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Artificial intelligence-driven rational design
of ionizable lipids for mRNA delivery

Wei Wang 1,2,6, Kepan Chen 3,4,6, Ting Jiang4,5,6, Yiyang Wu1,2,6, Zheng Wu1,2,
Hang Ying4,5, Hang Yu4,5, Jing Lu4,5, Jinzhong Lin 3,4 & DefangOuyang 1,2

Lipid nanoparticles (LNPs) have proven effective in mRNA delivery, as evi-
denced by COVID-19 vaccines. Its key ingredient, ionizable lipids, is tradi-
tionally optimized by inefficient and costly experimental screening. This study
leverages artificial intelligence (AI) and virtual screening to facilitate the
rational design of ionizable lipids by predicting two key properties of LNPs,
apparent pKa and mRNA delivery efficiency. Nearly 20 million ionizable lipids
were evaluated through two iterations of AI-driven generation and screening,
yielding three and six new molecules, respectively. In mouse test validation,
one lipid from the initial iteration, featuring a benzene ring, demonstrated
performance comparable to the control DLin-MC3-DMA (MC3). Notably, all six
lipids from the second iteration equaled or outperformed MC3, with one
exhibiting efficacy akin to a superior control lipid SM-102. Furthermore, the AI
model is interpretable in structure-activity relationships.

The success of mRNA vaccines against COVID-191,2 has firmly estab-
lished lipid nanoparticles (LNPs) as the foremost method for mRNA
delivery. Additionally, the growing adoption of LNPs as a delivery
system for potential mRNA therapies targeting diverse infectious dis-
eases, cancers, and genetic disorders3,4 further underscores its pro-
mising potential. In the late 1990s, it was found that the addition of
positively charged lipids to liposomes significantly enhanced their
efficacy in delivering nucleic acids, resulting in LNPs. These positively
charged lipids have a strong propensity to interact with the negatively
charged phosphoric acid backbones of nucleic acids5,6. Subsequently,
various analogous lipids, either permanently charged (known as
cationic lipids) or conditionally charged (referred to as ionizable
lipids), were designed and gradually assumed amore significant role in
LNP formulations. Over time, the usage of ionizable lipids has
dominated7–10 due to their desirable safety and pharmacokinetic
characteristics5,11.

A typical LNP formulation generally is composed of four types of
lipids: ionizable lipids, helper lipids, cholesterol, and polyethylene
glycol (PEG) lipids3. At the heart of LNPs lie the ionizable lipids, which
play a pivotal role. These lipids possess positively chargeable head

groupswith amine functionalities, capable of protonation under acidic
conditions due to their distinct apparent pKa (often around 6.5 when
formulated in LNPs)8,12. The positively charged ionizable lipids serve
multiple purposes: entrapping mRNA during LNP formation and
interacting with anionic endosomal membranes, thereby facilitating
mRNA release from endosomes into the cytoplasm9. Once within the
neutral environment of the bloodstream, ionizable lipids are dis-
charged, preventing rapid clearance and extending systemic
circulation13,14. Moreover, the chemical structures of ionizable lipids
have been observed to impact the overall mRNA expression and the
distribution of loaded mRNA within tissues and organs.

The intricate influence of each component of an ionizable lipid on
its function presents a challenge in their precise design. For instance,
the head groups influence pKa values11 and hydrogen bonding
strengths with mRNA15,16, linker groups impact biodegradability17, and
lipid tails influence pKa18 as well as membrane stability and lipid
fluidity7. These characteristics collectively shape mRNA delivery
efficiency.

Historically, identifying optimal ionizable lipid structures relied
on screening tests through trial-and-error experiments. This approach,
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however, is beset by limitations. Extensive screening entails substantial
time, significant quantities of materials, considerable animal use, and
cutting-edge equipment (e.g., combinatorial chemistry and high-
throughput technologies)19–21. Even with these extensive resources,
experimental efficiency and success rates remain very low given the
expansive chemical space of ionizable lipids. Conversely, relying solely
onhuman intuition for lipiddesign is restrictedbypersonal experience
and limited capacity to fully exploit accumulated data.

The challenges are promising to be addressed through the inte-
gration of artificial intelligence (AI) models. AI excels in discerning
underlying relationships within big data and extrapolating these rela-
tionships to predict new cases. In the field of new drug molecule dis-
covery, AI has achieved remarkable strides22,23. Moreover, AI models
have been developed to predict multiple drug features in various
dosage forms, including solid dispersions, cyclodextrin complexes,
and nanoparticles24,25. Previously, our group developed an AI model to
predict IgG titers induced by mRNA vaccines in a previous study

related to formulation development26. The involved features included
structures of ionizable lipids, compositions, vaccination schedules,
and animal types. Optimizing the IgG titer profile could lead to the
selection of the desired formulation, especially the ionizable lipid type.
This was a proof-of-concept study of AI application to the design of
mRNA-LNP delivery systems. The latest research has introduced AI
models in association with high-throughput synthesis to screen a class
of ionizable lipids (synthesized from amine, isocyanide, aldehyde and
carboxylic acid) to optimize mRNA delivery27.

In this work, we meticulously gathered various structures of
ionizable lipids from literature sources13,15,18,20,28–32 and patents33–41

aiming to develop AI models. The chemical structures and LNP for-
mulations of some collected ionizable lipids are shown in Supple-
mentaryTable 1. TheAImodels predict apparent pKa values andmRNA
delivery efficiency of LNPs. They provided insights for lipid generation
and were applied to predict their properties, accelerating the screen-
ingwork (Fig. 1). As a result of this approach, several ionizable lipids are
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Fig. 1 | Overview of AI-driven rational design of ionizable lipids for mRNA lipid
nanoparticles. a The collected data was used to build models predicting the
apparent pKaandmRNAdelivery efficiency of LNPs. The 1- and 2-foldofMC3mRNA
delivery efficiency was used in Models 1 and 2 as the criterion in the model classi-
fying ionizable lipids with positive delivery efficiency. b The first-round of virtual

screening of ionizable lipids and validation based on pKamodel andModel 1. c The
second-round of virtual screening of ionizable lipids and validation based on pKa
model and Model 2. AI artificial intelligence, LNP lipid nanoparticle, MC3, DLin-
MC3-DMA.
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successfully identified and demonstrate robust performance upon
experimental validation.

Results
Overview of the first-round lipid virtual screening
In this study, the lipid virtual screening was carried out in two
sequential stages, ultimately resulting in the synthesis and evaluation
of two separate batches of lipids. Figure 2 shows the workflow of the
first-round of screening. Initially, the AI model was built to predict
mRNA delivery efficiency (Model 1) and the apparent pKa of LNPs
containing ionizable lipids. This model informed significant sub-
structures that should be highlighted during lipid generation.With the

built models, each lipid could be predicted, and all substructures were
ranked. This ranking information helped in selecting lipids for
experimental testing, eventually identifying three lipids.

