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Abstract
Genomic selection can enhance the rate of genetic gain of cane and sucrose yield

in sugarcane (Saccharum L.), an important industrial crop worldwide. We assessed

the predictive ability (PA) for six traits, such as theoretical recoverable sugar (TRS),

number of stalks (NS), stalk weight (SW), cane yield (CY), sugar yield (SY), and

fiber content (Fiber) using 20,451 single nucleotide polymorphisms (SNPs) with 22

statistical models based on the genomic estimated breeding values of 567 genotypes

within and across five stages of the Louisiana sugarcane breeding program. TRS and

SW with high heritability showed higher PA compared to other traits, while NS had

the lowest. Machine learning (ML) methods, such as random forest and support vec-

tor machine (SVM), outperformed others in predicting traits with low heritability.

ML methods predicted TRS and SY with the highest accuracy in cross-stage pre-

dictions, while Bayesian models predicted NS and CY with the highest accuracy.

Extended genomic best linear unbiased prediction models accounting for dominance

and epistasis effects showed a slight improvement in PA for a few traits. When both

NS and TRS, which can be available as early as stage 2, were considered in a multi-

trait selection model, the PA for SY in stage 5 could increase up to 0.66 compared

to 0.30 with a single-trait model. Marker density assessment suggested 9091 SNPs

were sufficient for optimal PA of all traits. The study demonstrated the potential of

using historical data to devise genomic prediction strategies for clonal selection early

in sugarcane breeding programs.

Abbreviations: BCI, bottom coincidence index; BGLR, Bayesian generalized linear regression; BL, Bayesian Lasso; BLUE, best linear unbiased estimates;

BLUP, best linear unbiased prediction; BMTM, Bayesian multi-trait model; BRR, Bayesian ridge regression; CY, cane yield; GBLUP, genomic best linear

unbiased prediction; GEBV, genomic estimated breeding value; GP, genomic prediction; GRM, genomic relationship matrix; GS, genomic selection; GWAS,

genome-wide association study; MAS, marker-assisted selection; ML, machine learning; MTA, marker-trait association; MTGS, multi-trait genomic

selection; MVGBLUP, multi-variate genomic best linear unbiased prediction; NS, number of stalks; PA, predictive ability; QTL, quantitative trait locus; RF,

random forest; RKHS, reproducing kernel Hilbert space; rrBLUP, ridge regression best linear unbiased prediction; SNP, single nucleotide polymorphism;

SVM, support vector machine; SW, stalk weight; SY, sugar yield; TCI, top coincidence index; TP, training population; TRS, theoretical recoverable sugar.
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Plain Language Summary
We studied genomic prediction strategy using 12 years of phenotypic data from 567

sugarcane genotypes and 20,451 DNA variants to select cane and sugar yield and

component traits, such as sucrose content, stalk number and weight, and fiber within

and across different selection stages of Louisiana variety development program. We

tested 22 different statistical models to determine how well each model predicted the

traits. Sucrose content and stalk weight with high heritability were predicted with

high accuracy whereas stalk number was the hardest to predict. Machine learning

methods, such as random forest and support vector machine, were more accurate

for such hard-to-predict traits. Incorporating traits, available at the early stage, in

the models improved sugar yield prediction accuracy. An optimal number of DNA

variants needed for accurate predictions was identified. Our research suggests that

genomic selection can be used early in the sugarcane breeding process to make better

and faster decisions.

1 INTRODUCTION

Sugarcane (Saccharum interspecific hybrids L.) is significant

economically as an industrial crop grown in tropical and

subtropical regions around the world (Deomano et al.,

2020; Fickett et al., 2019; Mahadevaiah et al., 2021).

