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Unsupervised inter-domain transformation
for virtually stained high-resolution mid-
infrared photoacoustic microscopy using
explainable deep learning

Eunwoo Park 1,2,10, SampaMisra1,2,10, DongGyuHwang 2,3,10, Chiho Yoon 2,4,
Joongho Ahn 2,4,5, Donggyu Kim1,2, Jinah Jang 1,2,3,6,7,8 &
Chulhong Kim 1,2,4,5,6,7,9

Mid-infrared photoacoustic microscopy can capture biochemical information
without staining. However, the long mid-infrared optical wavelengths make
the spatial resolution of photoacoustic microscopy significantly poorer than
that of conventional confocal fluorescencemicroscopy. Here, we demonstrate
an explainable deep learning-based unsupervised inter-domain transforma-
tion of low-resolution unlabeled mid-infrared photoacoustic microscopy
images into confocal-like virtually fluorescence-stained high-resolution ima-
ges. The explainable deep learning-based framework is proposed for this
transformation, wherein an unsupervised generative adversarial network is
primarily employed and then a saliency constraint is added for better
explainability. We validate the performance of explainable deep learning-
based mid-infrared photoacoustic microscopy by identifying cell nuclei and
filamentous actins in cultured human cardiac fibroblasts and matching them
with the corresponding CFM images. The XDL ensures similar saliency
between the twodomains,making the transformationprocessmore stable and
more reliable than existing networks. Our XDL-MIR-PAM enables label-free
high-resolution duplexed cellular imaging, which can significantly benefit
many research avenues in cell biology.

Confocal fluorescence microscopy (CFM) is the current gold standard
for high-resolution (HR) imaging techniques in the life sciences and
biomedicine1,2. Based on the excitation of fluorophores, various
fluorescence (FL) dyes distinctively specify biomolecules of interest in

a reliable and flexible manner. Using multiple excitation and emission
channels enables multiplexed imaging, offering cellular and sub-
cellular biological insights2–5. However, FL staining is time-consuming
and causes photobleaching and phototoxicity, challenging stable
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cellular imaging. The unstable readout of the FL signal, varying with
the imaging conditions or the status of the labeled sample, makes it
difficult to quantitatively analyze the FL intensity.

An alternative to CFM, photoacoustic microscopy (PAM) is a
promising biomedical imaging technology based on the light
absorption of chromophores6–8. Due to the strong light absorption in
endogenous tissue pigments, certain biomolecules can be spectrally
distinguished without labeling9–15. The majority of chemical specifi-
cities are observed as vibrational transitions in the infrared bands.
Chemical molecular bonds and functional group specificities are
identified by vibrational overtones and combinations of stretching
and bending modes. Particularly, signatures in the mid-infrared
(MIR) region can further distinguish chemical compositions with
distinctive spectral regions16. By detecting photothermal effects in
the functional group and fingerprint spectral regions, MIR-PAM can
provide bond-selective imaging based on vibrational absorption
contrast. PreviousMIR-PAM studies demonstrated label-free imaging
of lipids, proteins, and carbohydrates, with high sensitivity. Multi-
spectral MIR-PAM using fresh biological samples has been demon-
strated in applications ranging frommetabolic imaging at the cellular
level17 to histological imaging at the tissue level18,19. However, the
optical diffraction of long wavelengths limits the spatial resolution of
MIR-PAM, posing challenges to obtaining cellular-level HR images.
Although ultraviolet (UV) localization has improved the lateral
resolution of MIR-PAM18, the requisite complex hardware config-
uration, as well as UV light-induced photodamage, degrades the
stability of the imaging system. To ensure reliable cellular imaging
with MIR-PAM, high-resolution and subcellular feature identification
should be accompanied.

Rapid advances in deep learning (DL)-approaches have revolu-
tionized image processing20–26. To highlight crucial information or
reveal previously inaccessible data, DL-based image transformation
translates one image domain into another27,28. U-Net, one of themost
well-known convolution neural networks (CNNs), has excelled in
resolution enhancement29 and virtual staining30. In addition, a gen-
erative adversarial network (GAN) employs a perceptual-level loss
function to generate more accurate results30–32. However, these
familiar supervised DL methods heavily rely on large amounts of
high-quality training data and registered annotations. The innovation
of cycle-consistent GAN (CycleGAN) offered a breakthrough by
enabling unsupervised training without the requirement of strictly
matched image pairs33. CycleGAN presents a practical strategy for
cases where only unpaired images are available, and it is especially
useful in style transfer34,35 and biomedical imaging studies36,37.
Recently, there has been a growing interest in the explainability of DL
models. Although the sophisticated mathematics underlying DL
training algorithms is conceptually understandable, the algorithms’
architectures are more of a black box model. Achieving an explain-
able DL model would help developers troubleshoot problems and
better explain to clients why a certain outcome is predicted by the
model. In particular, explainable DL (XDL) for unsupervised training
facilitates effective feedback by visualizing the features that con-
tribute most to the outcome38.

