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Abstract
Purpose  The goal of glioma surgery is maximal tumor resection associated with minimal post-operative morbidity. Diffu-
sion tensor imaging-tractography/fiber tracking (DTI-FT) is a valuable white-matter (WM) visualization tool for diagnosis 
and surgical planning. Still, it assumes a descriptive role since the main DTI metrics and parameters showed several limita-
tions in clinical use. New applications and quantitative measurements were recently applied to describe WM architecture that 
surround the tumor area. The brain adjacent tumor area (BAT) is defined as the region adjacent to the gross tumor volume, 
which contains signal abnormalities on T2-weighted or FLAIR sequences. The DTI-FT analysis of the BAT can be adopted 
as predictive values and a guide for safe tumor resection.
Methods  This is an observational prospective study on an extensive series of glioma patients who performed magnetic 
resonance imaging (MRI) with pre-operative DTI-FT analyzed on the BAT by two different software. We examined DTI 
parameters of Fractional anisotropy (FA mean, min-max), Mean diffusivity (MD), and the shape-metric “tract irregularity” 
(TI) grade, comparing it with the surgical series’ clinical, radiological, and outcome data.
Results  The population consisted of 118 patients, with a mean age of 60.6 years. 82 patients suffering from high-grade 
gliomas (69.5%), and 36 from low-grade gliomas (30.5%). A significant inverse relationship exists between the FA mean 
value and grading (p = 0.001). The relationship appears directly proportional regarding MD values (p = 0.003) and TI values 
(p = 0.005). FA mean and MD values are susceptible to significant variations with tumor and edema volume (p = 0.05). TI 
showed an independent relationship with grading regardless of tumor radiological features and dimensions, with a direct 
relationship with grading, ki67% (p = 0,05), PFS (p < 0.001), and EOR (p < 0.01).
Conclusion  FA, MD, and TI are useful predictive measures of the clinical behavior of glioma, and TI could be helpful for 
tumor grading identification and surgical planning.
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Abbreviations
CNS	� Central nervous system
BAT	� Brain adjacent Tumor area
WM	� White matter

WHO	� World Health Organization
GB	� Glioblastoma
IDH	� Isocitrate dehydrogenase
LGG	� Low grade glioma
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HGG	� High grade gliomas
ATRX	� Histone chaperoneαthalassemia mental retar-

dation X-linked
OS	� Overall survival
EOR	� Extent of resection
5-ALA	� 5-aminolaevulinic acid
WM	� White matter
MRI	� Magnetic resonance imaging
FLAIR	� Fluid attenuated inversion recovery
DWI	� Diffusion weighted imaging
DTI	� Diffusion tensor imaging
DTI-FT	� DTI Fiber tracking
CST	� Cortico spinal tract
GQI	� Generalized q-sampling imaging
ROI	� Region of interest
KPS	� Karnofsky performance scale
GTR	� Gross total resection
fMRI	� Functional MRI
FA	� Fractional anisotropy
MD	� Mean diffusivity
TI	� Tract irregularity
PFS	� Progression free survival
MPRAGE	� Magnetization prepared rapid acquisition 

gradient echo

Introduction

Gliomas are the most common primary neoplasms of the 
central nervous system (CNS) in adults [1, 2], and their 
prognosis is influenced by the molecular profile [3], extent 
of surgical resection (EOR) [4] age [5], and performance 
status [6]. Realizing the true benefit of neurosurgical resec-
tion requires a balance between surgical cytoreduction and 
preservation of neurological function in the concept of 
“neuro-oncological balance” [1].

Magnetic resonance imaging (MRI) with diffusion ten-
sor imaging-fiber tracking (DTI-FT) is becoming a standard 
imaging method to achieve the best surgical planning [7]. 
DTI-FT is used to visualize specific fiber bundles in the 
surroundings of brain tumors [8]. Gliomas may alter sur-
rounding white matter (WM) tracts depending on the grad-
ing, surgical site, tumor, and edema volume [7–9]. For these 
reasons, DTI-FT assumes a descriptive role by lacking vali-
dated quantitative data and values useful for diagnosis and 
preoperative planning [10].