Performance of the AI model in the initial screening round
During the construction of the model predicting mRNA delivery effi-
ciency, an initial attempt with a regression model revealed unsa-
tisfactory performance due to potential data source impacts
(Supplementary Table 2). Consequently, a classification model was
adopted based on the criterion of delivery efficiency compared to
DLin-MC3-DMA (MC3), distinguishing between lipids that out-
performed MC3 (positive) and those that did not (negative). The

… … …

R1: C0-C10 
R2: C0-R1

R1: C0-C10 
R2: C0-R1

R1: C1-C10 
R2: C1-R1

R1+R2=C7-C10
R1: C7-C10
(R3: C6-C10) or (R2: C0 and R3: C2-C10)

892 tail candidates informed by ECFP

237 head candidates 
Lipid pattern informed by 

ECFP score
…

Feature significance of Model 1 

1. Positive mRNA delivery efficiency
2. Apparent pKa between 6 and 7
3. Positive rate of each head and tail 

candidate when contained in the 
generated lipids

Virtual screening of generated lipids Three heads for 
lipid synthesis

Lipid
Structure 

ECFP Composition
mRNA 
delivery 

efficiency1 2 3 …

LNP

Lipid 1 0 1 1 … … < 1 (N)
Lipid 2 1 0 1 … … 1~2 (P)
Lipid 3 0 1 0 … … ≥ 2 (P)

… … … … … … …
MC3 0 1 0 … … 1 (P)

Data for Model 1

LightGBM

SHAP

Lipid tail library 

1. pKa between 6 and 7
2. High probability being 

positive in delivery efficiency 

a

b

c

MC3
ECFP_2 ECFP_363 ECFP_290… Impact of ECFP on delivery efficiency

ECFP = 1

ECFP = 0

… … …
ECFP_1

ECFP_2
ECFP_3
ECFP_4

ECFP_5

ECFP_7
ECFP_6

ECFP_...

Three lipids for validation

Fig. 2 | Overview of the first-round lipid virtual screening. aData representation
of the AI model (Model 1), and the methods of model training (LightGBM) and
feature significance calculation (SHAP). Some typical ECFP bits and their corre-
sponding substructure of MC3 are shown as an example. P, positive; N, negative.
b Significant substructures informed by the model and used for lipid generation.

c The method of lipid virtual screening and three lipids were selected for experi-
mental validation. ECFP extended connectivity fingerprints, LightGBM Light Gra-
dient Boosting Machine, SHAP SHapley Additive exPlanations, MC3 DLin-MC3-
DMA, AI artificial intelligence.
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model performance from two training algorithms, RandomForest and
LightGBM (Light Gradient Boosting Machine), was compared (Sup-
plementary Table 3). The LightGBMmodel exhibited superior scores in
terms of Recall, ACC, and F1, and was thus chosen for subsequent use.

Conversely, the apparent pKa model was built as a regression
using the LightGBM algorithm. The performance of the pKa model is
shown in Supplementary Table 4. For the test set, RMSE andMAEwere
calculated as0.25 and0.19, respectively,withR2 around0.59.While the
initial impression may not seem entirely satisfactory, a closer exam-
ination of the scatter plot in (Supplementary Fig. 1a) revealed close
alignment betweenpredicted and actual pKa values in the range of 6 to
7. Outside this range, there is a severe deviation. Notably, the pKa
range of 6 to 7 encapsulated most ionizable lipids in our dataset,
especially those with superior mRNA delivery efficiency relative to
MC3 (Supplementary Fig. 1b). Consequently, considering the primary
objective of the AI model is to screen ionizable lipids with exceptional
delivery efficiency, the existing pKa predictionmodel alignedwell with
this purpose.

In addition to validating our model’s performance using our col-
lected dataset, we also subjected the model to validation using an
external dataset. Briefly, the mRNA delivery efficiency of 14 ionizable
lipids (Supplementary Fig. 2) was predicted and subsequently com-
pared to experimental data (Supplementary Table 5). Besides the
values predicted by the model presented above (“Prediction”), values
predicted by the model trained on the whole collected data after the
determination of hyperparameters (“Prediction_all”) are also shown.
The prediction from themodel trained on the whole data showed high
accuracy, with a correct rate achieving around 0.78.

Similarly, the apparent pKa of nine LNPs containing different
ionizable lipids in the external dataset was also compared to the pre-
dicted values, which are shown in Supplementary Fig. 3. Seven out of
the nine samples exhibited close alignment between predicted and
experimental data. The two outliers, which exhibited less accurate
predictions contain hydroxyl groups in their tails – a feature scarcely
represented in our collected dataset.

The first-round ionizable lipids generation and virtual screening
After validation, the model served as a guide in the design of ionizable
lipids, effectively steering lipid generation and expediting virtual
screening. In this model, the structure of ionizable lipids was denoted
by extended connectivity fingerprints42 (ECFP), with each ECFP bit
corresponding to a substructure within a lipid. The question of which
substructure to emphasize in lipid generation was addressed by using
the SHAP (SHapley Additive exPlanations) algorithm43. The contribu-
tion of all ECFP bits in each ionizable lipid could be quantified as SHAP
value (Supplementary Fig. 4a). This further allowed for the calculation
of ECFP scores for every lipid using Equation 5 and 6. Surprisingly, the
ECFP score was found to be correlated with mRNA delivery efficiency
(Supplementary Fig. 4b). Next, 40 lipids with the highest ECFP scores
and their molecular similarities to other lipids were visualized in Sup-
plementary Fig. 5. In these lipids, tails containing cyclopropyl and
cyclohexyl were distinct in structure, and a joint containing an amide
bond linking theheadand three tails often appeared in top-performing
lipids. Thus, they were worthy of exploration for molecule generation
(Fig. 2b). Besides, commonly seen ester bond-containing tails and
single carbon chains were also considered. As for head groups, all
heads in the collected data were included. After introducing some
variance in the chosen tail and head segments, 892 tail and 237 head
candidates (Fig. 2b) were constructed. The tails and head candidates
were combined according to the structure pattern to generate virtual
ionizable lipids exhaustively, but Tail 2 and Tail 3 (Fig. 2b) were kept
the same for simplicity.

Through a comprehensive permutation, a pool of nearly 20
million lipids was generated. Employing the workflow depicted in
Fig. 2c, these lipids’ pKa and mRNA delivery efficiencies were

predicted. Here, lipids were deemed positive if they showed
positive mRNA delivery efficiency and a desired pKa range
(6.0–7.0). Since each head or tail candidate was used in various
lipids and may lead to disparate mRNA delivery efficiency, the
positive rate (Equation 7) could be calculated and ranked for each
segment candidate (Supplementary Fig. 6). Consistently, an
overview of good lipids was illustrated in Supplementary Fig. 7,
where advantageous tails and the top 32 head groups were col-
lectively presented. However, the decision of which lipids to
synthesize for further exploration was informed by practical
considerations. Lipids chosen for synthesis should be feasible at
this stage, and the lipid structures, especially head groups, should
exhibit diversity to explore a broader chemical space. Guided by
these principles, three heads ranked 10, 12, and 32 in Supple-
mentary Fig. 7 were selected. The choice of lipid tails was influ-
enced by our synthesis capabilities. Our tail library allowed the
synthesis of 666 possible lipids for each head type. They were
predicted for pKa and delivery efficiency, and the probability of
being positive in delivery efficiency was output by the model.
Consequently, lipids with desired pKa, high probability, and
positive mRNA delivery efficiency were chosen for synthesis:
LQ085, LQ086, and LQ087 (Fig. 3a). Their predicted pKa and
positive probability are listed in Supplementary Table 6.

