
INFECTION AND IMMUNITY, July 2005, p. 3999–4006 Vol. 73, No. 7
0019-9567/05/$08.00�0 doi:10.1128/IAI.73.7.3999–4006.2005
Copyright © 2005, American Society for Microbiology. All Rights Reserved.

Suppression of Bladder Epithelial Cytokine Responses by
Uropathogenic Escherichia coli

David A. Hunstad,1 Sheryl S. Justice,2 Chia S. Hung,2 Scott R. Lauer,3
and Scott J. Hultgren2*

Departments of Pediatrics1 and Molecular Microbiology,2 Washington University School of Medicine,
St. Louis, Missouri 63110, and School of Medicine, Saint Louis University,

St. Louis, Missouri 631033

Received 17 September 2004/Returned for modification 4 January 2005/Accepted 16 February 2005

Urinary tract infections are most commonly caused by uropathogenic strains of Escherichia coli (UPEC),
which invade superficial bladder epithelial cells via a type 1 pilus-dependent mechanism. Inside these epithe-
lial cells, UPEC organisms multiply to high numbers to form intracellular bacterial communities, allowing
them to avoid immune detection. Bladder epithelial cells produce interleukin-6 (IL-6) and IL-8 in response to
laboratory strains of E. coli in vitro. We investigated the ability of UPEC to alter epithelial cytokine signaling
by examining the in vitro responses of bladder epithelial cell lines to the cystitis strains UTI89 and NU14. The
cystitis strains induced significantly less IL-6 than did the laboratory E. coli strain MG1655 from 5637 and T24
bladder epithelial cells. The cystitis strains also suppressed epithelial cytokine responses to exogenous lipo-
polysaccharide (LPS) and to laboratory E. coli. We found that insertional mutations in the rfa and rfb operons
and in the surA gene all abolished the ability of UTI89 to suppress cytokine induction. The rfa and rfb operons
encode LPS biosynthetic genes, while surA encodes a periplasmic cis-trans prolyl isomerase important in the
biogenesis of outer membrane proteins. We conclude that, in this in vitro model system, cystitis strains of
UPEC have genes encoding factors that suppress proinflammatory cytokine production by bladder epithelial
cells.

Urinary tract infections (UTI) represent a significant cause
of morbidity and are most frequently caused by uropathogenic
Escherichia coli (UPEC). The ability of UPEC to establish
infection in the urinary tract is most closely linked to the
expression of adhesive organelles called pili that interact with
proteins on urinary epithelial cells. P pili are produced by
pyelonephritic strains of UPEC and are critical for the estab-
lishment of pyelonephritis (34). Isoforms of the P pilus adhesin
recognize different globoseries glycolipids on host kidney epi-
thelia, resulting in species specificity of this interaction. Type 1
pili bind to mannose-containing uroplakin molecules on the
surfaces of superficial umbrella cells of the bladder epithelium,
mediating bacterial entry (26–28). Entry of UPEC into super-
ficial umbrella cells activates the formation and maturation of
intracellular bacterial communities (21). The intracellular bac-
terial community maturation cascade is part of a mechanism
that allows UPEC to subvert early innate defenses.

Introduction of UPEC into the bladder in a murine model
results in a robust inflammatory response. In part, this innate
defense hinges on recognition of lipopolysaccharide (LPS) and
other bacterial products by members of the Toll-like receptor
(TLR) family expressed on immune cells, such as macro-
phages, and epithelial cells (reviewed recently in reference 2).
TLR4, with its required coreceptors CD14 and MD2, recog-
nizes LPS; mice lacking a functional TLR4 gene fail to produce

