the context 
of  enhanced MUC5B expression (29).

Aberrant progenitors and regenerative epithelia. Findings from murine 
and human studies demonstrate that fibrosis in IPF persists owing to 
sustained disruption of tissue homeostasis and recognize the central 
role of progenitor cells and cell populations in aberrant transitional 
states. The specific cell types and pathways involved in homeostatic 
repair and disease will likely depend on the model organism studied, 
owing to anatomical differences in the distal lungs among humans, 
nonhuman primates, and rodents (Figure 2). Yet, a subset of Wnt-re-
sponsive ATII cells proliferate in response to injury and differentiate 
into alveolar type I (ATI) cells to repair the alveolar epithelium fol-
lowing injury in mice (52, 53) and have also been shown to possess 
progenitor function in human organoid cultures. During fibrosis, 
ATII cells exhibit a transitional morphology and gene expression 
profile consistent with ineffectual/stalled differentiation to ATI cells 
(54, 55). In clustered, cystic airspaces termed honeycomb cysts in IPF, 
this transitional state is marked by expression of one or more keratin 
genes (KRT5 and KRT14) and in simple cysts, by KRT8 and KRT18 
in the bleomycin mouse model (11, 56, 57). Genetic variants in the 
KRT8 locus are associated with IPF, and KRT8+ epithelial cells have 
a direct pathologic role in driving fibroblast activation, proliferation, 
and collagen deposition in the bleomycin model (58). Molecular 
pathways associated with these transitional states currently include 
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Table 1. Common and rare IPF risk variants

Disease mechanism Gene
Common variant (CV)

Rare variant (ref.)rs number (ref.) Frequency of CV in cases Odds ratio (95% CI)
Host defense MUC5B rs35705950 (157) 35% 5.45 (4.91, 6.06) (272)

TOLLIP rs111521887 (273) 29% 1.48 (1.32, 1.66) None reported
ADA None reported (274)

HLA DQA1 DQA1*01:02 (275) 22% 1.25 (1.12, 1.39) None reported
HLA DQB1 DQB1*06:02 (275) 15% 1.34 (1.18, 1.52) None reported
HLA DRB1 DRB1*15:01 (275) 16% 1.31 (1.16, 1.48) None reported

Cell adhesion DSP rs2076295 (157) 54% 1.27 (1.14, 1.42) None reported
MDGA2 rs7144383 (273) 13% 1.44 (1.23, 1.69) None reported

DPP9 rs12610495 (157) 34% 1.22 (1.11, 1.35) None reported
DNAJB4 rs4130548 (272) 33% 1.09 (1.06, 1.13) None reported
STMN3 rs112087793 (276) 92% 1.34 (1.21, 1.48) None reported

Telomere biology TERC rs2293607 (157) 30% 1.30 (1.18, 1.43) (151)
TERT rs4449583 (157) 26% 0.68 (0.62, 0.75) (151, 157, 272, 277, 278)
OBFC1 rs2488000 (157) 8% 0.70 (0.62, 0.79) None reported
TINF2 None reported (159)
PARN None reported (278, 279)
RTEL1 rs41308092 (157, 276) 2% 1.75 (1.45, 2.10) (157, 277–280)
NAF1 None reported (281)
DKC1 None reported (282)

IL9RP3 rs367849850 (274) 8% 2.10 (not provided) None reported
Mitotic spindle assembly KIF15 rs2292181 (276) 5% 1.52 (1.36, 1.70) (272, 278)

MAD1L1 rs12537430 (276) 63% 1.28 (1.21, 1.35) None reported
KNL1 rs12912339 (276) 16% 1.30 (1.21, 1.39) None reported

SPDL1 None reported (272, 277)
Surfactant protein biology SFTPC None reported (12, 119–121)

SFTPA1 None reported (283)
SFTPA2 None reported (121, 284)
ABCA3 None reported (285)
NKX2-1 None reported (112)

Regulation of GTPase activity FAM13A rs2609260 (157) 23% 1.35 (1.22, 1.50) (157)
NPRL3 rs74614704 (276) 6% 1.49 (1.33, 1.67) None reported

RAPGEF2 rs76537958 (272) 3% 1.29 (1.18, 1.42) None reported
AKAP13 rs11073517 (276) 33% 1.19 (1.13, 1.26) None reported

Miscellaneous SPPL2C (ER stress) rs17690703 (273) 26% 0.70 (0.62, 0.79) None reported
MCL1 (apoptosis) rs150563704 (277) 42% 0.77 (0.71, 0.84) None reported

ZKSCAN1  
(mRNA processing) rs6963345 (157) 44% 1.35 (1.22, 1.50) None reported

PSKH1 (mRNA processing) rs539683219 (272) 2% 3.2 (2.17, 4.70) None reported
GPR157 (ciliogenesis and 