Experimental validation of the first-round of screening
LQ085, LQ086, and LQ087 were formulated into LNPs encapsulating
luciferasemRNAandcompared to twopositive control lipids,MC3 and
SM-102. SM-102 was used in Moderna’s COVID-19 vaccines44 and often
shows even higher capacity in delivering luciferase and hEPOmRNA in
rodents12. The basic characteristics of these LNPs, including particle
size, polydispersity index (PDI), and encapsulation efficiency (EE),were
measured (Supplementary Table 6). The apparent pKa of LNPs gen-
erated from LQ087, SM-102, and MC3 lay within the desired range of
6.0 to 7.0, while the pKa of LQ085 and LQ086 exceeded 7.0.

The LNPs loaded with luciferase mRNA were intravenously
administered to mice. After LNP injection, luminescence signals were
detected at 4, 24, and 48 hours, following the administration of the
substrate, D-luciferin (Fig. 3b and c, Supplementary Fig. 8). At the
starting point, LNP containing LQ087 and LQ086 induced similar
luminescence which was higher than that of LQ085 by 10 to 100 fold.
Later, the luminescence of LQ086decreased faster than that of LQ087,
getting close to that of LQ085. The luminescence-time curve and AUC
showed that LQ087 was the best of the three ionizable lipids we pro-
posed. Compared to the positive controls of SM-102 and MC3, LQ087
matched MC3 but still performed worse than SM-102. This experi-
mental result should be robust (Supplementary Fig. 9). The gender
factor made little difference to the performance of the lipids, and the
data collected at the three-time points were sufficient to measure the
AUC of the administration.

The second-round lipid virtual screening
The relatively modest performance of the three lipids prompted a
reevaluation. One possible explanation was that the selected head
groups were underrepresented in the dataset, potentially biasing the
model. As a result, in the second round of lipid screening, we focused
on lipids containing the ethanolamine head group, a component tes-
ted most frequently in our collected dataset. Besides, the synthesis
capability was considered at the beginning of this round. These factors
shrank the pool of candidate lipids. To pick competent lipids from the
narrow domain, a stricter classifier was preferred to the abovemethod
which required statistical analysis of a large number of virtual lipids.

Given these considerations, Model 2 was built, increasing the
criterion that an ionizable lipid was judged as positive to 2-fold the
delivery capability of MC3 (Fig. 4a). The pKa prediction model
remained unaltered. Compared to Model 1, the performance of Model
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2 was defective in validation using the collected data (Supplementary
Table 7). This defective performance was also evidenced by the
external validation, in which the number of wrong predictions
increased from three to six (Fig. 4b). However, all the mistakes hap-
pened to be that truly positive lipidswere falselypredicted as negative,
while truly negative lipids were predicted correctly. In other words,
Model 2 showed a stricter criterion when assessing mRNA delivery
efficiency, whichwas also reflected by the increasing precision index if
validated against the original data (Supplementary Table 8). Higher
precision means fewer false positive predictions.

Combining the ethanolamine head group and our tail library,
666 lipids were constructed, which included the molecules in the
external validation set. Among the 666 lipids, Model 1 predicted 94
positive lipids, from which Model 2 predicted 21 positive lipids
(Supplementary Fig. 10), while the other 645 molecules were nega-
tive in delivery (Fig. 4b). Therefore, the 21 lipids were more likely to
have better delivery efficiency and worth exploring. Like the first-
round, lipids with desired properties and diverse tail structures, such
as two long branches, dendritic branches, and cyclohexyl groups,
were preferred. Eventually, six of them (Fig. 4c) were selected for
synthesis and evaluation. Their predicted pKa and probability of
being positive in mRNA delivery efficiency were reported in Sup-
plementary Table 9.

Experimental validation of the second-round screening
Analogously, the positive controls (SM-102, MC3) and the newly
designed (LQ089-094) ionizable lipids were formulated into LNPswith
luciferase mRNA. The particle size, PDI, apparent pKa, and EE of these
LNPs were measured (Supplementary Table 9). The pKa values of all
lipids were well-contained within the 6.0 to 7.0 range.

Following intravenous administration of LNPs loaded with luci-
ferase mRNA, luminescence signals stemming from luciferase activity

were detected at 4, 24, and 48 hours, subsequent to the administration
of D-luciferin (Fig. 4d and Supplementary Fig. 8). Impressively, all new
lipids performed well in terms of mRNA delivery efficiency, among
which LQ089 and LQ091-LQ093 exhibited significantly higher efficacy
than MC3. Notably, LQ089 surpassed the performance of all the pre-
viously tested lipids. Its luminescence signal approached SM-102,
showingno significant difference fromSM-102 in the areaunder curves
(AUC) of luminescence signals (Fig. 4e).

Structure-activity relationship in hydroxyl-containing lipids
For the commonly synthesized ionizable lipids where the head group
contains hydroxyl and two tails directly linked to the nitrogen atom
(Fig. 5a), a structure-activity relationship was inferred with the AI
model. The tail types analyzed covered those used for virtual screen-
ing. Variables such as tail length, linker position, and branch length and
their effect on the positive rate of lipid molecules were analyzed to
show the structure-activity relationship.

Figure 5b shows tails containing ester linkers are more likely to
showbetter performance (positive ratemore than 0.5) than thosewith
a single linker of cyclopropyl. The tail length more than 10 and linker
position ismore than 5 or 6 seem to be a safe space.Meanwhile, linkers
should be located in the mid-area of the tail, remaining a moderate
carbon chain length before and after it. For different types of tails, the
threshold of tail length and linker position is different. But tail length
exceeding 20 and linker position more than 10 seem to bring about
defectiveness in performance, especially in lipids with inverse ester
bond as the linker. In contrast, constraints in length and linker position
are not as strict in tails with the linker of ester bond and cyclohexyl,
where no clear thresholds were drawn. For tails with the linker of a
single ester bond, the influence of branch length can be analyzed.
Branch length of more than 3 increases the possibility of achieving
better performance (Fig. 5c). Since the branch length is restricted to
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beingnot longer than themainchain, a longbranch length almost does
not lower performance if only the chain length before the linker is
guaranteed (Fig. 5d).

Comprehensive in vivo study of the newly generated lipids
The screening method above evaluated the general performance of
new lipids. However, distribution in different organs and the expres-
sion of mRNA via different routes of administration are also of great
importance for lipid molecule assessment. In order to evaluate the
newly generated lipids more comprehensively, qualified LNPs (Sup-
plementary Fig. 11) loaded with luciferasemRNAwere administered by
intravenous injection (Fig. 6 and Supplementary Fig. 12 and 13) and
intramuscular injection (Fig. 7 and Supplementary Fig. 14 and 15) at a

dosage of 5 μg mRNA per mouse, respectively. In vivo luminescence
signals were detected at 4 hours post-administration, subsequent to
the administration of D-luciferin. Then, the mice were euthanized and
the organs were isolated for the detection of organ-distributed lumi-
nescence ex vivo.