Recent studies [11, 12] diverted their attention to DTI-FT 
analysis to the periphery of the glioma, claiming that the 
brain adjacent tumor (BAT) area contained a considerable 
amount of altered fiber tracts with less infiltration and dis-
ruption. The BAT is currently defined as the region adjacent 

to the gross tumor volume, which contains signal abnormal-
ities on T2-weighted or FLAIR sequences [12].

In the BAT the main DTI metrics (fractional anisotropy, 
FA, and mean diffusivity, MD) are determined by a balance 
between factors that increase the degree of directionality of 
water diffusion (the “anisotropy”), such as high cellularity 
[13] and/or vascularization [14], and factors that decrease 
the degree of directionality, such as fiber destruction or infil-
tration [11]. Further, new quantitative measurements defined 
as “shape descriptors” were applied to investigate the shape 
characteristics of the human association pathways. Yeh FC 
[15] introduced a valuable quantification of the shape met-
rics and, specifically, the descriptor called “tract irregular-
ity” (TI), defined as a numerical ratio between the surface 
area, diameter, and length of specific fibers (Fig.  1) that 
could offer a new option for WM analysis [15]. The diffu-
sion metrics measured in the BAT promise to make DTI-FT 
a grading-predictive tool and a more precise aid in guiding 
glioma resection.

The objective of the present study is to test the validity 
of the main quantitative parameters of DTI-FT to establish 
the grading and behavior of a series of glioma patients. We 
compare glioma patients’ clinical, morphological, molecu-
lar, and outcome parameters to establish the predictive val-
ues of FA and MD with the combined use of the TI shape 
descriptor, measured in the BAT.

Methods

This prospective observational study was performed on a 
surgical series of glioma patients treated in three neurosurgi-
cal units. Consensus about diagnosis, treatment, and related 
information was obtained under written informed consent 
approved by our Institution’s Principal Institutional Review 
Board (IRB: 6961, prot. 0296/2023).

This study adhérés to PROBE 2023 guidelines for report-
ing observational studies.

Data availability

The original dataset is available from the corresponding 
author upon reasonable request.

Population study

All subjects with radiological diagnosis suggestive of glioma 
and candidates for surgery were enrolled from March 2018 
to December 2022, with the following inclusion criteria:
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	● Adult patients with unilateral surgical suspected glioma 
with no history of inflammatory or degenerative brain 
disease candidate for surgery;

	● Patients with histological diagnosis of glioma, follow-
ing the World Health Organization (WHO) 2021 [16] 
classification of brain tumors with a minimum of 12 
months of follow-up;

	● Performance status measured using Karnofsky perfor-
mance scale (KPS) > 70;

	● Patients who performed MRI with DTI-FT study within 
7 days before surgery;

	● All the patients included in the study were newly diag-
nosed with glioma at their first surgery.

We excluded patients who did not agree to or could not 
undergo the functional MRI examination with DTI-FT or for 
whom the radiological examination could not be performed 
with the volumetric standards required for the analysis.

Patient selection

We recorded clinical data such as age, gender, and clinical 
onset. Radiological information such as tumor site (iden-
tifying major lobe involvement, deep-seated or superficial 
location), tumor and peritumoral brain edema (PBE) vol-
ume, edema-tumor ratio, radiological and surgical morphol-
ogy (distinguished between solid, cystic, or necrotic lesion) 
are reported.

Tumor grading are recorded distinguishing between high-
grade (grade 4, isocitrate dehydrogenase (IDH) wild-type, 
HGG) and low-grade (grade less than 4 and IDH-mutated, 
LGG) tumors. Immunohistochemistry was performed, 
reporting ki-67%, EGFR expression status, MGMT, p53, 
ATRX and IDH. Surgical methods and the use of 5-ALA 
for eloquently and non-eloquently located tumors were pre-
viously and extensively reported elsewhere [3]. The extent 

of resection (EOR) was assessed by an experienced neu-
roradiologist in postoperative MRI within 48 h of surgery. 
Progression-free survival (PFS) and Overall survival (OS) 
were recorded in months.