Here, we present XDL-based MIR-PAM (XDL-MIR-PAM), a system
that achieves HR duplexed PA imaging at the cellular level without any
FL staining. A basic overview of XDL-MIR-PAM is shown in Fig. 1.
Cellular-level images are obtained by two independent optical imaging
modalities: MIR-PAM provides low-resolution (LR) protein-selective
imaging in unlabeled cells using a monochromatic wavelength,
whereas CFMprovides HRmultiplexed imaging in immunofluorescent
stained cells usingmultiple wavelengths. Figure 1a shows the workflow
for the unsupervised inter-domain transformation (UIDT). The UIDT
process has two components: (1) an image resolution enhancement
network (IREN) and (2) a virtual FL staining network (VFSN). Even with
unpaired image sets, these networks respectively transform LR images

into HR ones and transform unlabeled intensity images into virtually
stained (VS) images. In addition, the UIDT networks, based on the
CycleGAN model, transform images in the other domain, and saliency
image similarity metrics are employed in the networks to achieve
explainability for the DLmodels (Fig. 1b and Supplementary Fig. 1). To
correct the mapping direction and prevent image content distortions,
the explainable CycleGAN imposes a saliency constraint in addition to
the cycle-consistency loss functions. The saliency mask maintains a
high degree of similarity in each transformation. Consequently, by
integrating both domain advantages with superior reliability, XDL-
MIR-PAM has great potential as a groundbreaking imaging technology
in biological research.

Results
Label-free protein-selective MIR-PAM
To demonstrate protein-selectiveMIR-PAM, human cardiac fibroblasts
(HCFs), stromal cells in the cardiac tissue, were photoacoustically
imaged.We employed Fourier-transform infrared (FTIR) spectroscopy
to find chemical bonds in the HCFs. Figure 2a shows the optical
absorbance of HCF calculated by the averaged FTIR spectra. The main
absorption peaks of proteins appear at 1652 cm−1 for the amide I bond
and 1547 cm−1 for the amide II bond. The peak at 1083 cm−1 arises from
the absorption of phosphorylated molecules (PO2

− symmetric
stretching) and C–O bonds evidencing nucleic acids or phospholipids.
Accordingly, a tunable quantumcascade laser (QCL)wasused as a light
source in the MIR-PAM, and the center wavenumber was set to
1667 cm−1 (6.00μm) for label-free protein-selective imaging. The MIR-
PAM imaging system is shown in Fig. 2b (see the details in “Methods”).
The laser beam was efficiently delivered through a dry nitrogen
chamber,mitigating light attenuation fromwater vapor, and cells were
seeded on a zinc selenide (ZnSe) plate, which was highly transparent
over the wide IR band. The reflective objectives focused the MIR light
on the target cells, and the generated PA signals were detected by an
ultrasound transducer (UST) with a central frequency of 30MHz.
Because scanning was driven by motorized XY stages, whose motion
might dislodge the cells, the ZnSe platewas coatedwith fibronectin for
cell adhesion. Label-free MIR-PAM images of HCFs on days 1 and 7 are
shown in Fig. 2c. The HCFs are visualized based on protein selectivity
without FL staining in the cell nucleus and filamentous actin (F-actin).
16 images were used each on days 1 and 7. During the HCF growth, the
averaged PA signal amplitude increases by about 1.40 times, implying
that the amount of protein increases (Fig. 2d). In the enlarged view
shown in Fig. 2e, both images show high PA amplitudes in the cell
nuclei, one of which is indicated by white arrows. On day 7, more
F-actin is expressed, and HCF elongation is observed (green arrow).
Therefore, the overall cell confluency increased from 51.2 ± 2.1% to
75.7 ± 3.9% (Fig. 2f). By using label-free MIR-PAM for protein-selective
imaging of HCF, the cell expression and growth can be quantitatively
inferred. However, the image resolution is not sufficient to distinguish
detailed structures at the cellular level. The developed MIR-PAM has a
lateral resolution of about 6.6μmwith an imaging depth of about 60.7
μm (Supplementary Note 1 and Supplementary Fig. 2).

XDL-based image resolution enhancement network (XDL-IREN)
Introduced in Fig. 1a, the IREN, a DL network, enhances lateral reso-
lutions with transformation between imaging modalities. The IREN
aims to predict HR-MIR-PAM images. MIR-PAM and CFM images are
utilized as LR input and HR target domains, respectively (Fig. 3a).
These image collections in both domains do not require pre-aligned
image pairs. After independently acquiring images in the source and
target domains, we randomly divided the whole-slide images from
each domain into ~ 900 tiles of 256× 256 pixels to create the training
dataset. Such a minimal input size can speed up the training process
and decrease memory requirements. No paired images were included
in the two training sets. Then, we trained the IREN on this dataset to
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learn the transformation from the LR domain to the HR one. In the
CycleGAN loss restrictions, we added a saliency constraint as well as a
structural similarity index (SSIM) to increase the explainability of the
model (Fig. 3b). Saliency loss continuously tracks saliency masks for
both image domains to address unexpected errors that inevitably
occur during the training process (Supplementary Fig. 3). In addition,
GradCAM39 technique is used to further explain the inner behavior of
the model during the domain transformation from LR to HR (Supple-
mentary Fig. 4). GradCAM heatmaps show the model’s attention in
each transformer layer of the XDL-based generator. GradCAM cap-
tures themorphological and textural features inHCF that contribute to
the transformation, and the key features become apparent as the layer
progresses. Notably, the cell nucleus is consistently highlighted and
structurally distinguished from F-actin.