As foreseen, the luminescence signal of new lipid groups was
high in the liver which is the main targeted organ (Fig. 6a and b), due
to their structural similarity to MC3 and SM-102, which were liver-
targeted. LQ089 and LQ091 outperformed other tested lipids and
showed no significant difference from SM-102. Furthermore, the
isolated organs were homogenized to detect the concentration of
Cy5-mRNA. The ratios of organ-distributed mRNA to administered
mRNA were calculated and listed in Supplementary Fig. 13b.

Fig. 5 | Structure analysis of ionizable lipids informed by AImodels. a Ionizable
lipid pattern and tail types for analysis. b–d Heatmap of positive rates for specific
tail types. All types of tails and heads containing hydroxyl were combined to form
ionizable lipids in an exhaustive manner. Their mRNA delivery efficiency and
apparent pKa were predicted with Model 1. For each type of tail, the number of
resulting lipids containing the tail and among them the number of positive lipids

(efficiencyhigher than the standardMC3 formulationandpKabetween6.0 and7.0)
were used to calculate the positive rate. The structure-activity relationship is shown
as the influence of tail length and linker position (b) tail length and branch length
(c), and the branch length and linker position (d) on the positive rate. AI, artificial
intelligence.
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Although only a small amount of Cy5-mRNA was detected, the
majority of it was in the liver, a result which matched well with the
distribution of luminescence.

For the luminescence of the injection site detected in vivo in
intramuscular groups, the order of luminescence intensity between
each LNP was consistent with that of the intravenous route (Fig. 7a). It
was worth noting that luminescence signals after intramuscular
administration could also be detected in the liver, both in vivo (Fig. 7c,
Supplementary Fig. 14, and Supplementary Fig. 15) and ex vivo (Fig. 7b
and c, Supplementary Fig. 15).

Stability study on the LNPs containing newly generated lipids
Besides the efficient delivery of mRNA, proper LNPs must have long-
termpharmaceutical stability and low toxicity. Taking account of both
delivery efficiency and structural diversity, LQ086, LQ089 and LQ092
were selected as typicalmodels to study the long-termstorage stability
and acute toxicity of the nine newly generated lipids.

Due to the poor stability ofmRNA, LNPs usually need to be frozen
for storage, so LNPs must face the challenges of the freezing-thawing
process on the pharmaceutical properties and in vivo effectiveness.
Herein, LNPs loaded with luciferase mRNA were frozen at −20 °C and
−80 °C and then melted at room temperature to examine the changes
in particle size, PDI, potential, EE, and in vivo efficiency of mRNA
expression before and after the freezing-thawing process (Figs. 8a and
b). For LQ089, LQ092,MC3, and SM-102, the freezing-thawing process
did not affect the particle characteristicsof LNPs. The freezing-thawing
process at -20 °C significantly increased the size of LQ086 LNP, while
this change did not occur during the process at −80 °C. Besides, the
freezing-thawing process at both −20 °C and −80 °C mildly impacted
the in vivo efficiency of all groups.

For the long-term storage test, all samples were stored under
three conditions, 4 °C, −20 °C and −80 °C (Fig. 8c–h). The particle size,
PDI and EE were measured on Day 14 and Day 30, and the in vivo
efficiency ofmRNAexpression andpotentialweremeasured at Day 30.
Similar to the freezing-thawing process, storage at −20 °C seriously
affected the stability of LQ086LNP,while the conditionof−80 °Chada
lesser impact. LQ089 and LQ092 showed good pharmaceutical stabi-
lity in all three conditions, which was comparable to that of MC3 and
SM-102. For in vivo mRNA expression, all groups decreased after one
month of storage, but SM-102 decreased less than other groups, which
is possibly because it had the highest baseline. Interestingly, LNPs
formed from the new lipids still had good particle characteristics and
high mRNA expression levels after one month of storage at 4 °C,
indicating that they had good stability.

Acute toxicity of LNPs containing newly generated lipids
To preliminarily evaluate the in vivo safety of newly generated lipids,
LNPs loadedwith luciferasemRNAwere intravenously administered to
BALB/c mice at acute toxic dosages of 20μg and 100μg mRNA per
mouse (1mgkg-1 and 5mgkg-1, respectively). The weight of mice was
monitored on Days 1, 2, 3, 4, 7, 9, 11, 13, and 14 after administration
(Fig. 9a and b).Micewerebled and euthanized to obtain organs onDay
14 for weighing (Fig. 9c–g and Supplementary Fig. 16). The whole
blood was examined for blood cells and the serum was isolated to
analyze the blood biochemistry (Fig. 10 and Supplementary Fig. 17).
The group of LQ086-100 μg showed lower body weight gain and
spleen enlargement, which might be caused by strong immunogeni-
city. The biochemistry analysis showed a slight rise in glutamic-pyruvic
transaminase (ALT) in groups of LQ086-100 μg, LQ089-100 μg, and
SM-102-100 μg, which was within the acceptable range. Meanwhile, no

MC3

LQ
08

5

LQ
08

6

LQ
08

7

LQ
08

9

LQ
09

0

LQ
09

1

LQ
09

2

LQ
09

3

LQ
09

4

SM-10
2

0

1×1010

2×1010

3×1010

4×1010

To
ta

lf
lu

x
of

ex
-v

iv
o

or
ga

n
(p

s-1
)

Heart

Liver

Spleen

Lung

Kidney

Brain

MC3    LQ085   LQ086   LQ087   LQ089 LQ090 LQ091 LQ092   LQ093   LQ094 SM-102

0.2

Lum
inescence

radiance (p
sec

-1cm
-2sr -1)

1010

Heart
Liver

Spleen
Lungs
Kidneys

Brain

a b

c

MC3

LQ
08

5

LQ
08

6

LQ
08

7

LQ
08

9

LQ
09

0

LQ
09

1

LQ
09

2

LQ
09

3

LQ
09

4

SM-10
2

107

108

109

1010

1011

To
ta

lf
lu

x
of

ex
-v

iv
o

liv
er

( p
s-1

)

**** ****ns **** **** **** *** *** ns ****

**** **** **** **** ns ns** **** **** ****

0.4

0.6

0.8

1.0

0.2 109

0.4

0.6

0.8

1.0

Fig. 6 | Luminescencedistribution and expressionof luciferasemRNA loaded in
different LNPsvia intravenous administration. a Liver luminescenceof luciferase
at 4 h. b Organ-distributed luminescence of luciferase at 4 h. (c) Representative
images of the luminescence. Each group had three female BALB/c mice and three
male ones. All data are presented as the mean± SD. Statistical significance was

analyzed by one-way ANOVA (ns, not significant; *p <0.0332; **p <0.0021;
***p <0.0002; ****p <0.0001. The P makers in black are the results of the compar-
isons with MC3, and those in red are with SM-102. Source data are provided as a
Source Data file.). MC3 DLin-MC3-DMA, SD standard deviation, ANOVA Analysis of
Variance.
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abnormality was found in the analysis of histopathology (Supple-
mentary Fig. 18). In addition, the hemolysis test of LNP on rabbit red
blood cells was also negative (Supplementary Fig. 19). Overall, the
newly generated lipids exhibited excellent in vivo safety at an intra-
venous acute toxic dosage, supporting the AI-driven rational design of
ionizable lipids to step forward.