an inflammatory response upon intravesical challenge with E.
coli (13, 17, 32), suggesting that TLR4 is the primary TLR
responsible for generation of this response in the bladder.
More recently, murine TLR11 was shown to respond specifi-
cally to uropathogenic strains of E. coli (43); the ligand is
unknown, and it is not clear whether this receptor is expressed
in the human urinary tract. Cytoplasmic domains (TIR do-
mains) of the TLRs initiate signaling cascades that culminate
in the activation of NF-�B (2). In the nucleus, NF-�B stimu-
lates the transcription of antiapoptotic and proinflammatory
genes, such as those encoding interleukin-6 (IL-6) and IL-8,
two cytokines found in the urine of patients with UTI (6, 20,
23). IL-6 is secreted by cell lines of urinary tract epithelial
origin in response to stimulation with gram-negative bacterial
LPS, IL-1, laboratory strains of E. coli, or the pyelonephritic E.
coli strain Hu734 (1, 3, 15, 38). In addition, Hu734 evoked
secretion of IL-6 and IL-8 from ex vivo human bladder biopsy
samples (36). IL-6 is classified as a proinflammatory or immu-
nomodulatory cytokine, though its precise role in many specific
infections, including UTI, is unclear. IL-6 may facilitate the
transition from a neutrophilic to a predominantly monocytic
response during various infectious states (19). In response to
IL-8 and other chemotactic stimuli, circulating polymorphonu-
clear leukocytes infiltrate bladder tissue and engulf UPEC
(21).

A number of viral, bacterial, and fungal pathogens possess
the ability to interrupt proinflammatory and antiapoptotic
NF-�B signaling (41). Among gram-negative bacteria with this
property, Yersinia and Salmonella species are the best studied.
These pathogens employ a type III contact-dependent secre-
tion system to deliver effector molecules that block host intra-
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cellular signaling at various points in the NF-�B pathway (10, 31,
35). It has also been suggested that UPEC may suppress NF-�B
signaling, though the exact mechanism must differ from those of
Yersinia and Salmonella species because UPEC strains lack a type
III secretion system. Klumpp and colleagues found that, in cul-
tured TEU-2 ureteral epithelial cells, the UPEC strain NU14, in
contrast to K-12 laboratory strains of E. coli, was able to suppress
LPS-induced activation of NF-�B signaling (as measured by a
luciferase reporter) at a high multiplicity of infection (MOI) (22).
Notably, apoptosis of a significant proportion of the ureteral cells
was induced under these infection conditions.

We have previously demonstrated that laboratory strains of
E. coli activate bladder epithelial cells through interactions
between LPS and host CD14 and TLR4, inducing epithelial
cytokines such as IL-6 (38). During murine cystitis, expression of
functional TLR4 on epithelial cells as well as stromal cells is
critical for the initiation of inflammation in response to UPEC
infection (37). Given the unique ability of UPEC strains to estab-
lish the pathogenic cascade of murine cystitis despite a robust
inflammatory response, we compared the abilities of laboratory
(K-12) strains of E. coli and UPEC to induce IL-6 from 5637 and
T24 bladder epithelial cells. We found that, unlike laboratory E.
coli, the cystitis-derived UPEC strains UTI89 and NU14 sup-
pressed the ability of these bladder cell lines to respond to exog-
enous LPS. Similarly, UPEC suppressed bladder epithelial cell
cytokine responses to laboratory strains of E. coli. Mutations in
LPS biosynthetic genes and in the SurA cis-trans prolyl isomerase
abolished the ability of the clinical isolate UTI89 to suppress
cytokine induction.

MATERIALS AND METHODS

Bacterial strains and plasmids. Escherichia coli strain MG1655 is a well-char-
acterized laboratory strain (9, 12), while uropathogenic E. coli strains UTI89 and
NU14 were obtained from patients with cystitis (18, 29). NU14-1 is a fimH mutant
of NU14 (24). The kanamycin resistance marker from MC4100 surA::kan (kind gift
of T. Silhavy) was transferred by P1 phage transduction to UTI89, where the imp-
surA operon is identical in structure to that of MG1655 (C. S. Hung, unpublished
data). Plasmid pAER1 (kind gift of T. Silhavy) contains the surA coding sequence
under control of the arabinose-inducible PBAD promoter (33).