This XDL-IREN has greater stability and dependability than the
traditional DL-based one because the saliency similarity in the IREN
makes sure that the extracted saliency mask of the input LR image
stays consistent when transferred to the HR domain. Without this
restriction, the output HR image would be deformed and lose the
semantic content of the LR images. Figure 3c tabulates the DL per-
formance comparison resulting from the loss restrictions. Compared

to the scores for the DL-IREN, for the XDL-IREN, the calculated Frechet
inception distance (FID) and kernel inception distance (KID) scores of
the transformed images are decreased by 71.0 and 9.5, respectively.
The XDL-IREN with both constraints shows the best performance. In
terms of image fidelity, a low FID score indicates that the feature dis-
tance of the multivariate distribution is close, and a low KID score
indicates that themaximummeandiscrepancyof features between the
synthesized and real images is small (see the details in “Methods”).
Figure 3d compares images processed by the proposed IRENs with
conventional DL and XDL. Here, the conventional DL network was
assigned to the original CycleGAN model, while the model with the
addition of SSIM and saliency loss restrictions was assigned to the XDL
network. The IREN can transform the LR-MIR-PAM images into the HR-
MIR-PAM ones while preserving the original structures of the given
CFM images (the ground truth). Cell nuclei and F-actins appear in oval
and linear structures, respectively. In particular, the XDL-IREN
improves the LR-MIR-PAM images over the DL-IREN, which are more
comparable to the HR images. As shown in the magnified view, the
XDL-IREN-based HR-MIR-PAM images reveal more features of F-actins
that are not shown by the DL-IREN (yellow arrows), and they
preserve the contents of the cell nucleus (green arrows). Thus,

Im
m

un
of

lu
or

es
ce

nc
e 

st
ai

ni
ng

Cell seeding

Cell preparation

Low-resolution
MIR-PAM images

High-resolution
CFM images

Optical imaging Prediction & analysisUnsupervised inter-domain transformation (UIDT)

Cycle-consistent Generative Adversarial Network (CycleGAN)

Image in 
domain A

Image in 
domain B

Generator G

Generator F

Loss functions

DA DB

Explainability

Input 
image 

Generated 
image

Saliency similarity

Masking

Masking

Explainable deep learning (XDL) network

Deep learning-based 
predicted image

• Label-free
• High-resolution
• Multiplexed
• Quantitative

Image resolution 
enhancement network

(IREN)

Virtual fluorescence 
staining network

(VFSN)

Low resolution (LR)

High resolution (HR)

Unlabeled intensity

Virtually stained

a

b

Fig. 1 | Overview of the XDL-MIR-PAM. aWorkflow for UIDT in MIR-PAM images.
Low-resolutionMIR-PAM images and high-resolution CFM images of cultured cells
are inputs of UIDT. The two-step UIDT produces high-resolution and virtually
fluorescence-stained imagesof label-free cells.bThe network configuration for the
XDL. By adjusting the saliencymasks between the input and generated images, the

XDL model adopts a saliency similarity in loss functions of the existing network to
achieve explainability. MIR-PAM, mid-infrared photoacoustic microscopy, CFM,
confocal fluorescence microscopy, and DA and DB denote discriminators of each
domain.

Article https://doi.org/10.1038/s41467-024-55262-2

Nature Communications |        (2024) 15:10892 3

www.nature.com/naturecommunications


the XDL-IREN-generated HR-MIR-PAM images can capture detailed
structures of HCF (1–2μm) beyond the resolution of LR-MIR-PAM
(6–7μm) (Supplementary Fig. 5).

XDL-based virtual fluorescence staining network (XDL-VFSN)
Following the resolution enhancement in Figs. 3a, 4ademonstrates the
operating sequence of the XDL-based VFSN for CFM images of HCFs.
We used HR-CFM images as the training dataset for virtual staining.
Grayscale (i.e., unlabeled) and coloredCFM images are adopted for the
input and ground truth domains, respectively. The VFSN aims to
transform unlabeled CFM intensity images into virtually FL-stained
ones with biological specificity. The training procedure of the VFSN is
similar to that of the IREN. Using the unpaired training dataset, each
domain contains ~ 900 image tiles. The unlabeled CFM images (i.e.,
input), two types of VFSN predicted images (one with conventional DL
and the other with the XDL), and the corresponding ground truths are
shown in Fig. 4b. Here, we employ saliency similarity to increase the
model’s explainability and compare the results between the CycleGAN

(conventional DL) and explainable CycleGAN (XDL) in the VFSN. In
typical FL staining of HCFs, cell nuclei, and F-actins are visualized by
blue-FL Hoechst and green-FL fluorescein (FITC) stains, respectively.
While the DL-VFSN shows non-specific staining errors (yellow arrows),
the XDL-VFSN achieves a more realistic label distribution and better
global effects. Without prior annotation or segmentation, chromatic
channel separation of cell nuclei and F-actins is feasible. We further
quantified the performances of the VFSN by calculating the SSIM, peak
signal-to-noise ratio (PSNR), Pearson’s correlation coefficient (PCC),
FID, and KID for 98 test image tiles (Fig. 4c). All scoring metrics were
significantly improved by the XDL-VFSN, demonstrating its robust-
ness. This VFSN enables highly reliable labeling in the unlabeled CFM
images domain and is envisaged to be linked with IREN.