Discussion
The successful delivery of mRNA via LNPs heavily relies on the utili-
zation of ionizable lipids, which govern both the encapsulation and
release of mRNA. Consequently, the screening and design of effective
ionizable lipids are pivotal in the development of mRNA-LNP delivery
systems. This research aims to expedite the screening process by
employing AI models to predict their critical properties of ionizable
lipids. While mRNA delivery efficiency stands as the primary indicator
for evaluating ionizable lipids, exploring intermediate indices
becomes a logical step.

Previous studies have established the significance of the appar-
ent pKa of LNPs8,12,18. The apparent LNP pKa is related to and found to
be 2-3 units lower than the calculated pKa of the ionizable lipid
molecule itself17,45. The LNP containing MC3 had an apparent pKa of
6.44, and LNPs with a pKa range of 6.2 to 6.5 exhibited optimal
delivery efficiency for siRNA8. A similar pKa range of 6.2 to 6.8 was
deemed advantageous for mRNA delivery18. However, for intramus-
cular administration and immunogenicity, the ideal pKa range leans
towards 6.6 to 7.012. Additionally, Supplementary Fig. 1b indicates
that an apparent pKa within the range of approximately 6.0 to
7.0 serves as a prerequisite for LNPs to exhibit positive mRNA
delivery efficiency. Thus, predicting the apparent pKa emerges as
another pivotal index.

The LightGBM algorithm was selected for model training. As a
tree-based learning algorithms, LightGBM has outperformed well-
known neural network frameworks in various pharmaceutical
datasets46–49. Moreover, LightGBM is one of the fastest tree-based
learning algorithms and is suitable for sparse feature datasets such as
those using ECFP. Its feature grouping mechanism effectively con-
solidates sparse features while retaining essential information, miti-
gating the impact of high feature dimensionality and thus enhancing
model performance.

Initially, regression was intended for predicting mRNA delivery
efficiency. Nonetheless, this approach yielded varying performance
outcomes within the sub-dataset (Supplementary Table 2). For exam-
ple, validation on most lipid structures sourced from Acuitas37–41 and
Protiva33 exhibited high performance (>0.7 in R2) likely due tomultiple
data points for each lipid conducted at different dosages. Conversely
the validation on lipids fromModerna34,35, where they had a single test,
yielded a suboptimal performance (~0.5 in R2). To better approximate
thepredictive capacity for genuinely novel lipids, the regressionmodel
was abandoned in favor of constructing a classification model. The
model employedMC3 as a reference criterion, the ionizable lipid in the
first approved LNP product (Onpattro®)50. Notably, the classification
model exhibited an accuracy (ACC) of 0.82 and precision of 0.76
(Supplementary Table 3). ACC gauges the general predictivity, while
precision indicates the likelihoodof a predicted good ionizable lipid to
genuinely excel in mRNA delivery—a primary concern. Regarding the
apparent pKa, the regression model proved adept in the “optimal pKa
range” (6.0–7.0).

Although the AI model was trained solely on data samples labeled
with categories of mRNA delivery efficiency, it unexpectedly devel-
oped the ability to quantify this efficiency, which is a fortunate
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discovery. The efficiency is positively correlated with the newly
defined ECFP score. Some lipids containing squaramide were reported
to show remarkable delivery efficiency15, and they were also given high
ECFP scores (Supplementary Fig. 5). The score is derived from lipid
ECFP bits and their corresponding SHAP values. The SHAP algorithm,
providing quantified assessments of feature contributions, has proven
to be highly effective in explaining the outputs of AI models43,51. From
this view, the model we have developed is interpretable in terms of its
structure-activity relationship.

Considering bothmolecule performance and novelty in structure,
some segments were picked up with the help of molecular similarity
visualization to generate the lipid pool for the first-round of virtual
screening. Design of new lipids was not conducted by straightfor-
wardlymaximizing ECFP score, because chemical structures cannot be
derived from ECFP codes. After prediction on the generated lipids and
statistical analysis, the segments were ranked based on their positive
rate. Although heads featuring squaramide outperform other struc-
tures again (Supplementary Fig. 6), they were difficult to synthesize
and had to be abandoned with regret.

The first-round of lipid virtual screening was culminated in the
selection of three ionizable lipids for testing: LQ085, LQ086, and
LQ087. Only LQ087 exhibited comparable performance toMC3, but it
still fell notably short of SM-102. The specific reason for the under-
performance of the three new lipids remains unclear, as the selected
head groups were sparsely tested in the previous study, making
mechanistic explanation challenging. The limitation in model gen-
eralization is a possible cause.

The second round of virtual screening focused on lipids contain-
ing the ethanol amine head and trained a stricter model (Model 2) to
facilitate the screening. The evaluation process was actually an asso-
ciation of Model 1 and Model 2. Model 1 performed better in general
prediction accuracy but still predicted too many lipids with positive
mRNA delivery efficiency. Model 2 performed less well in general but
showed high precision, making it effective in filtering out false positive
predictions. This round of screening yielded six ionizable lipids,
LQ089-094, all of which were equal to or superior to MC3, proving the
validity of the screening strategy. Properly combining and leveraging
the advantages of different models is important for AI applications.
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This strategy yielded six ionizable lipids: LQ089-094. Among
them, only LQ092 was previously reported18,35. LQ089-094 exhibited
superior mRNA delivery efficiency compared to LQ085-087. Notably
LQ089 showcased exceptional performance, comparable to SM-102.
The distinguishing factor lies in the cyclohexane and branched alkane
groups in their tails.

So far, all lipids were initially evaluated based on whole-body
luminescence signals at three-time points. This reliable evaluation
method is robust to gender differences and a number of mice and
time points, with acceptable cost and satisfactory efficiency. After
that, the lipids were comprehensively evaluated for organ-specific
distribution. Similar to MC3 and SM-102, all new lipids led to high
mRNA expression in the liver when administered both intravenously
and intramuscularly. Storage stability and acute toxicity were tested
for three representative lipids. LQ086 was less stable in the -20 °C
storage condition, possibly due to its head structure, but LQ089
and LQ092 showed acceptable stability. Administration of these
lipids was safe and no considerable acute toxicity was observed in
the tests.

Lipids with head groups containing hydroxyl are commonly tes-
tedbut showvariedperformance. The structure-activity relationship in
this type of lipid has not been described in detail. However, with awell-
trained AI model, this relationship can be comprehensively explored
(Fig. 5), such as the influence of gradually extending the length of the
carbon chain and moving the linker along the chain on delivery effi-
ciency. It can be observed that, although the lipids, after ECFP trans-
formation, produce high-dimensional and discontinuous features, the
AI model output continuous trends in structure-activity relationships.

Toobtainwell-performing lipids, all chain segments in tails should
have harmonious lengths. The linker position should be compatible
with the whole tail length, and the length threshold is dependent on
the linker type. Ionizable lipids like SM-102, ALC-031517, and our
selected LQ092, LQ093, and LQ094 all belong to the area with a
relatively high positive rate. The structure-activity relationship repre-
sented in this way is easy to understand and applicable to guide
molecule design. However this visualizationmethod is limited in some
specific molecule design space.