Transposon mutant construction. The LPS core polysaccharide (16C1) and
O-antigen (11F5) mutants were constructed by transposon-mediated insertion
inactivation of rfa and rfb operons, respectively. pUTmini-Tn5Km2 (Ampr Kanr),
a modified mini-Tn5 transposon (11) cloned into a �pir-dependent vector (kind
gift of D. Holden), was transformed into E. coli S17-1 �pir. UTI89 was trans-
formed with a temperature-sensitive plasmid, pLSR9.2 (kind gift of L. Robin-
son), containing a chloramphenicol resistance cassette for counterselection of
the exconjugates. The transposon was introduced into UTI89 via conjugal trans-
fer from S17-1 �pir. Briefly, S17-1 �pir carrying pUTmini-Tn5Km2 was mixed
with UTI89/pLSR9.2 and plated on Luria broth (LB) agar plates. After overnight
incubation at 30°C, exconjugates were selected on LB plates containing ampi-
cillin, kanamycin, and chloramphenicol. Approximately 2,000 mutants were in-
dividually picked, grown, and frozen at �80°C.

The transposon insertion sites in mutant clones 16C1 and 11F5 were identified
by rescue and sequencing of the genomic DNA flanking the transposon. Briefly,
p�lessKan, a �pir-dependent vector containing a promoterless kanamycin resis-
tance cassette and a functional ampicillin resistance cassette (kind gift of V.
Miller), was transformed into E. coli S17-1 �pir and transferred to the transposon
mutants via conjugation. Bacteria with the plasmid inserted in their genome (via
a single-crossover event) were selected. Their genomic DNA was isolated and
digested with either EcoRV or SacII. After purification of the digested DNA, T4
ligase was added to the genomic DNA fragments to circularize them. The ligated
products were electroporated into E. coli S17-1 �pir. The rescued plasmids
contain part of p�lessKan and a portion of the genomic DNA either upstream
(SacII digested) or downstream (EcoRV digested). These plasmids were se-
quenced using either P6 (for SacII-digested genomic DNA clones) or P7 (for
EcoRV-digested genomic DNA clones) primer (16).

Tissue culture. 5637 (derived from bladder carcinoma; ATCC HTB-9) and
T24 (derived from bladder carcinoma; ATCC HTB-4) cells were obtained from
the American Type Culture Collection (Manassas, VA). Cell lines were cultured
in RPMI 1640 medium (Life Technologies, Carlsbad, CA, or Sigma-Aldrich Co.,
St. Louis, MO) supplemented with 10% fetal bovine serum (Sigma) at 37°C in a
humidified atmosphere of 95% air and 5% CO2.

Cytokine induction assay. Forty-eight hours prior to assay, bladder epithelial
cells were released from flasks with 0.05% trypsin-0.02% EDTA, spun, resus-
pended, distributed into wells of a 24-well plate, and incubated as above. Bac-
terial strains were grown overnight statically in 20-ml Luria broth cultures. On
the day of assay, confluent bladder cell monolayers were washed once with sterile
phosphate-buffered saline (PBS), and fresh medium was applied. Bacteria were
centrifuged and resuspended in sterile PBS; dilutions were made in PBS for
dose-curve experiments. Expression of type 1 pili was confirmed by mannose-
sensitive agglutination of Saccharomyces cerevisiae before each experiment. Ten
microliters of bacterial suspension was added to corresponding wells containing
1 ml of fresh medium. Bacterial suspensions were serially diluted and titers were
determined with each experiment to verify the number of live bacteria added to
the wells. Uninfected cells were used as controls. After inoculation, tissue culture
test plates were centrifuged for 3 min at 400 � g and then incubated at 37°C with
5% CO2 for 2 to 3 h. Culture supernatants were collected, centrifuged at 20,000
� g for 3 min to pellet bacteria and cell debris, and stored at �80°C until IL-6
determination. ELISA was performed on Immulon HBX-4 microplates (Thermo
Labsystems, Waltham, MA) using anti-human IL-6 capture and detection anti-
bodies from R & D Systems (Minneapolis, MN), streptavidin-horseradish per-
oxidase from Zymed (South San Francisco, CA), and 3,3�,5,5�-tetramethylben-
zidine substrate from Sigma. Absorbances were measured with a VersaMax
microplate reader (Molecular Devices, Sunnyvale, CA).

Cytokine suppression assay. The assay was performed as above, except that
fresh cell culture medium included E. coli O55:B5 lipopolysaccharide (Sigma) at
a concentration of 5 �g/ml or recombinant human IL-1 (R & D Systems) at 10
ng/ml. Untreated cells and cells treated with LPS or IL-1 only were included as
controls.