GPCR activity) rs7549256 (272) 64% 0.91 (0.88, 0.94) None reported

FKBP5 (cytoplasmic 
signaling involving mTOR) rs9380529 (272) 52% 1.08 (1.05, 1.12) None reported

DEPTOR (mTOR signaling) rs10808505 (276) 57% 1.20 (1.13, 1.26) None reported
FUT6  

(Golgi membrane protein) rs708686 (272) 31% 1.11 (1.07, 1.14) None reported

ATP11A (calcium transport) rs1278769 (157) 20% 0.77 (0.70, 0.85) None reported
IVD (mitochondrial enzyme) rs35700143 (157) 41% 0.76 (0.68, 0.84) None reported
HECTD2 (ubiquitination) None reported (276)

RP11-286H14.4 rs34288126 (272) 13% 1.13 (1.09, 1.19) None reported

CV, common variant.
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cells initiate an UPR (78). The UPR provides graded responses 
to ER stress by decreasing ER protein levels, improving folding, 
degrading proteins that cannot be corrected, or ultimately shifting 
cells toward senescence and apoptosis (90, 91). MUC5B misexpres-
sion alone could elicit UPR signals (e.g., apoptosis) in cells lacking 
IRE-1β resulting in tissue damage, which has been shown to occur 
in distal IPF lung epithelia (11, 66, 75, 92, 93). Additional work is 
needed to validate the regulation of  mucous cell proteostasis regula-
tors as well as IRE-1α– versus IRE-1β–dependent UPR activation in 
cells ectopically expressing MUC5B in IPF.

Cell adhesion. Cell-cell and cell-matrix contacts are critical for 
tissue integrity and host defense (94). Dysfunction of  cell-cell and 
cell-matrix adhesion molecules (including desmoplakin [DSP], 
E-cadherin, integrins, and focal adhesion kinase [FAK]) affecting 
epithelial cells and myofibroblasts plays a pivotal role in the patho-
genesis of  IPF (95). Genetic variants of  DSP are associated with 
IPF (Table 1) (96, 97). DSP facilitates cell adhesion in bronchial 
and alveolar epithelial cells, with high expression in basal cells (98), 
and enables cell migration, proliferation, and differentiation (99). 
Its dysregulation may promote progression of  lung fibrosis through 
multiple aspects of  decreased cell adhesion and disrupted tissue 
integrity. E-cadherin, a key component of  adherens junctions, helps 
maintain epithelial barrier integrity through homophilic interactions 
between adjacent epithelial cells. In pulmonary fibrosis, decreased 
E-cadherin expression compromises cell-cell interactions, leading 
to impaired barrier function and eventual epithelial cell detachment 
from the basement membrane (100). Integrins are transmembrane 
receptors linking the extracellular matrix (ECM) to the intracellular 
cytoskeleton, playing a dynamic and crucial role in cell adhesion 
and signaling. TGF-β, a known mediator of  fibrotic processes, is 
secreted into the microenvironment in a latent inactive form bound 
to latency associated protein and is activated by the binding of  inte-
grin αvβ6 (101–103). Inhibition of  integrin αvβ6 in murine models 
of  pulmonary fibrosis, including radiation- and bleomycin-induced 
injury, was shown to prevent lung fibrosis (104–106). Finally, FAK, 
a downstream effector of  integrin signaling, has also been shown to 

In bronchioles, MUC5B is produced by surface epithelial club cells, 
albeit at much lower levels than in bronchial epithelia. In unaffected 
individuals, MUC5B is undetectable in the most distal terminal and 
respiratory bronchiolar airways (67, 72–74). Presumably, restricted 
expression of  MUC5B normally limits its accumulation in the dis-
tal airspace where it could interfere with particle clearance or gas 
exchange (29). Ectopic expression of  MUC5B in terminal and respi-
ratory bronchiolar airways in patients with IPF, especially in those 
with the MUC5B promoter variant (11, 66, 75), is thought to disrupt 
lung homeostasis and promote fibrotic remodeling in these vulnera-
ble distal regions of  the lung.

The MUC5B gene is 39 kb in length and encodes a 5,762–amino 
acid protein (596 kDa) that presents intrinsic challenges to cellular 
proteostasis. Mucins are secretory proteins that are targeted to the 
ER for translation, folding, and stabilization via disulfide bond for-
mation. MUC5B contains more than 100 disulfide internal bonds 
per molecule at its amino (N-) and carboxy (C-) termini (76, 77). Fur-
thermore, its N- and C- termini are separated by an approximately 
3,000–amino acid stretch of  unstructured domains fated to be O-gly-
cosylated in the Golgi. Accordingly, MUC5B synthesis evokes high 
levels of  steady-state ER stress, and mucous cells have adapted pro-
cesses to dampen activation of  an unfolded protein response (UPR). 
Polymeric mucin production has been best studied in the context of  
the IRE-1 pathway. Unfolded proteins stimulate IRE-1 ribonuclease 
activity to remove a normally unspliced intron in XBP1, enabling 
translation of  a transcription factor that upregulates corrective and 
cytotoxic ER stress responses (78, 79). Importantly, IRE-1 has both 
a ubiquitous isoform (IRE-1α) and a mucous cell–specific isoform 
(IRE-1β) (78–83). The β isoform exhibits higher thresholds for acti-
vation, lower levels of  XBP1 activation, and suppresses IRE-1α–
mediated UPR activation to help maintain a sustainable ER stress 
response during homeostasis. Importantly, mucous cells exploit this 
through transcription factors such as SAM pointed domain-contain-
ing ETS transcription factor (SPDEF), which coordinately regulates 
expression of  IRE-1β (84), mucous cell chaperones (85), and mucins 
themselves (86–89). To minimize ER stress and restore proteostasis,  