This work solidifies the potential of AI methodology in ionizable
lipid design by accelerating the screening process and summarizing
the structure-activity relationship. This type of application can be
improved in many aspects in the future. First, the size of the dataset is
relatively modest. Despite comprehensive data collection from litera-
ture and patents, the majority of ionizable lipids were tested in the
siRNA delivery system8,9,52,53 and had to be excluded. Additionally,
rigorous data cleaning inevitably resulted in some data exclusion to
ensure dataset consistency. As a result, the data size constrained the
modeling approach. Expanding databases stands as a critical avenue
for optimizing AI models, and high-throughput methods serve as a
valuable complement to the AI approach54.

Secondly, generalizing themodel to a broader formulation design
space is challenging, like novel lipid structures and different mRNA
sequences. In this work, predictions on LQ089-094 are more accurate
than those on LQ085-087, and the former are closer to the majority of
lipids in the dataset. In other AI modeling work, the newly designed
molecules are also similar to their training data27,54. This limitation
might be alleviated through data augmentation, introducing more
diverse data, or adopting a pre-train and fine-tune model building
workflow. Besides, mechanistic modeling is a promising way to break
through thegeneralization limitation, such asmolecular dynamic (MD)
simulation. The simulated LNP and the interaction between RNA and
lipids have been reportedmany times26,55–57, with customized ionizable
lipid structures. MD simulation should also facilitate the under-
standing of the lipid specificity to different mRNA sequences. In our
work, data of luciferase and hEPOmRNAweremerged, but only nearly
10 lipidswere testedusing bothmRNA. Thedelivery efficiencies for the

twomRNA show a consistent trend, but using hEPO seems to bemore
likely to obtain positive results.

Lastly, the goal of this work is to construct lipids with generally
high mRNA delivery ability, not specific for any organ, disease, or
therapy. Therefore, only data of luciferase and hEPOmRNA delivery in
mice were collected, as this is a basic screening method. However,
models tailored according to therapeutic objectives or types of dis-
eases are more appealing. For example, maximizing protein expres-
sion level is the priority in mRNA therapy supplementing missed
proteins, but inmRNA vaccines against viruses, immunogenicity of the
formulation needs additional consideration58. Developing models
predicting immunogenicity is important for mRNA delivery. Likewise,
another iteration direction of the model will be to screen out lipids
with high-level expression of mRNA in organs other than the liver to
meet the needs of a variety of diseases. Additionally, prediction in
primates and even humans for specific diseases is profound for clinical
translation. AI modeling methodology is still possible to handle these
tasks only if data supports. However, other advanced modeling
methods such as physiologically-based pharmacokinetics (PBPK) and
quantitative systems pharmacology (QSP) models59–63 are very useful.
PBPK is specialized in inferring the fate of drugs across different spe-
cies. This inference is based on the properties of the drug and the
physiological conditions of the subject, and therefore such extra-
polation is mechanistically based. QSP is also mechanistic, predicting
dynamic changes in signal pathways, biomarkers, and even therapeutic
effects. For a complex system such as immune response, QSP is pro-
mising to address it64,65. Further, the association of the twomodels can
integrate various in vitro and in vivo data, being able to quantify rates
of critical processes in nucleic acid delivery such as RNA escape from
endosomes66.

To summary, this study demonstrates that AI models predicting
mRNAdelivery efficiency and apparent pKa can expedite the screening
and design of ionizable lipids for LNP formulation. Notably, among the
screened lipids, one with a benzene ring in its head group demon-
strated comparable performance to the MC3 control, while six others
outperformed MC3. Notably, one of these even approached the per-
formance of SM-102. This research underscores the significance of
properly associating different AI models to leverage their merits,
especially when working with limited data size. Additionally, this AI
model shows explicit interpretability in structure. This methodology
and insights gleaned from this study hold the potential to advance the
development of mRNA-LNP delivery systems and offer valuable gui-
dance to similar projects.

Methods
Data preparation
The data was collected from patents33–41 and articles13,15,18,20,28–32. The
data was sourced from companies of Moderna, Acuitas, Protiva, and
several academic institutions. The extracted information included
the LNP formulations (including chemical structures of ionizable
lipids, types of helper lipids, types of PEG-lipids, and molar ratios of
lipids), apparent pKa of LNPs, particle sizes, EE, species of animals,
routes of administrations, doses of administrations, and mRNA
expression levels. Structures of ionizable lipids were extracted from
resources with InDraw (6.1.0) AI chemical structure recognizer and
transformed to SMILES string. Other data was extracted by manually
copying and checked. N/P ratio or weight ratio of lipids and mRNA
was not included in the data because many resources only provide a
ratio range instead of a clear value, but most LNPs had a N/P ratio
near to 6.

For the analysis of nanomedicine from multiple data sources,
ensuring internal consistencywithin the data is crucial67. For AImodels
predicting the in vivo mRNA delivery efficiency of LNPs, subsequent
data processing work was conducted to improve its internal con-
sistence and maintain as large data as possible: (1) removed data that
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was not measured in mice; (2) removed data where the LNP was not
administrated intravenously; (3) removed data of mRNA expression
level which was not measured as the luminescence signal or con-
centration of the luciferase or the human erythropoietin (hEPO)
induced by mRNA delivery; (4) removed data of the luminescence
signal of luciferase that was not measured for whole-body of subject
animals or livers; (5) maintained the data where the mRNA expression
levels of LNPs could be transformed as the fold-change based on a
standard LNP formulation. The standard LNP formulation was com-
posed ofMC3 (the ionizable lipid), DSPC (the helper lipid), cholesterol,
and PEG2000-DMG (the PEG lipid) at the molar ratio of 50/10/38.5/1.5,
which is commonly used as the control since it is the LNP formulation
of the first approved siRNA drug68. The standard expression level of
this formulation included: (1) luciferase concentration at 198 ng g-1 liver
tissue at 4 h after administration of 0.3mg kg-1 mRNA38; (2) luciferase
luminescenceflux at 2.57E + 9p s-1 in livers at6 h after administrationof
0.5mgkg-1 mRNA (for data from the institution of Moderna)35; (3)
luciferase luminescence flux at 8.66E + 8 p s-1 in the whole-body at 6 h
after administration of 0.5mgkg-1 mRNA (for data from the institution
of Tufts University)31; (4) plasma hEPO concentration at 1570, 1830,
810 ngmL-1 at 3, 6, 24h respectively, after administration of 0.5mgkg-1

mRNA35. The value of concentrations of expressed proteins was com-
parable among different institutions, while the value of luminescence
flux was not since the measurement of the flux is the signal after
amplification via the photomultiplier, which is dependent on the
experimental instrument of the institute.

All the mRNA delivery efficiency of ionizable lipids was normal-
ized to that ofMC3. For the classificationmodel, lipidswith normalized
efficiency equal to or larger than 1 (Model 1) or 2 (Model 2) were
labeled as positive, while the others as negative. The delivery efficiency
was also predicted based on LNP formulations (types of ionizable
lipids, helper lipids, PEG-lipid, cholesterol, and their molar ratio in the
formulation). The dataset contained 387 LNP formulations, with 370
different ionizable lipids.