Performance status was expressed using the KPS scale: 
such parameter was considered, as previously observed [3], 
as associated with OS. Specifically, it was recorded in four 
different moments: (1) Before surgery, (2) At 30 days after 
surgery (3) At the end of the adjuvant treatment, (4) At the 
last follow-up evaluation.

Image acquisition

All the patients underwent a brain MRI scan, including a 
high field 3 Tesla volumetric study within 7 days before sur-
gery with the following volumetric sequences: T2w, FLAIR, 
isotropic volumetric T1-weighted magnetization-prepared 
rapid acquisition gradient echo (MPRAGE) before and after 
intravenous administration of paramagnetic contrast agent 
and DTI with 3D tractography fiber tracking.

Volume of the contrast-enhancing lesion was calcu-
lated by drawing a region of interest (ROI) in a Volumetric 
enhancing post-contrast study weighted in T1 (a multi-voxel 
study), conforming to the margins of the contrast-enhancing 
lesion, using the free-hand assisted tool with software Horos 
(LGPL license athttps://horosproject.org v3.3.6, Annapolis, 
MD USA) [17, 18]. PBE volume was calculated by draw-
ing a ROI conforming to the hyperintense signal borders on 
the T2-weighted and Fluid Attenuated Inversion Recovery 
(FLAIR) 3D sequences and subtracting the previously cal-
culated tumor volume. All volumes were measured in cm3 
before anti-edematous therapy.

The relationship between tumor and brain edema was 
reported as the numerical ratio between the two values 
according to the formula:

Fig. 1  Shape analysis of a bundle described by Yeh FC [11]: (a) The 
length metrics include length, span, diameter, and radius of the inner-
vation region. The length measures the length of the bundle trajectory, 
whereas the span measures the absolute distance between two ends of 
the bundle. The diameter estimates the average bundle diameter. The 

radius uses a circular model to estimate the coverage of the innervation 
regions. (b) The area metrics include total track surface area and area 
of the two end surfaces. (c) The volume metrics include total volume 
and trunk volume
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variables were made with the Chi-squared test. Compari-
sons between nominal and quantitative variables were made 
with t-students. The EOR means were compared with One-
way and Multivariate ANOVA analysis, Contrast analysis, 
and Post-Hoc Tests. Continuous variable correlations have 
been investigated with Pearson’s Bivariate correlation. The 
threshold of statistical significance was considered p < 0.05.

Results

Population study

196 patients underwent surgery for radiologically suspected 
intracranial gliomas. Applying inclusion and exclusion 
criteria, the final collection includes 118 patients (Fig. 2). 
The population consisted of 78 males (66.1%) and 40 
females (33.9%), with a mean age of 60.6 years (min = 18, 
max = 80). 82 patients were found to have HGGs (WHO 4, 
69.5%), and 36 patients had LGGs (WHO 1,2,3, 30.5%). All 
details on patient demographics, clinics and group analysis 
are summarized in Table 1.

Radiological and clinical outcome

The mean tumor volume was 29.1 cm3 with no signifi-
cant differences regarding grading (26.9 cm3 in HGGs, 
SD = 11.45 and 34.1 cm3 in LGGs, SD = 21.61, respectively, 
p = 0.22). The mean volume of PBE was 26.05 cm3, with a 
significant difference between HGG and LGG groups (28.8 
cm3 SD = 2.42 versus 14.9 cm3 SD = 14.39, respectively, 
p = 0.05). There were no significant differences in tumor-
edema ratio (310 versus 180, p = 0.25). The mean percent-
age of ki67 is 27%, with a significant difference between 
grading (35% in HGGs and 7.5% in LGGs, p < 0.001, 
respectively). EGFR is expressed in 18% of the population, 
and p53 was over-expressed in 25 patients (21.2%), both in 
the HGGs group. From the clinical outcome point of view, 
patients had a mean preoperative KPS of 85 with no sig-
nificant difference in grading (85 for HGGs versus 90 for 
LGGs, p = 0.12). The mean KPS had significant differences 
between the two groups at postoperative, post-adjuvant 
therapy and at the last follow-up (65 versus 90), with HGGs 
presenting consistently lower values.