Figure 1. Two-hit model of pulmonary fibrosis. We postulate that genetic and epigenetic etiologic drivers establish a vulnerable bronchiolar and alveolar 
epithelia (first hit) and that this results in homeostatic adaptation without the development of lung fibrosis. Persistent and progressive lung fibrosis can 
be triggered by a second hit (such as tobacco smoke, air pollution, inflammation, and/or aging) to the bronchiolar and alveolar epithelia, resulting in epi-
thelial reprogramming, endoplasmic reticulum (ER) stress, unfolded protein response (UPR), apoptosis, and ultimately leading to fibroblast accumulation 
and activation, fibrosis, and abnormal lung remodeling.
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regulate cell adhesion, migration, and survival of  epithelial cells and 
differentiation and migration of  myofibroblasts (107–109). In mice, 
small-molecule inhibition of  FAK prevented bleomycin-induced 
lung fibrosis (109), while ATII-specific deletion of  FAK following 
bleomycin-induced fibrosis resulted in ECM alterations, fibroblast 
activation, and inhibition of  ATII cell apoptosis, suggesting a com-
plex signaling dynamic between epithelial cells and fibroblasts (107). 
Understanding the intricate interplay between adhesion molecules 
and signaling pathways and if  these are altered in a vulnerable host 
will be essential for developing targeted therapies to restore normal 
cell-cell and cell-matrix adhesions in fibrosis.

Alveolar homeostasis and injury. ATII cells play a crucial role in 
maintaining alveolar homeostasis by producing surfactant and serv-
ing as progenitor cells that regenerate damaged alveolar epithelium. 
In injured and fibrotic lungs, ATII cell function is impaired, leading to 
disrupted surfactant production and ineffective regeneration. In addi-
tion, mutations in several genes (SFTPC, SFTPA1, SFTPA2, ABCA3, 
and NKX2-1) that are uniquely expressed, or highly enriched, in ATII 
cells have been identified in patients with IPF (110–112). These genes 
are critical for alveolar epithelial cell specification (NKX2-1), surfac-
tant homeostasis and function (ABCA3, SFTPC, SFTPA1, and SFT-
PA2), and innate immune responses (SFTPA1 and SFTPA2), all of  
which work in concert to decrease surface tension within alveoli and 
defend against respiratory pathogens. Impaired surfactant composi-
tion and function resultant from loss-of-function mutations in surfac-
tant-associated genes leads to alveolar instability and atelectasis (12, 
113). Alveolar collapse has been reported in the unaffected parenchy-
ma of  IPF diseased lungs and has also been associated with IPF pro-
gression (114, 115). Additionally, it was shown that overexpression  

of  the profibrotic factor TGF-β1 suppresses expression of  surfactant 
proteins in ATII cells, leading to alveolar collapse prior to fibrosis in 
the bleomycin mouse model (116). Thus, alveolar collapse can con-
tribute to early pathogenesis of  IPF and may worsen upon activation 
of  mesenchymal signaling.

N-terminal truncation mutations in surfactant protein C (SFT-
PC) lead to retention of  SFTPC in endolysosomal compartments 
and aggresome formation (117, 118) and have been reported to be 
associated with IPF (113, 119–121). Transgenic expression of  an 
SFTPC exon 4 truncation mutant (termed delta exon 4) in mice 
led to an embryonic lethal phenotype associated with high levels 
of  transgenic protein, ER stress, and disrupted lung development 
(122). Expression of  a different SFTPC variant (L188Q) in trans-
genic mice was not sufficient for the development of  spontaneous 
fibrosis but augmented bleomycin-induced fibrosis (123). In vitro 
studies demonstrated that, while both the delta exon 4 mutant and 
the L188Q mutant induced ER stress and IL-8 secretion in A549 
cells, only the delta exon 4 mutant was sufficient to activate NF-κB 
signaling (124). This demonstrated that expression of  misfolded 
SFTPC protein and subsequent ER stress responses was sufficient 
to drive increased inflammatory signaling in ATII cells (123). To 
correct for the embryonic lethality and hypomorphic complications 
of  these mutants, conditional knockin SFTPC-transgenic mice have 
also been created (I73T and the BRICHOS mutant C121G), which 
demonstrated both ER stress and spontaneous lung fibrosis (12). 
Confirmation of  alveolar epithelial ER stress as causative for spon-
taneous fibrosis was demonstrated through conditional deletion of  
the HSPA5 gene (encoding GRP78, a molecular chaperone neces-
sary for inhibition of  ER stress signaling). Mice with ATII-specific 
deletion of  GRP78 developed ER stress and spontaneous pulmo-
nary fibrosis, establishing a link between ER stress and fibrotic lung 
disease (125). Moreover, inhibition of  IRE-1α reduced ER stress 
and lung fibrosis in Sftpcc121g mice (93).