Framework configurations of XDL-based unsupervised inter-
domain transformation (XDL-UIDT)
By integrating two prebuilt DL networks (i.e., the IREN and VFSN), we
configured the frameworks for UIDT. To showcase the ability of the

d

f

Day 1 Day 7 Mean SD

PA
am

pl
itu

de
[a

rb
.u

ni
t]

0.20

0.15

0.05

0.10

Day 1 Day 7

****

C
on

flu
ec

ny
[%

]

90

80

40

50

Day 1 Day 7

60

70

****

ba

Ab
so

rb
an

ce
[a

rb
.u

ni
t]

Amide 

Amide 

Protein

Wavelength [μm]

Wavenumber [cm-1]

HCF

0

2

4

6

1700 1600 1500 1400 1300 1200 1100 1000

6 7 8 9 10

Normalized PA amplitude
MIN MAX

Day 7

25 μm

Day 1

25 μm

Day 7

1 mm

Day 1

1 mm

c

e

PC

AMP

QCL L

W
M

OBJ

WT Stage

UST

HCF

L

N2 Enclosure

PD

N2 OUT

N2 IN

Fig. 2 | Label-free MIR-PAM of HCFs. a Fourier-transform infrared spectrum of
HCFs. b Schematic diagram of MIR-PAM system. c Label-free MIR-PAM images of
HCFs at days 1 and 7 (pseudo-colored). d Averaged PA signal amplitudes (n = 16,
mean ± SD). Significance by unpaired two-tailed t test: ****, p = 1.3 × 10−16. e Magni-
fied view images of Fig. 2c. f, Cell confluency at day 1 and day 7 of growth. (n = 16,

mean ± SD). Significance by unpaired two-tailed t test: ****, p = 4.9 × 10−20. QCL,
quantum cascade laser; L, Lens; W, window; M, Mirror; OBJ, Objective lens; WT,
water tank; HCF, human cardiac fibroblasts; UST, Ultrasonic transducer; and AMP,
Amplifier. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55262-2

Nature Communications |        (2024) 15:10892 4

www.nature.com/naturecommunications


UIDTs, we compared the performance of two framework configura-
tions: (1) end-to-end and (2) pipeline. Both frameworks use the same
LR-MIR-PAM images as input and translate them to virtually FL-stained
HR-MIR-PAM ones. As shown in Fig. 5a, framework 1 (end-to-end)
directly transforms to the target domain, whereas framework 2
(pipeline) predicts unlabeled HR-MIR-PAM images using the IREN and
then predicts generated VS-HR-MIR-PAMones using the VFSN.We also
utilized saliency similarity in both frameworks to achieve explain-
ability. The inset tables in Fig. 5a show the combinations of DL net-
works for comparing frameworks with explainability. For the DL and
XDL, the CycleGAN and explainable CycleGAN are adopted, respec-
tively. First of all, Fig. 5b compares the generated VS-HR-MIR-PAM
images by using the XDL-UIDT frameworks. Framework 1 (Net 2) pre-
sents noticeably degraded sharpness and contrast in its VS images.
Further, it also shows hallucinations of nuclei that cannot be seen in
the ground truth images (yellow arrows). In contrast, Framework 2
(Net 6) successfully avoids these DL hallucinations and artifacts and
produces sharp VS images, with a goodmatch to the ground truth. We
have further compared the performance of the frameworks with (XDL)

and without (DL) using saliency constraints in each network. When the
images are transformed across two domains, content distortions can
be prevented by applying the saliency constraint (Supplementary
Fig. 6). The explainable frameworks can learn correct transformations
for both resolution enhancement and virtual FL staining applications,
and they achieve the best performance. By calculating the DL perfor-
mance scores of the generated VS-HR-MIR-PAM images and corre-
sponding CFM ones, we compared with different frameworks with or
without explainable frameworks (Fig. 5c). The explainable framework
2, where saliency constraints are added in both IREN and VFLN (Net 6),
significantly reduces the FID and KID values compared to the other
networks, demonstrating it performs robustly with all the input image
types studied.

We examined the biological features in HCF images to verify the
feasibility of XDL-MIR-PAM. Theproperties are extracted after splitting
channels from all tile images (Supplementary Fig. 7). From the blue
channel, which mimics Hoechst staining of cell nuclei, we estimated
the number, size, and aspect ratio of the cell nuclei. In addition,
because the green channel mimics FITC staining for F-actin, we used it
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to estimate the fibroblast area. The images generated by the XDL-MIR-
PAM (Net 6) are quantitatively similar to the CFM images (Fig. 5d).
Notably, in the fibroblast area, slightly higher result values of XDL-MIR-
PAM imply that more structures were visualized with higher contrast
compared to optically sectioned CFM images because the MIR-PAM
has a greater depth-of-field (DOF) (Supplementary Fig. 8).