It accounts for more than 70% of the total global sugar

production (Satpathy et al., 2022). Although most sugar-

cane is used as a raw material for sugar and bioethanol,

it is also used for animal feed, alcoholic beverages, fertil-

izer, and paper manufacturing (Islam et al., 2021; Yadav

et al., 2020). In the United States, sugarcane was planted

in 372,000 ha that produced 32.97 million metric tons

of cane, contributing to ∼45% of the sucrose produc-

tion (https://quickstats.nass.usda.gov/results/09DF6AFA-

31DD-31D4-B72A-07CB4D653940). It is the number

one row crop in Louisiana, with 1.82 million metric tons

of sugar produced from 193,600 ha of sugarcane area

harvested out of 203,200 ha planted, contributing $1.436

billion to the producers, processors, and landlords in 2022

(https://www.nass.usda.gov/Statistics_by_State/Louisiana/

Publications/Crop_Releases/Crop_Production_Monthly/

2022/lacropdec22.pdf).

Genetics has played a significant role in improving sugar

yield (SY) components of sugarcane in the previous sev-

eral decades (Hayes et al., 2021; Yadav et al., 2020). In

Louisiana, sugar production has doubled in the last 50 years,

primarily due to the development of improved, high-yielding

varieties combined with improved cultural management prac-

tices (Blanchard et al., 2024; Hale et al., 2022). However,

the rate of genetic gain has not significantly improved in

recent years (Wei & Jackson, 2016). Conventional breed-

ing based on phenotype-based recurrent selection takes up

to 13 years from crossing to variety release (Voss-Fels et al.,

2021). The lengthy breeding cycle and narrow genetic base of

modern elite cultivars are major limiting factors to improv-

ing genetic gain in sugarcane (Raboin et al., 2008). Many

economic traits in sugarcane, such as cane yield (CY) and

sucrose content, are complex and quantitatively (polygeni-

cally) inherited (Hoang et al., 2015; Yadav et al., 2021)

with low narrow-sense heritability (single-plot basis), making

phenotypic selection inefficient in early stages of sugarcane

breeding programs (Wei & Jackson, 2016). Marker-assisted

selection (MAS), which was touted as a replacement strategy

for time- and labor-consuming phenotypic selection in various

crops (Collard & Mackill, 2008), has been slower in sugarcane

compared to other crops except for a few disease resistance

traits (c.f. Satpathy et al., 2022) due to the lack of reliable,

large-effect quantitative trait loci (QTLs) and linked molec-

ular markers for most agronomic traits (Gouy et al., 2013).

Genomics research in sugarcane has been slow largely due to

its large (∼10 Gb), aneupolyploid complex genome (2n = 8–

14x = 100–144) resulting from the cross between Saccharum
officinarum (2n = 80; x = 10) and Saccharum spontaneum
(2n = 40–128; x = 8) (D’Hont, 2005; Piperidis & D’Hont,

2020).

Genomic selection (GS), since its first application in

livestock breeding (Meuwissen et al., 2001), is being used

as a modern genome-wide marker-assisted breeding method

in various crop improvement programs. Unlike MAS, which

utilizes a few statistically significant markers or major QTLs

(Heffner et al., 2011), GS utilizes genome-wide markers with

small to large effects simultaneously in a statistical model

to estimate the breeding value, known as genomic estimated

breeding value (GEBV) (Calus & Veerkamp, 2011; Gouy

et al., 2013). Marker effects estimated with the phenotype

and genotype data of a reference or training population

(TP) using statistical models are used to calculate GEBVs

https://quickstats.nass.usda.gov/results/09DF6AFA-31DD-31D4-B72A-07CB4D653940
https://quickstats.nass.usda.gov/results/09DF6AFA-31DD-31D4-B72A-07CB4D653940
https://www.nass.usda.gov/Statistics_by_State/Louisiana/Publications/Crop_Releases/Crop_Production_Monthly/2022/lacropdec22.pdf
https://www.nass.usda.gov/Statistics_by_State/Louisiana/Publications/Crop_Releases/Crop_Production_Monthly/2022/lacropdec22.pdf
https://www.nass.usda.gov/Statistics_by_State/Louisiana/Publications/Crop_Releases/Crop_Production_Monthly/2022/lacropdec22.pdf
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to predict the phenotypic performance of genotypes in the

validation population based on their marker profile (Maulana

et al., 2021). By enabling the selection of genotypes at earlier

stages in the variety development process, GS expedites

the breeding process by potentially shortening the breeding

cycle and length of time for recycling parents back to the

crossing stage of the recurrent selection programs, thereby

accelerating the rate of genetic gain (Jannink et al., 2010).