Library screening. Approximately 2,000 transposon mutants were screened as
follows. 5637 cells were trypsinized, resuspended, and allocated into wells of
96-well tissue culture plates 48 h prior to the screening assay. The day prior to
assay, bacterial cultures were prepared by replica plating of frozen stock arrays
of transposon mutants into fresh LB in sterile 96-well plates. These were grown
statically overnight at 37°C. On the day of assay, 5637 cells were washed once
with sterile PBS and overlaid with 195 �l fresh medium. Five microliters of each
bacterial culture was then transferred in multichannel fashion to the 5637 cells.
Plates were centrifuged and incubated, and supernatants were subjected to
human IL-6 ELISA as described above.

Statistical analysis. Two-tailed Student’s t tests were used to compare super-
natant IL-6 levels under different infection conditions.

RESULTS
Uropathogenic E. coli strains induce less IL-6 than do E. coli

K-12 strains from cultured bladder epithelial cells. Our pre-
vious data demonstrated that 5637 and T24 bladder cells re-
spond in a dose-dependent fashion to laboratory strains of E.
coli by producing IL-6 in a TLR4-dependent fashion (38). We
evaluated the cytokine responses of these cultured bladder
epithelial cell lines to two clinical cystitis strains of UPEC in
similar fashion. 5637 or T24 cells were incubated for 2 to 3 h
with 105 to 107 CFU/ml of either UTI89 or NU14, and culture
supernatants were assayed for IL-6 content by ELISA. In con-
trast to the type 1 piliated K-12 strain MG1655, cystitis strains
UTI89 and NU14 failed to induce IL-6 from 5637 cells that was
measurable over baseline (Fig. 1A). Unstimulated T24 cells
produce more IL-6 at rest than do 5637 cells, and infection of
T24 cells with both UTI89 and NU14 induced a measurable
increase in IL-6 production. However, MG1655 induced ap-
proximately threefold more IL-6 from T24 cells than did either
of the clinical isolates (Fig. 1B). With these infection conditions
and over the time period studied, 	95% of bladder cells re-
mained viable as measured by exclusion of 0.4% trypan blue in
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PBS (data not shown). Similarly, after 6 h of infection, epithelial
IL-6 induction by the UPEC strains remained significantly less
than induction by MG1655. However, up to 40% of bladder cells
were nonviable by trypan blue staining after 6 h of infection with
the UPEC strains at higher MOI (data not shown).

UPEC strains suppress bladder epithelial cell responses to
LPS and to K-12 E. coli. To determine whether UPEC was able
to suppress bladder epithelial cell responses to other stimuli

that utilize TLR-dependent pathways, we performed coincu-
bation experiments. For these experiments, we used 5637 cells
in order to minimize the effect of background IL-6 production
in the resting state. Our previous data, using 6-h incubations,
demonstrated that 5637 cells respond to E. coli O55:B5 LPS by
producing IL-6. These responses were measurable in 5637 cells
at an LPS dose of 50 ng/ml and increased in a dose-dependent
fashion (38). In the present study, to minimize cytotoxicity to
bladder cells during UPEC infection we selected a 2- to 3-h
incubation, over which an LPS dose of 5 �g/ml was needed to
ensure reliably measurable IL-6 levels. While lower numbers
(105 to 106 CFU/ml) of UTI89 or NU14 did not significantly
affect IL-6 responses to this dose of exogenous LPS in 5637
cells, 107 CFU/ml of either organism (MOI of 40) suppressed
the epithelial IL-6 response to LPS by 	50% (Fig. 2A). In
contrast, coincubation with 107 CFU/ml of MG1655 did not
suppress the IL-6 response to exogenous LPS (Fig. 2A). Both
UTI89 and NU14 had a similar cytokine-suppressing effect on
T24 cells incubated with exogenous LPS (Fig. 2B and data not
shown). The cytokine-suppressing effect did not require the
adhesive function of type 1 pili, as an isogenic fimH mutant of
NU14 (designated NU14-1) also demonstrated the ability to
reduce cytokine responses to exogenous LPS (Fig. 2B).