Discussion
In this study, we introduced the XDL-UIDT, which implements image
transformation to achieve VS-HR-MIR-PAM images. MIR-PAM is a
promising imaging technology for identifying intrinsic properties of
molecular bonds based on optical absorption without any chemical
staining, but the spatial resolution for subcellular imaging is unsa-
tisfactory due to the diffraction limitation of the long wavelengths. To
overcome this, we devised the UIDT to transform the LR-MIR-PAM
images into CFM-like ones. Using CycleGAN, an adequate network for
unsupervised training, enables transforming the source domain into a
target domain without the supervision of paired training data and
time-consuming image registration. We first demonstrated label-free
HCF imaging with protein selectivity using standalone MIR-PAM, then
applied the UIDT for additive image processing with CFM. The UIDT,
which consists of a two-step pipeline framework, overcame the

limitations of conventionalMIR-PAM by virtually improving resolution
and FL staining. Furthermore, the proposed explainable framework
ensured a content-preserving transformation by maintaining a similar
saliency mask. Saliency loss helps address errors such as the mis-
alignment of key features between the domains and the risk of
focusing on irrelevant areas (e.g., background noise and artifacts)
during the transformation. By monitoring the attention patterns, we
can ensure that the model maintains attention on critical regions, and
identify potential problems where the model focuses incorrectly dur-
ing training. If the attention is on insignificant regions from the
beginning, corrections can be made after a few iterations to shift the
model’s focus towardmore relevant features. This insight enables us to
adjust hyperparameters, retrain the model, and refine the dataset to
improve performance and generalizability. These steps enhance the
accuracy and interpretability of the UIDT. This enhancement can
successfully avoid distortion of the image content and disorganization
of semantic information, considerably improving stability and relia-
bility and removing barriers to biological analysis. In addition, incor-
porating the physics of image formation into either the forward or
backward mapping of CycleGAN reduces the number of network
parameters and, more importantly, improves the quality of the trans-
formation. The proposed XDL-based framework acts as an add-on
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module to secure the robustness of the framework, producing more
consistent images. The quality of transformed images was evaluated
by comparing them to corresponding ground truth images. Quanti-
tative results showed our proposed method can learn precise domain
mappings and achieve state-of-the-art performance. To sum up, the
XDL-MIR-PAMsynergizes two imagingmodalities (MIR-PAMandCFM),
enabling label-free HR duplexed imaging in HCFs.

In terms of generalization, we applied the prebuilt framework to
the disease model (Supplementary Fig. 9). In fibrotic conditions,
quiescent fibroblasts can be transited to myofibroblasts with the
upregulation of type I collagen and alpha-smooth muscle40. The

activation by the transforming growth factor-beta (TGF-β) induces cell
proliferation41. We observed a significant increase in cell number (2.1-
fold: 0.17 to 0.36 ea) and fibroblast area (4.8-fold: 270 to 1301μm2)
using XDL-MIR-PAM. Moreover, we also confirmed that the nucleus
area increased (1.4-fold: 172.5 to 235.1μm2). The results of XDL-MIR-
PAM in disease models are qualitatively and quantitatively similar to
the CFM ones, and these morphological changes are consistent with
the previous studies42. In addition, the superiority of XDL-MIR-PAM
was demonstrated by visualizing living cells (Supplementary Note 2
andSupplementary Fig. 10). VS-HR-MIR-PAM images of label-free living
HCF were predicted and biologically analyzed following the cell
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Fig. 5 | Comparative performance of frameworks applied to theXDL-MIR-PAM.
a Schematic of two types of frameworks. b Visual and (c)table for quantitative
comparison between the networks. Scale bars, 50 μm. In the VS-HR-MIR-PAM
images of HCFs, the blue and green channels refer to the cell nuclei and F-actins,
respectively. The best scores are highlighted in bold font. d Quantitative com-
parisons of the number of nuclei, nucleus area, nucleus aspect ratio, and fibroblast

area among various frameworks (n = 49, mean± SD). For the DL and XDL, the
CycleGAN and explainable CycleGAN are adopted, respectively. Significance by
one-way ANOVA with Dunnett’s multiple comparisons test: n.s, not significant
(p >0.05). p =0.7059 (number of nuclei), p =0.9999 (nucleus area), p =0.9564
(nucleus aspect ratio), and p = 1.0000 (fibroblast area). Source data and p-values
are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-024-55262-2

Nature Communications |        (2024) 15:10892 7

www.nature.com/naturecommunications


growth. However, the performance of XDL-UIDT in living cells is lower
than in fixed cells due to the low contrast in the original MIR-PAM
images. Not only does the intracellular distinction diminish, but so
does the cell boundary43. Aquatic cell culture media generates non-
negligible PA signals induced by the MIR wavelengths, and thus the
image contrasts from the living cells are relatively poor. Accordingly,
to achieve efficient live-cell XDL-MIR-PAM imaging, the imaging plat-
form, including the coupling media, needs to be optimized. Further-
more, the XDL-based framework requires delicate pre-processing (e.g.,
normalization and noise filter) and sufficient data collection (Supple-
mentary Fig. 11). The core idea behind data augmentation is to add
more samples or information to the training dataset, increasing the
invariance and robustness of DLmodels. Here, we used horizontal and
vertical flipping, tile overlapping, and rotation as augmentation tech-
niques.We employed four-fold cross-validation to solve the overfitting
problem where three WSI images are employed as a training set and
one WSI image is used as a validation set in each fold. The FID & KID
scores for each fold are shown in Supplementary Table 1.