Telomere attrition and cell senescence. While lung epithelial cells 
can have relatively long half-lives (126), epithelial cell senescence 
may be accelerated by a number of  aging-related events, including 
DNA damage (127), telomere attrition (128), dysregulated proteo-
stasis (125, 129–135), and mitochondrial stress (136). At a molec-
ular level, senescence is a state of  irreversible replicative arrest 
characterized by markers of  DNA damage, cellular hypertrophy, 
upregulation of  lysosomal β-galactosidase, and expression of  the 
cyclin-dependent kinase inhibitors (CDKN1A and CDKN2A) (137). 
Lung epithelia in IPF express CDKN1A (138–140) and its paralog, 
CDKN2A (141, 142). Moreover, deletion of  CDKN2A+ senescent 
cells was protective in murine bleomycin-induced fibrosis (32).

Additional evidence for senescent and aging-related phenotypes in 
IPF comes from known associations between rare mutations in genes 
that encode enzymes responsible for maintaining DNA integrity. 
Telomeres are segments of chromosomes that enable DNA repair 
machinery to discriminate between chromosomal ends and DNA 
double-strand breaks (143), and breakdown in telomere maintenance 
triggers cellular senescence (144–148). Telomere shortening is 
associated with IPF (149, 150), and it is a common finding in IPF lung 
epithelia (138) and peripheral blood mononuclear cells (151). Genetic 
variants in the telomere synthesis enzymes TERT and TERC (144, 
152) have also been implicated in IPF (150, 153–158), and sporadic 
mutations in telomere-supporting shelterin proteins have also been 

Figure 2. Model of the development of vulnerable bronchoalveolar epi-
thelium as a contributing pathway to persistent pulmonary fibrosis. (A) 
In the healthy lung, the bronchoalveolar epithelium consists of proximal 
epithelial cells in the terminal airways (basal cells, ciliated cells, club cells, 
and goblet cells) and alveolar type II (ATII) and type I (ATI) cells in the alve-
oli and minimal if any expression of MUC5B. Identified epithelial progeni-
tor populations, including ITGB4β+/H2-K1hi cells in the conducting airways, 
BASCs at bronchoalveolar ducts in mice, and newly identified TASC, RASC, 
and AT0 cells in the preterminal and terminal respiratory bronchioles in 
humans, nonhuman primates, and ferrets are thought to be quiescent in 
the absence of injury. (B) In the presence of genetic variants (e.g., MUC5B), 
increased expression of MUC5B protein in goblet cells, and other cell 
types that do not typically express MUC5B protein (e.g., ATII cells), causes 
homeostatic ER stress, resulting in a vulnerable state that primes epithe-
lial cell responses to subsequent injury. Repair of the bronchiolar and alve-
olar epithelia (B, left) is governed by epithelial cell/fibroblast/immune cell 
interactions near the site of injury that direct facultative epithelial progen-
itor cell (ATII) proliferation and differentiation into ATI cells and suppress 
fibroblast proliferation/activation. In addition, epithelial progenitor cells 
located at sites distant to the site of injury are activated and migrate to 
the injured alveolus (ITGB4β+/H2-K1hi cells, BASCs) to restore formation of 
the air/blood barrier. However, in the context of repetitive secondary inju-
ries (below B), the persistent and enhanced ER stress induces detrimental 
responses in the vulnerable epithelium, causing epithelial dysfunction 
during injury/repair, as indicated by aberrant epithelial cell differentiation, 
arrested transitional cell states, and activation of aberrant basaloid cells in 
the alveoli. (C) This leads to profibrotic fibroblast and pericyte activation, 
proliferation, and excess extracellular matrix deposition. The consequence 
of respiratory bronchiole dropout in patients with early-stage IPF and the 
role of RASCs, TASCs, and AT0 progenitor populations in homeostatic 
repair versus a persistent fibrotic state has yet to be determined.
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found to be associated with IPF (159–161). Continued replication 
after telomere attrition requires telomere lengthening to prevent 
chromatin erosion (144, 162, 163). Haploinsufficiency of telomere 
maintenance complexes is sufficient to promote intergenerational 
telomere attrition and development of myelofibrosis and pulmonary 
fibrosis in dyskeratosis congenita (151, 164–166).