We also examined the ability of UTI89 and NU14 to
dampen epithelial cytokine responses to K-12 E. coli. 5637 cells
were coinfected with 106 CFU/ml of the K-12 strain MG1655
plus 107 CFU/ml of the UPEC strain UTI89 or NU14. As
controls, uninfected cells and cells infected only with MG1655
were examined. Coincubation with either UPEC strain down-
regulated the IL-6 response to MG1655 by 	50% (Fig. 2C).
The suppressive effect required live bacteria, as heat-killed
NU14 or UTI89 did not suppress epithelial cytokine responses
to MG1655 (Fig. 2C). In contrast, 107 CFU/ml of UTI89 or
NU14 did not suppress 5637 epithelial IL-6 responses to stim-
ulation with IL-1 (data not shown).

Disruption of LPS biosynthetic operons abolishes the cyto-
kine-suppressing activity of UPEC. A library of 
2,000 trans-
poson mutants was created in UTI89 by insertion of a kana-
mycin resistance marker from the mini-Tn5Km2 plasmid (11).
Mutants were grown statically in 96-well plates, transferred to
epithelial cell monolayers in 96-well tissue culture plates, and
incubated for 2 h, and supernatants were examined by human
IL-6 ELISA as described above. Two mutant clones, 11F5 and
16C1, were among several identified during primary screening
as high inducers of epithelial cytokine activity at 107 CFU/ml.
Full dose curves of these mutants compared to those of wild-
type UTI89 revealed cytokine induction by the mutants begin-
ning at 106 CFU/ml (Fig. 3). The IL-6 levels induced by the
mutants 11F5 and 16C1 were comparable to those induced by
the K-12 strain MG1655 at equivalent inocula (Fig. 3). In
addition, both 11F5 and 16C1 failed to suppress epithelial
cytokine responses to MG1655 (see Fig. 5). The chromosomal
DNA sequences flanking the transposon were rescued and
sequenced from each of these two clones. The insertion in
clone 16C1 was located in the rfa operon upstream of rfaP,
while the insertion in clone 11F5 was found in the rfbE gene.
Both mutant clones were nonreactive with O18 typing anti-
serum, in contrast to wild-type UTI89 (data not shown).

Mutation in surA abolishes the cytokine-suppressing activ-
ity of UPEC. To explore the hypothesis that the UPEC cyto-

FIG. 1. UPEC strains induce less IL-6 from cultured bladder epi-
thelial cells than does E. coli K-12. Confluent bladder cell monolayers
were incubated for 2 h with various doses of UPEC strain UTI89 or
NU14 or the laboratory E. coli strain MG1655, and IL-6 levels in
culture supernatants were measured by sandwich ELISA. (A) IL-6
produced by 5637 cells upon infection with UPEC strain UTI89 or
NU14 is equal to unstimulated levels (solid lines), while MG1655
induced significantly more IL-6 at all doses examined (dashed line) (*,
P � 0.05; **, P � 0.01). (B) In T24 cells, infection with UPEC induces
a modest IL-6 response (solid lines), while stimulation with E. coli
K-12 strain MG1655 (dashed line) yields significantly higher IL-6 levels
(*, P � 0.03). Experiments were repeated at least three times.
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kine-suppressing effect may result from expression of a sur-
face-localized or secreted protein, we examined the cytokine
profiles of UTI89 mutants deficient in the periplasmic pepti-
dyl-prolyl isomerases. E. coli genes encode at least four of
these enzymes (PpiA, PpiD, FkpA, and SurA), which have in
vitro cis-trans prolyl isomerase activity. SurA functions as a
chaperone in the periplasm (5), and mutation in surA in E. coli
K-12 is known to reduce assembly of several major outer mem-
brane proteins (25). Mutation of ppiA, ppiD, or fkpA in UTI89
did not alter cytokine induction from bladder epithelial cells
(data not shown). However, mutation in surA led to dramatic
changes in the induction of IL-6 from bladder epithelial cells.
Dose-response curve assays of 5637 and T24 cells for infection
with UTI89 or surA mutant UTI89 were performed as de-
scribed above. Compared to wild-type UTI89, surA mutant
UTI89 induced significantly higher IL-6 production from 5637
and T24 cells (Fig. 4A and B). The wild-type cytokine pheno-
type was restored by expression of surA from the PBAD pro-
moter on the plasmid pAER1 after induction with 0.1% L-
arabinose in overnight static culture (Fig. 4A and B). The surA