Analysis of DTI metrics

We examined the values of FAmean, FA max, FA min, MD, 
and TI grade in the BAT, comparing it with the surgical 
series’ clinical, radiological, and outcome parameters.

Tumor V olume (cm3) + Edema V olume (cm3))

Tumor V olume(cm3

= Edema/tumor ratio

DTI was acquired using a single-shot echo-planar imag-
ing diffusion tensor sequences with equal settings (TR/
TE = 7010/102 ms; FOV = 222 × 222 mm2; matrix 
112 × 112; 50 slices without gap; slice thickness 2.7  mm; 
32 non-collinear directions, b- value = 1000  s/mm2) using 
a dedicated head coil. Reconstruction with FT required for 
each image set at least one acquisition with 9 scalar volumes.

Tractography

For DTI-FT the open-source validated [19] software DSI 
studio (https://dsi-studio.labsolver.org/) and BrainLab iPlan 
software (BrainLAB Inc., Feldkirchen, Germany) have 
been used. For the definition and evaluation of ROI feasibil-
ity metric analysis, we used these two tractography appli-
cations of different complexity to ensure cross-software 
validity.

MRI objects consisted of three volumes, manually con-
toured (slice by slice) with a ROI positioned manually. Two 
authors (D.A. and A.B.) who were blinded to any clinical 
or demographic patient information except the images mea-
sured the ROI volumes.

The seed ROI was placed outlining with the tool “free-
hand drawing” region to be drawn freehand” the edges of 
the contrast-enhancing signal around the tumor. We defined 
the ROIs margin based upon the tracts’ obligatory pathways, 
derived from literature [20], own experiences in peritumoral 
tractography and following the limits of the BAT area.

Following the current clinical practice [11], the BAT was 
defined as the region adjacent to the gross tumor volume, 
which contains signal abnormalities on T2-weighted and 
FLAIR sequences. The minimum streamline length was set 
to 30 mm, and the maximum was set to 250 mm. The FT 
was filtered by the ROI at the evaluation. Unharmed and 
dislocated tracts were categorized as “unaffected”. Then, 
the FA mean, FA max, FA min, MD, and TI values within 
the volumes were extracted. The cutoff value for the FA to 
avoids false-positive and false-negative was placed specifi-
cally for the BAT at 0.05. The deviation for each value was 
less than 0.006, drawn by two authors on the two different 
software to ensure cross-validity.

Statistical analysis

Statistics were performed using SPSS Statistics 25 (IBM, 
Armonk, NY, USA). Normality distribution was tested 
after D’Agostino-Pearson. Comparisons between nominal 
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Specific analysis for TI parameter

TI showed an independent relationship with the degree of 
aggressiveness of the tumor regardless of tumor radiologi-
cal features and dimensions, with a direct relationship with 
grading, ki67% (p = 0,05), and PFS (p < 0.001, Fig. 3D).

In LGGs, there is a significant relationship between TI 
value and EOR, with a higher percentage of GTR for higher 
TI values (Mean 11.2 SD = 1.93 for GTR versus Mean 8.9 
SD = 2.13 for NTR, p < 0.01). This is probably because high 
TI values correspond to areas of altered WM texture and 
density capable of guiding the surgeon into marginal resec-
tion. WM enveloping the tumor and distorting surrounding 
bundles in terms of evident high TI values also has a signifi-
cant clinical impact on tumor onset with seizures (patients 
with clinical onset of seizure have TI mean 14.46 compared 
to focal onset or incidental diagnosis with TI mean = 7.98).