Epigenetic regulatory mechanisms in IPF epithelia. Emerging tran-
scriptomic data have defined abnormal basaloid cells as a character-
istic attribute of  IPF epithelia (55), and the relatively stereotypical 
transcriptomic features of  this pathogenic basaloid cell population 
implicate cellular memory as a likely contributing mechanism. Tran-
scription-based cellular memory, which arises as a consequence of  
autoregulated transcription factors and positive feedback circuits, is 
a well-described driver of  lineage commitment during normal devel-
opment (167), and these factors are increasingly associated with var-
ious diseases (168, 169). Cellular memory mediated by metastable 
transcription circuits is thus a potential contributor to both normal 
basal cell programming and the misprogramming of  basaloid cells 
in IPF. As an additional, and potentially reinforcing mechanism, 
widespread changes in DNA methylation in whole lung tissue (170) 
and fibroblasts (171) have been associated with IPF. DNA methyl-
ation (172, 173); histone modifications, including methylation or 
acetylation; and other forms of  chromatin remodeling (172, 174, 
175) may play a critical role in ectopic expression of  MUC5B with 
or without the promoter variant risk allele and in further stabilizing 
the aberrant basaloid cell fate. Additional understanding of  how epi-
genetic changes and transcriptional circuits affect progenitor epithe-
lial populations and how this cellular memory contributes both to 
vulnerability and disease progression is needed.

Bronchoalveolar epithelia, honeycomb cysts, 
and fibrosis
Bronchiolization of  the distal airspaces and loss of  small airways 
have been appreciated as features of  the IPF lung for nearly five 
decades (176). Until recently, however, the mechanisms driving 
these cellular and structural changes and their effect on patient 
survival and disease progression remained unclear. Initial work 
determined that bronchiolization and honeycomb cysts were char-
acterized by their remarkable similarity to the airway epithelium 
(11, 177) and that basal cell–related gene signatures from broncho-
alveolar lavage of  patients with IPF predicted significantly worse 
mortality (178). Recent work has begun to elucidate the cellular 
origins underlying bronchiolization and cyst formation, demon-
strating the capacity for aberrant alveolar epithelial differentiation 
following injury to drive cyst formation (179, 180). Separately, it 
has been shown that primary human distal airway epithelial cells 
derived from samples from patients with IPF possess a biophysical-
ly distinct YAP-dependent collective migratory phenotype, distin-
guishing them from their healthy counterparts (181). Ex vivo live 
imaging of  injured murine airways demonstrates a conservation of  
this YAP-dependent migratory program that is likely important in 
bronchiolization and cyst formation (181, 182). Additionally, YAP 
signaling has been shown by multiple groups as a critical regulator 
of  ATII cell proliferation and ATI cell differentiation (182–186).

Ectopic MUC5B expression drives distal lung pathologies. A key, cur-
rently unanswered question is whether, and if  so to what extent, 
ectopic expression of  MUC5B in bronchiolar epithelia of  patients 

with IPF contributes to persistent, progressive fibrosis and to the for-
mation of  honeycomb cysts. Transgenic mice expressing increased 
levels of  Muc5b in the distal airways (ectopic expression under the 
Scgb1a1 promoter) or alveoli (ectopic expression under the Sftpc pro-
moter) fail to spontaneously develop fibrosis or honeycomb cysts 
(29). However, when transgenic Scgb1a1-Muc5b mice are injured 
repetitively with bleomycin, both fibrosis and microcyst formation 
are enhanced and prolonged (29, 187). These findings suggest that 
fibrosis and honeycomb cysts develop in a vulnerable lung (poten-
tially driven by MUC5B ectopic expression) after a repetitive sec-
ondary hit that reprograms a vulnerable epithelium (Figure 2). Cur-
rent findings suggest that the profibrotic effect of  MUC5B ectopic 
expression in distal airway cells on fibroblasts may be indirect, pos-
sibly mediated by exacerbation of  epithelial injury and destruction 
that provides an altered “substrate” or “niche” onto which lung 
fibroblasts migrate, gain resistance to apoptosis, persist, and contin-
ue to express and deposit fibrotic ECM (182). Thus, it will be critical 
to understand how excess MUC5B influences molecular drivers that 
can elicit a profibrotic phenotype from the underlying mesenchyme. 
This includes YAP signaling, which has been shown by multiple 
groups as a critical regulator of  ATII cell proliferation and ATI cell 
differentiation (182–186) and well-known signaling cascades (e.g., 
EGFR/YAP/SRC) and novel pathways (e.g., IL-6 and IL-11) (101, 
181, 182) implicated in disease initiation and progression.