In the work of predicting the apparent pKa, no particular pro-
cessing work was conducted. The dataset contained 352 LNP for-
mulations with 351 different ionizable lipids. The apparent pKa was
predicted merely based on LNP formulations.

In this study, the ionizable lipid structure was represented by
ECFP converted via theRDKitpackage (2023.9.1) in Python (3.11.4). The
ECFP radius was set to 9, and the number of bits was set to 1024. Each
ionizable lipid had a unique ECFP sequence. The involved three helper
phospholipids, DSPC, DOPE, and DOPC were represented by two ‘0-1’
category variables (‘DS’ or ‘DO’, ‘PC’ or ‘PE’). The PEG-lipids were
represented by a single multiple-category variable. Only one type of
cholesterol lipid was included in our data, so it was not represented.
Molar ratios of the four types of lipids in LNP were represented as
numeric variables between 0 and 1.

Data splitting and hyperparameters
The following methods apply to the building of the classification
model of mRNA delivery efficiency. The whole data set was split into
the training set and the test set. The stratified sampling method was
used to keep the category distribution (proportion of positive and
negative lipids) and the source distribution (proportion of samples
from each data source) in the separate data set the same as the original
data. The stratified splitting strategy was implemented by the scikit-
learn (sklearn 1.1.3) package. Finally, we obtained the training set and
test set at a ratio of 4:1.

A random search was applied to tune the hyperparameters of the
models. Briefly, 1000 hyperparameter combinations were randomly
chosen from the hyperparameter space to trainon the training set, and
the results of the 5-fold cross-validation (5_CV) on the training set were
used to finetune the hyperparameters to find the best model. For
models built with the LightGBM algorithm (package version 3.3.5), the
important hyperparameters of the bestmodel were colsample_bynode
= 0.8, colsample_bytree = 0.5, learning_rate = 0.1, max_depth = 3,
num_leaves = 4, reg_alpha = 1, reg_lambda = 1, subsample = 0.7,
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Fig. 10 | Hematological indices. a–f Blood was obtained 14 days after intravenous
administration. All data are presented as the mean ± SD (n = 8 for each dose,
including four females and fourmales). Statistical significancewas analyzedby one-
way ANOVA. (Unmarked, not significant. Source data are provided as a Source Data

file.). MC3 DLin-MC3-DMA, RBC red blood cell, HGB hemoglobin, WBCwhite blood
cell, PLT platelet, ALT glutamic-pyruvic transaminase, Crea creatinine, SD standard
deviation, ANOVA Analysis of Variance.
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subsample_freq = 3 (Model 1); and colsample_bytree = 0.5, learnin-
g_rate = 0.01, max_depth = 5, n_estimators=100, num_leaves = 11, sub-
sample = 0.5 (Model 2). Meanwhile, the hyperparameters for Random
Forest were class_weight = None, criterion = entropy, max_depth = 9,
max_features = sqrt, max_leaf_nodes = 20, min_samples_split = 2,
n_estimators = 50.

For the apparent pKa model, the dataset was divided into three
subsets, namely the training, validation, and test sets, with the data size
ratio at approximately 8:1:1. The following strategies were used to
divide the data set. Uncommon molecules, defined as those whose
head and tail structure appeared in the dataset less than three times,
were forcibly included in the training set in order tomake themodel be
trained in molecular structure space as broad as possible. The
remaining data were divided using random stratified sampling based
on pKa ( < 6, 6-7, 7-8, > 8). The model was trained on the training set,
while its hyperparameterswere adjustedon the validation set to obtain
the optimal configuration. Ultimately, the performance of the model
was evaluated on the testing set to assess its generalization ability.

Thismodelwas trainedwith the LightGBMalgorithm toestablish a
regression model, using the sklearn library. Finetuning the model’s
hyperparameters was conducted on the validation set based on a
random search approach. Ultimately, the optimal hyperparameter
configuration was: colsample_bytree=1, learning_rate=0.01, max_-
depth=40, n_estimators=700, num_leaves=45, objective=’regression’,
subsample=0.8.

Evaluation criteria
The performance of the prediction of the regression model was eval-
uated by mean absolute error (MAE), mean squared error (MSE), root
mean squared error (RMSE), and determination coefficient (R2). The
prediction performance of the classification model was evaluated by
four metrics, including Accuracy (ACC), recall, precision, and F1_score
(F1). These metrics are defined as follows:

ACC=
TP+TN

TP+TN+FP+FN
� 100% ð1Þ

Recall =
TP

TP+ FN
� 100% ð2Þ

Precision=
TP

TP+FP
� 100% ð3Þ

F1 =
2 � Precision � Recall
Precision+Recall

ð4Þ

where TP is the true positive, TN is the true negative, FP is the false
positive, and FN is the false negative.

Calculation of lipid ECFP score
To inform lipid generation with the help of the built AImodel, first, the
SHAP algorithm43 was applied to the model to calculate feature
importances of input parameters for the mRNA delivery efficiency
prediction. Particularly, the SHAP value for each ECFP bit (indicating
substructure) in each ionizable lipids in dataset was obtained. Then
total contribution of each bit was calculated based on the sumof SHAP
value in all lipids:

Coni =
X

j 2 all lipids

SHAPi, j � t ECFPi, j

t ECFPi, j = 1 if ECFPi, j = 1

t ECFPi, j = � 1 if ECFPi, j =0

(

ð5Þ

Where Coni is the contribution of the bit i, ILj is the ionizable lipid j,
SHAPi,j is the SHAP value of bit i in lipid j, t_ECFPi,j is transformed value

of ECFPi,j considering the contribution of the presence or absence of
this bit in the lipid. Thus, Coni more than 0 means positively con-
tributing bit and the other side means negatively contributing. Con-
sequently, the ECFP score for lipids could be defined as the sum of the
product of ECFP bit value and its contribution:

Scorej =
X

i 2 all bits

Coni � ECFPi, j ð6Þ

Where Scorej is the ECFP score for ionizable lipid j.

Molecular similarity analysis
The molecular similarity of ionizable lipids was calculated using
RDKit script. To calculate the similarity of one ionizable lipid to a
bundle of other lipids, the first step was to calculate Morgan finger-
print molecular similarity between the target lipid and each of the
other lipids resulting a bundle of weight maps, then summed all
weight maps to obtain the similarity of the target lipid and visualized
it. From the similarity graph, distinct and typical substructures can
be recognized.

Calculation of candidate segment positive rate
In virtual screening, the general performance of a candidate tail or
head segment was judged by positive rate. A generated virtual ioniz-
able lipid would be marked as positive if its predicted mRNA delivery
efficiencywas better than the standardMC3LNP and apparent pKawas
between 6.0 to 7.0. Since the lipids were generated by combining
different head and tail segments, therefore, for each segment, the
positive rate can be defined as:

Positive rate of segment =
Number of postive lipids containing the segment

Number of lipids containing the segment

ð7Þ

Segmentswith high positive ratemeans they aremore compatible
in ionizable lipids to increase the LNP performance.