We envision further improvements to this work. First, we can
complement XDL networks with alternative state-of-the-art models.
Recently, StyleGAN has been introduced to unravel high-level attri-
butes with latent factors44. As the UIDT aims to translate between two
different imagingmodalities, stochastic effects in the generated image
domain can provide controllability to the DL networks, ensuring
improved performance, particularly in the IREN, with content pre-
servation by explainable saliency similarity. Second, by embracing
more FL channels with functional (spectral) information as well as
structural information, HR multiplexed imaging for more diverse
components can be achieved. Here, we have demonstrated a two-
channel VFSN to distinguish HCF’s cell nuclei and F-actins. Co-culture
with other cells or further understanding of detailed microenviron-
ments would require additional contrast channels, and multi-channel
VFSN would allow observation of subcellular compositions and
dynamics without biochemical labeling45. Moreover, cells undergo
morphological and physiological changes in pathological situations46.
In various disease situations, comprehensive identification of
abnormality can be achieved by further training with complemental
information47. Understanding pathophysiological phenomena (e.g.,
cellular behaviors and morphological changes) through DL-assisted
assessment canbehelpful for practical biological research. Third, XDL-
UIDT performance and accuracy will be further improved with addi-
tional steps. DL-based networks (e.g., cell segmentation and classifi-
cation) can be integrated into the framework. Interconnected DL
framework enhances feature recognition, which aids in addressing
artifact issues48. Fourth, the improved MIR-PAM can achieve superb
volumetric images. The CFM provides optically sectioned 2D images,
whereas the MIR-PAM can reconstruct 3D images, resulting in differ-
ences between images. However, poor spatial resolution and a shallow
DOF impede the reconstruction of HR volumetric images. A
metasurface-assisted MIR-PAM can increase the DOF and improve the
lateral resolution49. In addition, a broadband UST can enhance sensi-
tivity and axial resolution50. Bridging the gap between inter-domain
images will enhance the performance of the XDL-UIDT. In conclusion,
theXDL-UIDT canbe extended toprovide stable transformationacross
various imagingmodalities and labeling protocols. We believe that our
XDL-MIR-PAM provides a new blueprint for cell biology research.

Methods
MIR-PAM system
We used a pulsed quantum cascade laser (QCL) (MIRcat, Daylight
Solutions) as a light source for the MIR-PAM system. The QCL is tun-
able in the spectral range of 5.55–7.35μm (1801–1360 cm−1), covering
the high optical absorption bands of proteins, and it has a linewidth of
about 1 cm−1 (full width of half maximum). The pulse repetition rate
was set to 100 kHz, with a pulse width of 20 ns. The laser beam was

expanded and collimated by using ZnSe plano-convex lenses (#11-419
and #11-421, EdmundOptics) and focused on target samples through a
36x reflective objective lens (50102-02, Newport). A 12.5mm diameter
ZnSe window (#68-511, EdmundOptics) was adopted as a sample plate
and attached to a water bath filled with PA coupling media. Heavy
water (Deuterium oxide, 151882, Sigma-Aldrich) and cell culturemedia
were used for the fixed and living cell imaging, respectively. Generated
PA waves were detected via a customized UST with a center frequency
of 30MHz, a focal length of 4.5mm, and an aperture diameter of
6mm. The raw PA signals were amplified and filtered by two low-noise
amplifiers (ZFL-500LN+, Mini-Circuits) with a gain of about 56dB and
a low-pass filter (ZX75LP-40-S +, Mini-Circuits). The signals were cap-
tured by a data acquisition (DAQ) board (NI PCIe-6321, National
Instruments) and a 12-bit digitizer (ATS9350, AlazarTech, sampling
rate: 250 MS/s). The imaging system was synchronized via a DAQ
program developed in LabVIEW software (LabVIEW 2017, National
Instruments). Stage-raster scanning was driven by two motorized lin-
ear stages (L-406.10SD00, Physik Instrumente), and the laser fluence,
detected by a mercury cadmium telluride amplified photodetector
(PDAVJ10, Thorlabs), was used to calibrate the PA signal pixel-by-pixel.

Cell preparation
HCFs (C-12375, Promocell) up to passage 6 were cultured in a Fibro-
blast GrowthMedium3 kit (C-23130, Promocell) supplementedwith 1%
penicillin-streptomycin (SV30010, Hyclone). The medium was chan-
ged every other day before use. For cell seeding, fibronectin (1:200
diluted, 356008, Corning) was diluted with 1X PBS (SH30028.02,
Hyclone) and coated on ZnSe substrates. The cells were dissociated
using TrypLE (12604-021, Thermo Fisher Scientific), resuspended with
maintenance medium, and seeded on fibronectin-coated ZnSe plates.
To activate cardiac fibroblasts into myofibroblasts, 20 ng/ml TGF-β1
(7754-BH-100, R&D systems) was treated to HCFs 24 h after cell seed-
ing. The TGF-β1-containing medium was changed every other day.