We identified an optimal cutoff value for TI of 10, sug-
gesting a higher risk of reduced PFS and KPS in patients 
with a score values > 9.

To evaluate whether the TI value ≥10 is an independent 
prognosis-related factor, we conducted an independent 
prognostic analysis for the performance status and PFS 
for the two groups (group TI < 10 and group TI≥10). The 

We identified that there is a significant inverse relation-
ship between the FAmean value and grading (FA mean 0.313, 
SD = 0.11 for LGGs versus FA mean 0.218, SD = 0.007 for 
HGGs, p = 0.001), showing that a low-grade lesion is likely 
to result in more significant distortion/anisotropy of WM 
fibers than the aggressive HGGs (Fig. 3A).

In contrast, the relationship appears to be directly pro-
portional regarding MD values (0.875 in LGGs, SD = 0.14 
versus 1.767 in HGGs, SD = 0.71, p = 0.003, Fig. 3B) and 
TI values (8.44 in LGGs SD = 2.5 versus 11.14 in HGGs, 
SD = 2.2, p = 0.005, Fig. 3C).

In a multivariate analysis, FA mean, MD, and TI values 
are not influenced by the surgical site and tumor characteris-
tics such as hemorrhage, necrosis, and cystic aspect (p = 1).

FA mean and MD values are susceptible to significant 
variations concerning tumor size and volume. Tumor vol-
ume correlate linearly with the value of FA (Pearson cor-
relation= -0.360, p = 0.01). Edema volume correlate with 
the FAmean value (Pearson correlation = -0.351, p = 0.05) 
and MD value (Pearson correlation = 0.063, p = 0.05). In 
this evaluation, FA mean and MD values correlate with each 
other in a significant proportional manner (Pearson correla-
tion=-0.516, p = 0.02).

Fig. 2  Flow-chart of the applica-
tion of inclusion and exclusion 
criteria
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AUC for KPS after RT (or at 6 months clinical evaluation 
for LGG without post-operative RT (95% CI, 0.4– 0.78), 
0.583 (p = 0.03, DeLong’s test) for KPS at the last evalua-
tion (95% CI, 0.44– 0.76), 0.541 (p < 0.001, DeLong’s test) 
and PFS (95% CI, 0.37– 0.709 p < 0.01, Fig. 4C).

Furthermore, performing a binomial analysis for the 
achievement of GTR between the two groups, we observed 
that in cases where total tumor resection was achieved, the 
TI value measured in the BAT more frequently showed a 
TI value ≥10. This difference was significant (Pearson chi-
square p = 0.048) and could be dependent on greater tumor 
aggressiveness (with a high correlation with the presence of 
intratumoral necrosis, (Fig. 4D).

prognostic analysis used univariate and multivariate Cox 
regressions.

The univariate prognostic analysis showed that the value 
of TI with threshold 10 was an independent factor affecting 
the prognosis (p < 0.001). The multivariate prognostic anal-
ysis showed that the TI≥10 (p = 0.02), EOR (p < 0.001) and 
tumor grading (p = 0.04) were independent factors affecting 
the prognosis. In the TI≥10 group of patients, both univari-
ate and multivariate prognostic analysis showed that the risk 
score was an independent factor affecting the PFS and KPS 
after surgery (Fig. 4A and B, p < 0.05). In the model values 
we obtained a cross-validated area under curve (AUC) of 
0.31, CI 95% (p = 0.03, DeLong’s test) and single-validation 

Table 1  Population study of the main clinical, surgical and radiological parameters evaluated for the study and analysis between patients diagnosed 
with high-grade glioma (HGG) and low-grade gliomas (LGG)

Total patients (118) High-grade (82) Low-grade (36) P-value
Gender M 78 66.1% 58 18