Fibroblast heterogeneity during homeostasis and injury. The alve-
olar walls and septa of  healthy lungs contain resident PDGFRα+ 
alveolar fibroblasts that synthesize components of  the ECM (188) 
and serve as niche cells that support the growth and function of  
ATII cells by secreting instructive factors required for ATII cell sur-
vival and proliferation (e.g., IL-6, FGF-7, Wnt) (189) and transfer 
phospholipid precursors from alveolar capillary endothelial cells to 
ATII cells (190, 191). A smaller number of  PDGFRβ+ pericytes are 
located in alveolar walls and provide trophic support to alveolar 
aerocytes and general capillary endothelial cells (190, 191). In addi-
tion, PDGFRβ+ pericytes and adventitial fibroblasts surround distal 
airways and blood vessels. In the normal adult lung parenchyma, 
contractile α smooth muscle actin–expressing (α-SMA–expressing) 
myofibroblasts are found to extend from conducting airways out to 
alveolar ducts and are known as ductal myofibroblasts (192). These 
spatially distinct fibroblast subsets exhibit overlapping and distinct 
gene expression patterns that collectively contribute to their func-
tion in healthy lungs.

In response to injury and loss of  ATI and ATII cells (36, 193), 
lung fibroblasts are rapidly mobilized and actively contribute to 
lung repair and regeneration. scRNA-sequencing studies in bleo-
mycin-instilled PDGFRα-GFP and COL1A1-GFP reporter and 
lineage-traced mice have shown that PDGFRα+ fibroblasts and 
PDGFRβ+ pericytes/adventitial fibroblasts migrate, proliferate, and 
accumulate in bleomycin- and influenza virus–injured lungs (194–
196) and become reprogrammed to express profibrotic ECM (e.g., 
COL1a1, SPP1, FN1, ELN) and contractile proteins (e.g., α-SMA, 
CNN1, TAGLN) (101, 180, 196, 197). These studies also identified 
novel profibrotic genes and transcription factors that differentiate 
newly identified profibrotic fibroblast subpopulations, including 
CTHRC1, THRC1, RUNX1, and SFPR1 (195, 196). A specific lung 
fibroblast, the alveolar fibroblast, appears to be critical to alveolar 
homeostasis and when stimulated with either IL-1α or TGF-β can 
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lungs, supports fibrotic fibroblasts and transitional basaloid cells and 
promotes continual disruption of  epithelial barrier integrity. It also 
inhibits appropriate epithelial cell differentiation and aberrant fibro-
blast ECM production and organization, contributing to persistent 
and progressive disease (56, 219).

Therapeutic implications
To date, there are two approved therapies for IPF, nintedanib and 
pirfenidone (220, 221), which slow the progressive loss of  lung 
function but are not curative and have side effects that limit their 
efficacy (222). Furthermore, patients continue to decline despite 
these medications and subsequently develop end-stage lung disease 
(223). Thus, it becomes imperative to look beyond typical antifi-
brotic signaling pathways for innovative therapeutic directions.

Novel targets in the clinic and on the horizon. Genetic and nonge-
netic risk factors have identified several mechanisms that appear 
to be critical to the development of  IPF and may help to identify 
patients at earlier disease stages. Currently, these mechanisms focus 
on the respiratory bronchioles and alveolar epithelia and include 
dysregulation of  host defense, cell adhesion, telomere attrition, 
stem cell exhaustion, early cell senescence, and dysfunctional sur-
factant protein biology. This suggests that genetic variants associ-
ated with unique genes converge on specific pathways that disrupt 
terminal respiratory and alveolar epithelial structure and function. 
For example, in those with the gain-of-function MUC5B promoter 
variant, approaches that decrease MUC5B expression could reduce 
the vulnerability of  the lung by improving mucociliary clearance 
and/or ameliorating chronic ER stress. In individuals with telo-
merase mutations, the accelerated rate of  cell senescence could be 
slowed by targeting DNA repair, reducing oxidative stress, or by 
using senolytic agents to selectively induce death of  senescent cells. 
A randomized phase IIa clinical trial for IPF with an anti-αvβ6 inte-
grin monoclonal antibody has recently demonstrated a reduction 
of  TGF-β signaling. The phase IIa INTEGRIS-IPF trial using an 
αvβ6 integrin small-molecule inhibitor slowed the rate of  forced 
vital capacity decline (224, 225). Recent preclinical studies in mice 
have shown that therapeutic targeting of  BCL-2 and its related fam-
ily members, BCL-XL and BCL-W, with the BH3 mimetic drug 
ABT-263 (Navitoclax) reduced the severity of  silica- and bleomy-
cin-induced pulmonary fibrosis (213, 226–228) as well as sclero-
derma-like skin fibrosis in mice (229). Thus, the development of  
fibroblast resistance to apoptosis may prove relevant to persistent 
and progressive lung fibrosis. However, these antiapoptotic path-
ways may also be exploited for targeted elimination of  profibrotic 
fibroblasts and reducing fibrosis in general. The concept of  target-
ing therapy to specific gene variants and disease mechanisms has 
been successful in fields such as rheumatology and oncology and 
would represent an advance in the treatment of  IPF.