FIG. 2. UPEC strains suppress epithelial cytokine responses to ex-
ogenously added gram-negative bacterial LPS or E. coli K-12. (A) Con-
fluent monolayers of 5637 cells were left untreated, incubated with 5
�g/ml E. coli O55:B5 LPS, or incubated with LPS plus 107 CFU of the
indicated E. coli strains. The UPEC strains UTI89 and NU14 (solid
bars) significantly reduced the IL-6 produced in response to exogenous
LPS (*, P � 0.01 versus LPS), while MG1655 (striped bar) did not
demonstrate such reduction. (B) Confluent monolayers of T24 cells
were treated similarly with 500 ng/ml E. coli O55:B5 LPS or with LPS

FIG. 3. Disruption of LPS biosynthetic operons in UPEC results in
cytokine induction from bladder epithelial cells. Confluent monolayers
of 5637 cells were treated with the indicated doses of wild-type UTI89
(squares), the transposon insertion mutant 11F5 (circles) or 16C1
(triangles), or the E. coli K-12 strain MG1655 (diamonds; dashed line).
At doses of 106 CFU/ml and above, induction of epithelial IL-6 by the
LPS mutants 11F5 and 16C1 was significantly higher than that by
UTI89 (*, P � 0.05) and approximated the induction by MG1655.
Experiments were repeated at least three times.

plus 107 CFU of the indicated E. coli strains. The UPEC strain NU14 (*,
P � 0.01) and its isogenic fimH mutant NU14-1 (**, P � 0.05) (solid bars)
both suppressed T24 cytokine responses to exogenous LPS. (C) Confluent
monolayers of 5637 cells were left untreated, treated with 106-CFU/ml
MG1655, or treated with MG1655 plus 107 CFU/ml of the indicated
UPEC strains. Live UPEC strain UTI89 or NU14 (solid bars) suppressed
IL-6 responses to MG1655 (*, P � 0.01 versus MG1655 alone), while
heat-killed UTI89 and NU14 (striped bars) have lost this capability. Ex-
periments were repeated at least three times.
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mutant also failed to suppress epithelial cytokine responses to
MG1655 (Fig. 5). The surA mutant, like wild-type UTI89, was
reactive with O18 typing antiserum (data not shown).

DISCUSSION

The bladder epithelium is positioned to respond to ascend-
ing pathogens, such as uropathogenic Escherichia coli. Bladder
epithelial cells expressing TLRs produce proinflammatory cy-
tokines and chemotactic factors that attract neutrophils to the
epicenter of infection. On arrival in the bladder tissue, neu-

trophils engulf available UPEC cells. A critical mechanism
used by UPEC to evade this innate defense is to invade super-
ficial umbrella cells and form intracellular bacterial communi-
ties (21). This mechanism facilitates the ability of UPEC to
establish a foothold in superficial facet cells before the full
cadre of neutrophils is able to arrive. We investigated whether
UPEC possesses virulence attributes that may dampen or delay
the transmission of proinflammatory and chemotactic signals.
In this way, the pathogen might prolong its opportunity to
establish an intracellular niche within the epithelium.

We employed cultured bladder epithelial cell monolayers
infected with uropathogenic and laboratory strains of E. coli.
We have previously reported that cell lines of bladder epithe-
lial origin, such as 5637, T24, and J82, respond to LPS and
laboratory E. coli by producing IL-6 (38). In contrast, the A498
renal epithelial cell line is not responsive to these stimuli (4,
38). In the present study, infection of bladder epithelial cells
with UPEC induced significantly less IL-6 than did MG1655 at
all bacterial doses examined. The minimal doses of MG1655
required for a measurable cytokine response were consistent
with those we have previously reported (38). 5637 cells, though
responsive to significant doses of LPS, did not produce any
detectable IL-6 above baseline (uninfected) levels upon infec-
tion with the cystitis strain UTI89 or NU14. In T24 cells, where
the uninfected baseline is consistently higher, responses to
MG1655 were still severalfold higher than those to UPEC.
These results argue that UPEC, unlike E. coli K-12, possesses
attributes that limit epithelial cytokine responses.