Ionizable lipids synthesis
Nine ionizable lipids (LQ085-087, 089-094) screened by AI models
were synthesized for testing. The synthesismethodof them is shown in
the Supplementary Information. All synthesized lipids were chemically
characterized in detail69, and their spectra of 1H NMR, 13C NMR, andMS
are shown in Supplementary Figs. 20 to 28.

LNP formulation and characterization
The mRNA of firefly luciferase was synthesized in our lab. T7 RNA
polymerase was used to mediate the transcription from a DNA tem-
plate. Cap 1 was added to enhance the expression efficiency. MC3 was
purchased from APExBIO. DSPC and cholesterol were purchased from
Nippon Fine Chemical. DMG-PEG2000 was purchased from Zhejiang
Guobang Pharmaceutical.

Appropriate amounts of ionizable lipids, cholesterol, DSPC, and
DMG-PEG2000 were dissolved in ethanol to make stock solutions of
each lipid. A mixed lipid solution was then prepared according to a
molar ratio of ionizable lipid:DSPC:cholesterol:DMG-PEG2000 of
50:10:38.5:1.5, resulting in a final lipid concentration of 12.5mM.
Luciferase mRNA was dispersed in a citrate buffer to make an acidic
mRNA solution. Using a PNI microfluidic device, the mRNA solution
and the lipid ethanol solution (at a nitrogen-to-phosphorus ratio of
6:1) were mixed at a flow rate of 12mL/min and a volume ratio of 3:1.
The mixture was dialyzed against 0.01M PBS for 12–24 hours to
remove the ethanol. After dialysis, the LNP solution was con-
centrated by ultrafiltration (Amicon-Ultra, MWCO 10KDa) and ster-
ilized by passing it through a 0.22 μm sterile filter. The particle size
and PDI of the LNP were measured using a Malvern particle size
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analyzer; the EE of the LNP was determined using the Quant-it
Ribogreen RNA assay kit; and themRNA concentration wasmeasured
using a Stunner high-throughput concentration and particle size
analyzer.

Tomeasure the LNP apparent pKa, LNPs were incubatedwith TNS
(2-(p-tolylamino)-6-naphthalenesulfonic acid) in different pH condi-
tions. The negatively charged TNS interacted with cationic LNPs,
emitting luminescence signals. The pH condition at which 50% of
ionizable lipids are charged is defined as the apparent pKa. First, a
series of buffers with a pH range from 2.0 to 12.0 was prepared by
adding 2M sodium hydroxide and 2M hydrochloric acid to basal
buffer (10mM sodium phosphate, 10mM sodium borate, 10mM
sodiumcitrate, 150mMsodiumchloride). Then, the series of pHbuffer
was added at 94μL to a black-bottom, 96-well plate, followed by
adding 4μL the LNP solution (0.05mgmL-1 mRNA, dissolved in PBS)
and 2μL TNS solution (300μM, 10% DMSO). After the addition of the
sample, the table was gently panned and shaken to mix well. Let the
sample stand for 7min at room temperature avoid light, and measure
the luminescence intensity at 325 nm excitation wavelength and
435 nm emission wavelength using an enzyme marker. The lumines-
cence intensity (Y-axis) was plotted against the pH of the assay buffer
(X-axis), and the value of LogEC50 was considered as the pKa of the
LNP to be measured.

AUC of the bioluminescence in vivo
This research complies with all relevant ethical regulations. Animal
procedures were performed under the guidance of animal ethics and
approved by the Institutional Animal Care and Use Committee of
School of Life Sciences, Fudan University. Mice were housed in cages
with six mice each, allowed unrestricted access to food and water,
and kept in conditions with a temperature range of 20–26 °C, a
relative humidity of 50–60%, and a 10 h/14 h light-dark cycle. For
animal experiments, mice were randomly assigned to each experi-
mental group and no data were excluded from the analyses. Female
BALB/c mice (6–8 weeks old, Vital River) were used in verifying the
performance of LNP. Mice were intravenously injected with LNPs
loaded with luciferase mRNA at a dose of 5 μg per mouse. D-luciferin
potassium salt was injected intraperitoneally at certain time points
after administration, and the total luminescence in the mice was
detected using an IVIS Spectrum small animal in vivo imaging system.
The luminescence total flux of the lipids was first converted into
logarithmic form and analyzed by One-Way ANOVA and followed by
the Bonferroni test, α = 0.05. Prism 9 (GraphPad Software, San Diego,
CA, USA) was used.

The Organ distribution of mRNA expression
BALB/c mice were intravenously or intramuscularly injected of LNPs
loaded with luciferase mRNA at a dose of 5μg mRNA per mouse.
D-luciferin potassium salt was injected intraperitoneally a dose of 3mg
per mouse 4 hours after administration. The in vivo bioluminescence
of whole body was detected and then the mice were euthanized to
obtain hearts, livers, spleens, lungs, kidneys and brains. The biolumi-
nescence of ex-vivo organs was detected to characterize the distribu-
tion of mRNA expression.

The Organ distribution of Cy5-labeled mRNA loaded in LNPs
BALB/c mice were intravenously injected of LNPs loaded with Cy5-
labeled luciferase mRNA at a dose of 5 μg mRNA per mouse. The mice
were euthanized and dissected to obtain the vital organs 4 hours after
administration. Each organ was grinded with PBS buffer into 20%
homogenate on ice and then the homogenate was centrifugated to get
supernatant. The emitted light with a wavelength of 670 nm of
homogenate supernatant was detected under the exciting light with a
wavelength of 650 nm, which was the signal of Cy5. Tissue homo-
genates containing different gradient concentrations of Cy5 mRNA

were prepared with blankmouse organs. For each organ, the standard
curve of Cy5 luminescence intensity to concentration of Cy5 mRNA
was drawn. Then, the concentration of Cy5 mRNA in homogenate and
the ratio of organ-distributed Cy5 mRNA were calculated.

Acute toxicity test
BALB/c mice were intravenously injected of LNPs loaded with lucifer-
ase mRNA at acute toxic dosages of 20 μg and 100μg mRNA per
mouse (1mgkg-1 and 5mgkg-1, respectively). The weight of mice was
monitored onDay 1, 2, 3, 4, 7, 9, 11, 13, and 14 after administration. Vital
organswere obtained at Day 14, weighed, fixed in 4%buffered formalin
for 3 days, embedded in paraffin, and cut into 5μm thick slices. The
slices were dewaxed in ethanol and xylene and then stained with
hematoxylin-eosin (H&E). Pathology slides were scanned using a digi-
tal slide scanner (3DHISTECH). In the acute toxicity test, the whole
blood was detected by an animal blood analyzer (HEMAVET). The
glutamic-pyruvic transaminase (ALT) and creatinine (Crea) were
detected using a biochemical analyzer (Rayto).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data generated in this study are provided in the Source Data file.
Source data are providedwith this paper and alsodeposited infigshare
repository70 (https://figshare.com/s/ad928807e1b4795b9b5e). Source
data of prediction result of the generated ionizable lipid library is
available on request from the corresponding author D.O. Source data
are provided with this paper.

Code availability
The codes that support the findings of this study are available on
request from the corresponding author D.O.
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