Gene editing. Gene editing and gene therapy technologies 
have developed rapidly during the last several decades (230–232). 
Potential treatment targets in IPF include the MUC5B promoter 
or telomere gene variants, which are appealing due to the elevated 
expression of  MUC5B (173) and shortened telomeres (233–236) 
in all individuals with IPF, regardless of  a genetic mutation. Gene 
transfer has been the most frequent approach used to attenuate 
lung fibrosis in rodent models. AAV-based delivery of  telomerase 
(TERT) to ATII cells of  bleomycin-treated TERT-deficient mice 

develop into inflammatory or fibrotic fibroblasts (198). As repair 
continues, some of  these profibrotic fibroblasts undergo apoptosis 
and are cleared, while those remaining (and potentially newly pro-
liferated or migrated fibroblasts) undergo further reprogramming 
to express genes involved in lung development and repair (195). 
Together, the enrichment of  these later pathways support ATII 
proliferation and differentiation into ATI cells, while complemen-
tary angiogenic pathways contribute to the regeneration of  alveolar 
capillary endothelium. Finally, excess ECM is degraded, leading 
to restoration of  lung architecture and function. We have referred 
to this resolution phase, which is initiated by the wave of  fibroblast 
apoptosis, as “homeostatic fibrosis resolution” (195).

Reciprocal interactions between fibroblasts and epithelial cells 
within the alveolar niche are critical for homeostasis of  the lung 
parenchyma. Seminal coculture studies have demonstrated that pri-
mary rat, mouse, and human ATII cells from nondiseased donor 
lungs suppress fibroblast proliferation via an autocrine signaling 
loop, wherein IL-1α derived from ATII cells activates COX2-depen-
dent prostaglandin E2 (PGE2) secretion from fibroblasts that inhib-
its their proliferation (199–202). PGE2 synthesis is reduced in bron-
choalveolar lavage fluid from patients with IPF (203), suggesting 
that perturbation of  this ATII fibroblast signaling loop, after ATII 
cell injury and/or apoptosis, contributes to exuberant fibroblast 
proliferation in the fibrotic lung. In addition, injured ATII cells 
from IPF lungs show increased expression of  CTGF (200), TGF-β 
(204–206), and Shh (207–209), all of  which stimulate fibroblast 
proliferation and induce collagen secretion and α-SMA expression. 
Although critical crosstalk between fibroblast subpopulations and 
distal basal cells has been demonstrated in organoid cultures (50), 
further studies with the newly identified progenitor epithelial cell 
populations in the distal airways (AT0, TASC, and RASC) in vivo 
remain to be conducted.

Fibroblast heterogeneity during fibrosis. A central pathologic feature 
of  IPF and in fibrotic mice is the persistence of  nonproliferating, 
apoptosis-resistant, and often senescent α-SMA+ and ECM-produc-
ing profibrotic fibroblasts (Figure 2) (210–214). These arise though 
multiple mechanisms, including increased resistance to apoptotic 
signals, and lead to a persistently activated profibrotic fibroblast pop-
ulation that promotes disease progression through unabated aberrant 
ECM production and eventual senescence (215) (Figure 2). Recent 
studies in mouse fibrosis models and human IPF tissue demonstrate 
an interaction between the development and persistence of  senes-
cent KRT8+ transitional basaloid epithelial cells and profibrotic 
fibroblasts (56, 61, 216). Often occurring at the edge of  the fibroblas-
tic foci, these cell populations are thought to represent active areas 
of  fibrotic destruction in the lung (217). Fibroblastic foci contain dis-
crete areas of  fibroblasts, myofibroblasts, and newly formed colla-
gen in humans. They have been shown to dissociate capillary vessels 
from the alveolar epithelium, disrupt normal basement membranes, 
and induce a transitional epithelial cell phenotype that lines the foci 
and results in the loss of  normal alveolar septa (218). ECM in the 
fibrotic lung is stiffer and results in generation of  greater mechano-
transductive forces in fibroblasts and remodeled and aberrant epi-
thelial cells. This is driven by the well-described positive feedback 
amplification loop involving expression and activation of  TGF-β. 
This self-perpetuating circuit, which is reminiscent of  the interac-
tions described above between fibroblasts and ATII cells in healthy 
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progressive lung fibrosis.”. While defining the temporal relation-
ship pathologically among vulnerability, early disease, and per-
sistent and progressive lung fibrosis is critical, these pathological 
stages of  lung fibrosis will best be understood within the context 
of  etiologic drivers. These dimensions of  IPF, etiology and stage, 
should highlight the key pathologic pathways and address many of  
the unmet needs in this complex disease, including identifying sites 
of  lung vulnerability, defining mechanisms that adversely disrupt 
epithelial function and activate fibroblasts and lead to lung remod-
eling, and characterization of  high-priority targets for intervention. 
For example, genetic and nongenetic drivers of  IPF have identified 
bronchiolar and alveolar epithelia as initial targets of  injury.