To examine whether UPEC could suppress bladder epithe-
lial responses to known stimuli, we coincubated bladder epi-
thelial cells with UPEC and either exogenous LPS or E. coli

FIG. 4. Insertional inactivation of surA results in increased cytokine
induction from bladder epithelial cells. Confluent monolayers of 5637
(A) and T24 (B) cells were treated with the indicated doses of wild-type
UTI89 (squares), UTI89 surA (open circles), or UTI89 surA/pAER1
(filled circles). The surA mutant displays increased cytokine induction,
particularly at doses of 106 CFU/ml and above (*, P � 0.02 versus UTI89),
and this phenotype reverts to wild type upon complementation with the
plasmid pAER1. Experiments were repeated at least three times.

FIG. 5. Mutations in LPS biosynthetic genes or in surA abrogate
UPEC’s ability to suppress cytokine responses to MG1655. Confluent
monolayers of 5637 cells were left untreated, treated with 106-CFU/ml
MG1655, or treated with MG1655 plus 107 CFU/ml of the indicated
UPEC strains. Unlike the UPEC strain UTI89 (solid bar), the LPS
biosynthetic mutants 11F5 and 16C1 and the surA mutant (striped
bars) fail to suppress epithelial cytokine responses to MG1655. Exper-
iments were repeated at least three times.
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K-12. When bladder epithelial cells were coincubated with 107

CFU/ml of UPEC strain UTI89 or NU14 during stimulation
with exogenous LPS, cytokine responses to the exogenous LPS
were greatly attenuated. The suppressive effect of UPEC on
bladder epithelial cytokine responses was not observed at
lower UPEC doses; an MOI of approximately 40 was required.
The presence of functional type 1 pili on UPEC was not re-
quired for cytokine suppression, as NU14-1 (fimH mutant) also
was able to suppress LPS responses in bladder epithelial cells.
The suppressive capability also required UPEC to be viable, as
heat-killed UTI89 and NU14 failed to suppress epithelial re-
sponses to E. coli K-12. These requirements for the cytokine-
suppressing effect of UPEC in bladder epithelial cells are con-
sistent with those observed in NU14 by Klumpp et al. in their
studies with TEU-2 ureteral epithelial cells (22).

These findings suggest at least two hypotheses to account for
the mechanism of the suppressive effect of UPEC. One sce-
nario is that LPS of cystitis strains of E. coli is structured or
presented to host cells in such a way as to have an inhibitory
action on host TLRs. This hypothesis is supported by our
observation that UPEC did not suppress 5637 cells’ response
to IL-1. Stimulation of NF-�B activity by IL-1 utilizes a differ-
ent surface receptor (IL-1R) than does LPS (TLR4), but both
receptors employ a cytoplasmic TIR domain, and the same
intracellular machinery accomplishes signal transduction (2).

The stimulatory portion of enterobacterial LPS is generally
thought to be lipid A, but there are reports suggesting that
some moieties within the polysaccharide portion of LPS may
be active in signaling (30). There is also evidence that the
acylation state of lipid A may affect the stimulatory properties
of gram-negative bacaterial LPS. Most recently, Bäckhed and
colleagues demonstrated that penta-acylated lipid A from cer-
tain E. coli strains inhibited the production of IL-8 by T24 cells
stimulated with hexa-acylated lipid A (3). Other examples of
inhibitory LPSs include those of the periodontopathic bacteria
Porphyromonas gingivalis and Capnocytophaga ochracea. LPSs
from these species fail to stimulate TLR2 and TLR4 in trans-
fected CHO cells and antagonize the stimulatory effects of E.
coli K-12 LPS (42).

In our study, initial screening of a transposon mutant library
for UPEC clones that augmented epithelial cytokine responses
yielded two mutations (presumed to be polar) in operons re-
lated to LPS biosynthesis. Clone 16C1 contained an insertion
in the rfaP gene, which is part of an operon required for the
assembly and modification of the LPS core polysaccharide
(40). Clone 11F5 contained an insertion in rfbE. The genes of
the rfb operon in enteric gram-negative bacteria encode en-
zymes for the synthesis and assembly of sugars needed for
specific O antigens. Thus, both clones would be predicted to
lack O antigen, and in fact they failed to react with O18 typing
antiserum. We speculate that the LPS abnormalities resulting
from these mutations may lead to the increased availability of
lipid A for recognition by host cell surface receptors such as
TLR4. These findings are consistent with those of Bäckhed et
al., who noted a decrease in IL-8 secretion from T24 epithelial
cells when O antigen was present in commercially acquired
LPS preparations applied to these cells (4). However, the rfa
and rfb mutations would not be predicted to alter the acylation
state of lipid A.