Immunofluorescence staining analysis
For immunofluorescence imaging, the ZnSe plates were washed with
1X PBS for 5min and fixed with 4% paraformaldehyde (CBPF-9004,
Chembio) for 10min. The samples were then washed three times with
1X PBS for 5minperwash. The sampleswere permeabilizedwith a 0.1%
Triton X-100 (T1020, Biosesang) solution for 10min. Afterward, the
samples were blocked with 5% normal goat serum (50062Z, Thermo
Fisher Scientific) for 1 h. The cells were stained with fluorescein phal-
loidin (1:40 diluted, F432, Thermo Fisher Scientific) and Hoechst
(1:1000 diluted, H3570, Thermo Fisher Scientific). The samples were
imaged using the NIS-Elements advanced research software on an FL
confocal laser scanning microscope (Nikon Ti Eclipse; Nikon). Three
excitation wavelengths of 405, 488, and 594 nm were used to con-
struct the blue, green, and red channels, respectively.Weobtained and
merged images at a magnification of 20x, corresponding to a pixel
resolution of 0.31μm/pixel.

DL model: network architecture, training, and validation
To discover the unsupervised mapping between two image domains,
both the IREN and VFSN used the GANs architectures, which were
madeupof twodeepneural networks: a generator and adiscriminator.
The generator and discriminator utilized the traditional CycleGAN
model design, as shown in Supplementary Fig. 1. The generator net-
work adopted the ResNet-based model51, consisting of a down-
sampling path, a residual path, and an upsampling path. The
generator’s first three layers used downsampling and strided con-
volution to extract low-level abstract representations. The first con-
volutional layer in the downsampling process increased the image
channel while maintaining the same size, but the next two layers
reduced and doubled the image size, respectively. Unlike the original
generator in CycleGAN, we used a 3 × 3 kernel for the first
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convolutional layer to keep the detailed features of the image. After
thefirst layer, the channel sizewas increased to 64while the image size
stayed the same. The first layer was followed by two Convolution-
InstanceNorm-ReLU layers in the downsampling route. These con-
volution layers were followed by a typical pooling layer with a stride.
After passing through the downsampling layers, the image size was
reduced by 2, but the channel number was increased by 2. The
downsampling layers were followed by a lengthy residual neural net-
work with 9 residual blocks. Each residual block was passed while
maintaining the same image size and channel number. High-level
characteristics were extracted by residual blocks. The number of
residual blocks indicated the model’s capacity. It is worth noting that
more residual blocks are recommended for more complex tasks. The
upsampling blocks lowered the number of channels by using three
convolution layers with activation functions after bilinearly scaling the
tensors twice. After each layer of upsampling, the image size was
doubled by two, while the channel number was cut in half. After two
layers of upsampling, the image size was restored to its former size,
and thenumber of channelswas reduced to64. The channel number of
the image was restored to 3 with the aid of the final Convolution layer.
Strided convolution was also used to implement the final three layers
of the upsampling process. Theywere applied to the image to rescale it
to its original size and combine the extracted features. Features at
different scales can be learned by using skip connections between the
downsampling and upsampling layers at the same level. Due to the
wide variety of microscopy images, the two GANs must have identical
input and output channel numbers. Padded convolutional layers were
employed to ensure that the image size was maintained while passing
through the convolutional layers. Five blocks in thediscriminator, each
made with two convolutional layers and leaky ReLU pairs, collectively
doubled the number of channels. The next layer was a two-stride
average pooling layer. Following the five blocks, two fully connected
layers decreased the output dimensionality to a single number, which
was then used to determine the likelihood that the input to the dis-
criminator network was a 1-dimensional output (either real or fake).
The input of the discriminator network was either the virtually stained
images from the generator or the immunofluorescent stained ground
truth images. The input image was divided into small tiles, and clas-
sification was carried out at the tile scale. The final result was the same
as the mean classification loss across all tiles.

Loss function
We start by gathering two image sets (A and B) to sample the source
domain and the target domain. To learn a pair of opposing mappings
between the two image domains, a forward GAN and a backward GAN
are trained simultaneously. A forwardGANuses an image fromdomain
A (designated as a), the generator GA creates the new output image
(referred to as GA að Þ), and the corresponding discriminator DB deter-
mines whether GA að Þ is false or true. In a backwardGAN, to distinguish
between GB bð Þ and the images in domain A DA is employed to build a
new image GB bð Þ based on image b in domain B. The loss function for
the proposed method is made up of the losses of the forward and
backward GAN (LGAN), the cycle consistency loss (LCYC), the SSIM loss
(LSSIM), and the saliency loss (LS). For a forward GAN and backward
GAN, the loss function is expressed as

LGAN GA,DB

� �
= Eb DB bð Þ � 1

� �2h i
+ Ea DB GA að Þ� �� �2h i

ð1Þ

LGAN GB,DA

� �
= Ea DA að Þ � 1

� �2h i
+ Eb DA GB bð Þ� �� �2h i

ð2Þ

The expectation for the randomvariables in eachdomain is shown
by the symbol E . . .½ �. The process for GB GA að Þ� �

is characterized as the
forward GAN, whereas the procedure for GA GB að Þ� �

is the backward
GAN. The loss values jjGB GA að Þ� �� ajj1 and jjGA GB bð Þ� �� bjj1 should

be reduced if themodel is properly trained. The cycle consistency loss
is therefore described as

LCYC GA,GB

� �
= Ea jjGB GA að Þ� �� ajj1

� �
+ Eb jjGA GB bð Þ� �� bjj1

� �
ð3Þ

The identity loss in the original CycleGAN model33, which was
intended to maintain the color of input images, was dropped because
it was ineffective in maintaining the image content. The SSIM loss52

which helps preserve structural similarity between real and cycle-
reconstructed images is expressed as