F 40 33.9% 24 16
Age Mean 60.6 63.5 54 1

Min-Max 18–80
Lobe involvement Frontal 68 57.6% 46 20 1

Temporal 38 32.2% 30 8
Parietal 30 25.4% 20 8
Occipital 0 0% 0 0

Location Deep/periventricular 50 42.4% 38 12 0.9
Superficial/convexity 68 57.6% 44 24 0.77

Morphology Solid 67 56.7% 40 30 0.06
Cystic 35 29.6% 28 6 1
Necrotic 16 13.6% 14 0

Hemorragic 8 6.8%
Clinical debut Focal deficit 37 31.4% 26 8

Seizure 37 31.4% 28 17
Cognitive deficit 35 29.7% 8 28
Incidental 9 7.6% 28 8

Tumor volume Mean (mm3) 29.1 26.9 34.1 0.22
Edema volume Mean (mm3) 26.05 28.8 14.9 0.05
Tumor-edema ratio Mean 1459 310 180 0.25
Extent of resection GTR 53 44.9% 42 16 0.02
IDH-mutated 37 31.4%
ki67% Mean 27 35 7.5 < 0.01
EGFR expression 18 15.3%
P53 expression 25 21.2%
KPS (Mean) Pre-operative 85 85 90 0.12

Post-operative 80 80 90 0.03
Post-RT 80 80 90 0.02
Follow-up 65 65 90 < 0.01

PFS (Mean) 20 8 26 < 0.01
OS (Mean) 27 15 48 < 0.01
FA Mean 0.248 0.218 0.313 0.01

Min 0.1 0.1 0.12 0.6
Max 0.53 0.51 0.53 0.6

MD 1.52 1.12 0.87 0.05
TI 10.41 11.14 8.44 0.05
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Fig. 4  Q4

 

Fig. 3  Q3
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is linked to a greater heterogeneity of solid parts within the 
former (Fig. 5). Considering that a FA value of 0 represents 
completely unrestricted fiber diffusion, and a value of 1 sig-
nifies entirely directed diffusion in a single direction, the 
inverse relationship between the FA mean value and grad-
ing indicates that LGGs will likely lead to higher WM fiber 
anisotropy than HGGs [25] also in the BAT. In HGG, though 
there was the destruction of WM fibers causing the decrease 
of FA compared with normal-appearing WM, its value did 
not decrease to extremely low because the increase in cell 
density and vascularity gave directionality to the water dif-
fusion in extracellular space, resulting in compensation of 
decreased FA (thus eliminating the possibility of obtaining 
a false negative response); on the contrary in LGGs, cells 
were loosely and randomly arranged in a fibrillary matrix, 
where water diffused almost freely in all direction thus lead-
ing to the significant increase of FA. Besides, increased MD 
would be correspondingly observed due to the increased 
extracellular spaces and decreased cellularity [26].

The main reliability problem of the DTI metric statistical 
descriptors [26] is that the extent of fiber density, direction-
ality, and anisotropy is greatly affected by several variables, 
including tumor volume, PBE, and the tumor site location 
[27]. We show that glioma size and PBE could influence 
FA and MD values, and we confirm, in part, the results of 
the study by Kinoshita et al. [28] that reported an appar-
ent diffusion coefficient in regions of tumor infiltration 
primarily affected these variables. Research on the combi-
nation of DTI and MR spectroscopy suggested that FA was 

Discussion

This study represents the first prospective clinical trial to 
track the treatment progress of glioma patients and assess 
the predictive significance of DTI measurements taken 
around the tumor. Our findings indicate that the mean FA 
value in the BAT of HGGs tends to decrease, while the MD 
value tends to rise. Additionally, we observed an inverse 
association between the mean FA value and grading. Further 
the new metric TI demonstrated an indipendent relationship 
with grading, ki67%, EOR, and PFS.

Histologically, it is known that tumor cell density 
decreases up to several centimeters from the macroscopic 
tumor volume [20, 21], and previous analyses [22] have 
shown that high fiber density values are inversely correlated 
with tumor cell number and tumor infiltration [23].