A second hypothesis for the UPEC cytokine-suppressing

mechanism is that UPEC actively secretes or presents an ef-
fector that downregulates host cell NF-�B signaling, as is ac-
complished by pathogenic Yersinia and Salmonella species. Our
observation that heat-killed UPEC fail to suppress cytokine
responses to known stimuli supports this notion, though heat
killing may also have introduced unrecognized effects on LPS
presentation. In addition, insertional inactivation of surA in
UTI89 resulted in significantly higher cytokine induction from
bladder epithelial cells, a phenotype complemented by addi-
tion of the surA gene in trans under the arabinose-inducible
PBAD promoter. surA encodes one of at least four periplasmic
peptidyl-prolyl isomerases in E. coli. Though surA is not essen-
tial for viability in K-12 E. coli, mutation in surA is known to
affect proper assembly of outer membrane proteins, reducing
levels of OmpA, LamB, and the P pilus usher protein PapC
(25; S. S. Justice, submitted for publication). The spectrum of
extracytoplasmic proteins acted upon by SurA and the redun-
dancy of function among SurA and the other prolyl isomerases
FkpA, PpiA, and PpiD are not precisely known. However, our
data suggest that a subset of periplasmic proteins are acted
upon uniquely by SurA. Thus far, efforts to delineate the sub-
strates of SurA have revolved around the binding of model
peptides to SurA. Bitto and McKay, after solving the structure
of SurA (7), reported peptide motifs with the best binding to
the N-terminal domain of SurA determined by isothermal ti-
tration calorimetry (8). Interestingly, the genome of UTI89
encodes several proteins that contain such motifs and are pro-
posed to act in LPS synthesis (C. S. Hung, unpublished data).
Notably, the surA mutant in UTI89 retains reactivity with O18
typing antiserum, indicating that O antigen is likely to be pre-
sented intact in this mutant. Additional work is required to
determine whether our finding that mutation in surA augments
cytokine induction indicates either an active (secreted effector)
or passive (LPS-related) mechanism of cytokine suppression
by wild-type UPEC.

The in vitro model used in our study differs from ex vivo and
in vivo models in that the latter systems include other cell types
(e.g., dendritic cells and resident macrophages) present in
bladder tissue that participate in the generation of an inflam-
matory response. Indeed, it is well established that inflamma-
tion is a primary feature of bacterial cystitis and that innate
responses to LPS and other bacterial products lead to the
secretion of inflammatory cytokines from various cell types (2,
14). In the murine model of cystitis, bladder inflammation is
absent in C3H/HeJ mice, which express a defective TLR4 (13,
39). In addition, bone marrow transfer experiments between
TLR4 wild-type and TLR4 mutant mice demonstrated that
TLR4 expression on epithelial cells is critical in initiation of
the inflammatory response during murine UTI (37). Our dis-
covery that clinical cystitis strains have a cytokine-suppressing
mechanism, as measured in an in vitro epithelial system, is
meant to be interpreted in the context of the more complex in
vivo situation. Specifically, the ability of the cystitis strains to
dampen the cytokine response of the epithelium may give the
bacteria an advantage in invading the epithelium and escaping
early innate defenses.

The early events of murine cystitis, and presumably those in
humans, offer an array of opportunities for uropathogenic E.
coli to interact with host epithelia, soluble factors, and immune
effector cells. UPEC is able to subvert host defenses by inva-
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sion into facet cells and by eventual formation of a quiescent
reservoir, critical steps that may be aided by its modulation of
host innate responses. The present study demonstrates the
ability of UPEC to downregulate epithelial cytokine responses
in vitro and offers clues to the mechanism of this effect. Further
studies will determine whether a similar pathogenic strategy
can be demonstrated during specific host-pathogen interac-
tions in cystitis.
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