LSSIM GA,GB

� �
= Ea 1� SSIM a,GB GA að Þ� �� �� �

+ Eb 1� SSIM b,GA GB bð Þ� �� �� �

ð4Þ

To achieve content-preserving transformation, we additionally
imposed a saliency loss function. This loss function23 is based on the
finding that the backgrounds of microscope images, unlike the back-
grounds of natural scenes, have comparable intensities. The loss was
created to keep consistent the content masks extracted by using
threshold segmentation:

LS GA,TA,TB

� �
= Ea jjsigmoid a� TA

� � � 100� �� sigmoid GA að Þ � TB

� � � 100� �jj1
� �

ð5Þ

LS GB,TB,TA

� �
= Eb jjsigmoid b� TB

� � � 100� �� sigmoid GB bð Þ � TA

� � � 100� �jj1
� �

ð6Þ

LS GA,GB,TA,TB

� �
= LS GA,TA,TB

� �
+ LS GB,TB,TA

� � ð7Þ

Here, the segmentation operators TA and TB are parameterized by
thresholds for domains A andB, respectively. To produce a satisfactory
saliencymask, the ideal thresholds weremanually determined through
experimentation. Finally, the full loss function can be expressed as

L GA,GB,DA,DB,TA,TB

� �
= LGAN GA,DB

� �
+ LGAN GB,DA

� �
+ λLCYC GA,GB

� �

+ ξLSSIM GA,GB

� �
+ρLS GA,GB,TA,TB

� �

ð8Þ

where λ, ξ , and ρ are weighting constants to impose the cycle-
consistency loss, SSIM loss, and saliency loss, respectively.

Quantitative image metric
We utilized the PSNR53, PCC54, SSIM52, FID55, and KID56 as evaluation
indicators to assess the accuracy of the network output images
quantitatively. They are described as

PSNR a,bð Þ= 10×
MAX2

I

MSE
ð9Þ

whereMAXI is themaximumpossible value of the ground truth image.
The mean square error (MSE) is defined as

MSE=
1
n2

Xn�1

i=0

Xn�1

j =0

I i, jð Þ � K i, jð Þ½ �2 ð10Þ

where I stands for the target image, while K represents the image
compared to I.

PCC a,bð Þ= σab

σaσb
ð11Þ

SSIM a,bð Þ= 2μaμb + c1
� �

2σab + c2
� �

μ2
a +μ

2
b + c1

� �
σ2
a + σ

2
b + c2

� � ð12Þ
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where the two images being compared are denoted by a and b. The
mean values of a and b are represented by μa and μb, respectively. The
standard deviations of a and b are represented by σa and σb, respec-
tively, and σab stands for the cross-covariance of a and b. The
constants c1 and c2 are used to prevent division by zero.

The FID andKID are used to evaluate the visual quality of generated
images, and both measure the distribution divergence between the
generated images and the real images57. These metrics are the most
well-accepted for measuring the images generated by unsupervised
image translationmodels. For each pair of compared image sets, the FID
creates a Gaussian distribution from the hidden activations of Incep-
tionNet and then calculates the Fréchet distance between those Gaus-
sians. The Fréchet distance is used to evaluate the quality of generated
images, where a lower FID indicates a smaller distance between the real
and target images. KID is a measure comparable to the FID, but it uses
the squared maximum mean discrepancy (MMD) between Inception
representations with a polynomial kernel. KID, in contrast to FID, offers
a straightforward, unbiased estimator, making it more trustworthy,
particularly when there are many more inception feature channels than
image numbers. A lower KID indicates a higher visual similarity between
real and predicted images. Our implementation for FID and KID is based
on https://github.com/toshas/torch-fidelity.

Implementation details
The image pre- and post-processing steps were implemented in
MATLAB (R2021b, The MathWorks Inc.). The neural networks were
implemented using Python 3.10.12, CUDA 11.8.0, and PyTorch 2.1.0.
The training was carried out using an Intel Core i7 CPU, 32 GB of
RAM, and two Nvidia GeForce RTX 2060 SUPER graphics pro-
cessors (GPUs).

Statistics and reproducibility
At least three independent biological samples were collected for every
experimental group. The investigators were not blinded to allocation
during experiments andoutcome assessment. However, in the training
phase, data were randomly divided and shuffled for unsupervised
learning. Representative experiments for the network module perfor-
mance of IREN (Fig. 3) and VFSN (Fig. 4) were performed using 96 test
tiles. No datawere excluded from the analysis. Statistical analyseswere
performed using t tests, one-way or two-way ANOVA, assuming equal
variance. Sample sizes are indicated in the figure legends, and sig-
nificance was defined as p-values < 0.05. Data are presented as
mean± SD (standard deviation). Statistical analyses were conducted
using GraphPad Prism 10 software.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
TheXDL-MIR-PAMdata generated in this study and test data have been
deposited in the Zenodo database [https://doi.org/10.5281/zenodo.
14062532]58. The training datasets are available from the correspond-
ing author upon request, for research purposes. The sample test code
with pre-trained networks is provided in GitHub: https://github.com/
YoonChiHo/XDL_MIR_PAM_202459. Source data are provided in
this paper.

Code availability
The code is available at https://github.com/YoonChiHo/XDL_MIR_
PAM_202459.
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