Mechanisms through which epithelial progenitor cell popula-
tions, especially in the distal airspace, are injured or are unable to 
mediate repair need further investigation. New cell types/states are 
continuously emerging through single-cell and spatial transcriptom-
ics that have distinct but often overlapping identities and functions. 
Whether similar antiproliferative and fibroblast activation signal-
ing pathways are operative in newly identified progenitor epithelial 
cell populations in the distal airways (AT0, TASC, and RASC) of  
human lung remains to be determined. Thus, the identity, ontoge-
ny, transcriptional programming, and temporal-spatial relationship 
of  epithelial progenitors to lung fibrosis represent an area of  inves-
tigation with clear relevance to injury, repair, and fibroproliferation.

Understanding the consequences of  genetic risk variants for 
cell differentiation patterns of  progenitors in vivo is imperative. A 
key, currently unanswered question is whether, and, if  so, to what 
extent, ectopic expression of  MUC5B in bronchiolar epithelia of  
patients with IPF contributes to persistent, progressive fibrosis and 
to the formation of  honeycomb cysts. Understanding the intricate 
interplay between adhesion molecules and signaling pathways will 
be essential for developing targeted therapies to restore cell-cell 
and cell-substrate adhesion and halt the progression of  pulmonary 
fibrosis and prevent lung remodeling.

Finally, applying this new knowledge to early recognition of  
disease before the onset of  irreversible and progressive lung fibrosis 
and developing novel therapeutics directed at etiologic and tem-
poral drivers of  lung fibrosis will ultimately transform the care of  
patients with IPF from palliative to curative.
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increased telomere length, proliferation, and reduced inflammation 
and fibrosis (236). Downregulation of  the proinflammatory cyto-
kine milieu, affecting IL-6, IL-10, IL-17A, and IL-33, also reduced 
lung fibrosis (237–239). Other genes, many related to vascular 
homeostasis, delivered to injured lungs also reduced inflamma-
tion, fibrosis, and apoptosis (240–245). In humans, both viral and 
nonviral delivery methods have been advanced for lung targeting 
(232, 246, 247). However, all current approaches are limited by the 
complex human lung structure with multiple barriers to delivery, 
such as mucous, macrophage-mediated phagocytosis, and epitheli-
al barrier function (248, 249). Cell-based approaches with genetic 
reprogramming and reengraftment may be an alternative approach 
for IPF gene therapy (250, 251); however, these approaches may be 
limited by low engraftment rates, likely due to lack of  appropriate 
niche space in lungs with established fibrosis and off-target effects 
of  systemic gene therapy (252–254).

Epigenetic approaches to IPF therapies. Epigenetic reprogramming 
of  cells can provide reliable, long-lasting therapeutic effects in vivo 
(255). First-generation FDA-approved epigenetic therapeutics, such 
as azacitidine DNA methyltransferase inhibitors (i.e., Decitabine, 
Vidaza) and histone modifying drugs, have proven effective in treat-
ing diseases such as lung cancer (256, 257) but are broadly acting 
with profound side effects. More recently developed locus-specific 
epigenetic approaches to genome editing technologies hold promise 
in development of  more effective and long-lasting epigenetic thera-
peutics (231). Several studies demonstrate that DNA methylation of  
the MUC5B promoter variant is associated with MUC5B expression 
(172, 173). Histone modifications, such as acetylation and chro-
matin remodeling, can also regulate MUC5B expression (172, 174, 
175). Thus, modifications of  epigenetic marks may prove beneficial 
in regulating MUC5B expression or other IPF risk genes, especially 
those associated with a gain or loss of  function (258–262). Specific 
approaches to targeting the epigenome (255, 263–268) rely on mod-
ifying proteins to bind specific sequences in the genome by using 
CRISPR-deactivated Cas9 (dCas9) and related technologies. How-
ever, the main barriers for epigenetic reprogramming to become 
a therapeutic target for IPF remain efficiency of  in vivo construct 
delivery into cell types of  interest and the risk of  side effects and 
nonspecific activity (252, 269, 270). Antibody drug conjugates, in 
which bioactive payloads can be delivered to specific cell types, have 
shown promise in oncology for reducing off-target effects (271). 
Epigenetic and other targeted cellular reprogramming efforts in IPF 
may be facilitated by this rapidly improving technology.

The path ahead
The complex etiology and biology of  IPF creates challenges and 
opportunities for the path forward. Delineating pathways that lead 
to host vulnerability, injury, or repair will identify those respons-
es that initiate disease versus those that result in persistent and  
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