BAT stands for the area within the brain that is occu-
pied by WM structures, and it is near the location of brain 
tumors. Typically, the fibers that cross this region are not 
part of the well-known and eloquent bundles that are fre-
quently displaced or damaged by tumors. As a result, the 
values of anisotropy and diffusivity in BAT can have high 
variability, and it may be challenging to interpret its graphi-
cal representation [23, 24].

We identified that the FA mean value tends to decrease in 
the BAT of HGGs (without ever reaching value = 0) while 
the value of MD tends to increase. These results confirm 
hypotheses [11, 24] that the FA mean tends to be signifi-
cantly higher in the LGG than in the HGG, supposing this 

Fig. 5  The illustration presents 
a schematic representation 
of the various ways in which 
glioma grading can distort the 
white matter (WM) of the brain 
adjacent tumor area (BAT), and 
how fractional anisotropy (FA), 
mean diffusivity (MD), and 
tumor intensity (TI) values can 
provide a quantitative definition. 
Our hypothesis suggests that the 
growth of a low-grade glioma 
(LGG) causes more significant 
distortion of WM fibers than the 
growth of a high-grade glioma 
(HGG). This can be demon-
strated by an inverse relationship 
between the mean FA value and 
the grading. Additionally, an 
increase in MD can be attrib-
uted to an increase in extracel-
lular spaces and the release of 
cellularity
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a threshold of 10), more patients in our series achieved a 
GTR. This suggests that areas around the lesion with high 
WM irregularity are more likely to be appreciated as mac-
roscopically altered by the surgeon, who is more likely to 
proceed with resection. A high TI value corresponds to areas 
of altered WM consistency that favor the surgeon to pro-
vide a more extensive excision, thus obtaining GTR results 
more frequently. Furthermore, TI values correlate inversely 
with PFS, suggesting that it could be an indirect measure 
of microscopic tumor infiltration [31–33] (Fig. 6). In addi-
tion, the TI values exhibit an inverse relationship with PFS, 
which indicates that they may serve as an indirect measure 
of microscopic tumor infiltration. Although this is currently 
a preliminary assessment, the TI parameter may potentially 
be utilized as an intra-operative adjuvant marker in the 
future.

DTI-based functional neuronavigation could help plan-
ning aggressive resections of DTI-FT-defined abnormalities 
[34] and offering precise intraoperative imaging guidance to 

uncorrelated and even contradictorily higher in LGGs [8]. 
At the same time, ADC value correlated significantly with 
histologic grading [28], and lower ADC indicated HGGs, 
concluding that DTI may not be helpful for preoperative 
differentiation precisely because of the presence of variable 
PBE volume [24, 29, 30].

This has led some researchers to detect other metrics that 
improve the study of tumor boundaries and infiltration [31]. 
With the shape metrics, Yeh FC [15] introduced an inter-
esting quantification of WM tracts around a ROI to better 
investigate the shape characteristics of the human associa-
tion pathways, allowing a deeper understanding of the fibers 
distortion in relation to tumor and edema volumes [7].

Specifically, the TI value could be helpful for tumor grad-
ing and surgical planning [15]. TI demonstrated an indepen-
dent relationship with the degree of aggressiveness of the 
tumor regardless of radiological features and dimensions, 
also showing a relationship with grading, ki67%, EOR, 
and PFS. It is remarkable that at higher TI values (with 

Fig. 6  We present an illustrative 
case of a 57-year-old patient 
treated surgically with total 
excision of a right frontal glio-
blastoma (A) who experienced 
disease recurrence seven months 
after diagnosis (B). In a retro-
spective analysis of pre-operative 
DTI, we note low mean values of 
FA (mean 0.04), high mean val-
ues of MD (mean 0.45), and TI 
(mean 7.022) around the tumor 
(C). If we mark the areas of high-
est expression of TI (green areas), 
we observe that they are located 
right at the highest growth of 
recurrence and where the WM-
fibers are most irregular (D)
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