GS has been implemented in several crops including rice

(Labroo et al., 2021; Xu et al., 2021), corn (Atanda et al.,

2021; Beyene et al., 2021), wheat (Guo et al., 2020), loblolly

pine (Rios et al., 2021), potato (Endelman et al., 2018), and

blueberry (de Bem Oliveira et al., 2019; Ferrão et al., 2021).

GS provides unique opportunities for improving the rate of

genetic gain for quantitative traits in sugarcane by efficient

selection of genotypes based on their GEBV-informed near-

precise ranks, and for reducing the length of breeding cycle

(Deomano et al., 2020; Hayes et al., 2021) that traditionally

has relied on time-consuming, labor-intensive, and expensive

process of selecting a desirable genotype from among thou-

sands of seedlings (Yadav et al., 2023). The decreasing cost of

high-throughput genotyping, emerging high-throughput phe-

notyping, and evolving bioinformatics and statistical tools

suggest immense potential for deployment of GS in sugar-

cane. Compared to other crops, there have been a few GS

studies reported in sugarcane (Mahadevaiah et al., 2021).

Gouy et al. (2013) were the first to implement GS in sug-

arcane using two panels of 167 genotypes each for 10 traits

in breeding programs of reunion and found predictive ability

(PA) ranging from 0.11 to 0.62 within panel and 0.13 to 0.55

between panels. The promising PAs with relatively small TP

sizes implied that GS can be employed as an effective sugar-

cane breeding strategy. With three different panels consisting

of a total of 2351 genotypes from both early and advanced

stages of an Australian commercial sugarcane breeding pro-

gram, PA ranging from 0.25 to 0.45 was observed for two

sugar-related traits, CY and commercially extractable sucrose

(Deomano et al., 2020). Hayes et al. (2021) showed genomic

PAs of 0.30–0.44 for CY, SY, and fiber content (Fiber) in 3984

sugarcane genotypes. In the United States, Islam et al. (2021)

studied brown rust and orange rust reactions in 432 geno-

types from the Florida breeding program where they showed

that GS with nonparametric machine learning (ML) models

outperformed the parametric models. The same authors also

reported PAs between 0.11 and 0.37 for various SY traits such

as Brix, fiber, pol, sucrose content, stalk diameter, stalk pop-

ulation, and stalk weight (SW) using 432 genotypes (Islam

et al., 2022). A pilot-scale study in Louisiana showed that the

low PAs of 0.23 for sucrose yield and 0.19 for CY without

fixed effect covariates due to soil and crop type were attributed

to a relatively smaller TP size (Satpathy et al., 2022).

The existence of allelic and nonallelic (dominance and epis-

tasis) interactions controlling the traits in sugarcane poses a

Core Ideas
∙ We used 12 years of historical phenotypic data of

Louisiana sugarcane to devise genomic prediction

strategies.

∙ Cross-stage prediction validated the strategy of

early clonal selection for enhancing the rate of

genetic gain.

∙ Multi-trait genomic selection with stalk number

and sucrose at the early stage improved sugar yield

prediction accuracy.

∙ We found that 9091 markers were sufficient for

optimal prediction of most traits studied.

challenge to the implementation of GS. Studying CY, SY,

and Fiber in 3006 sugarcane genotypes, Yadav et al. (2021)

showed an improvement in PA through extended genomic

best linear prediction (eGBLUP) model that factored non-

additive genetic effects. High allele dosage at a given locus

also complicates GS in sugarcane breeding (Voss-Fels et al.,

2021). Accounting for allelic dosage information improved

the accuracy of genomic prediction (GP) in polyploid species,

including potato (Endelman et al., 2018) and blueberry (de

Bem Oliveira et al., 2020), although it can increase genotyp-

ing costs for higher depth of coverage to capture all the alleles

and computational complexity.

Several statistical models with varying accuracy, compu-

tational complexity, and requirements have been developed

and implemented in GS. Examples of parametric methods

are genomic best linear unbiased prediction (GBLUP), ridge

regression best linear unbiased prediction (rrBLUP), and

Bayesian methods (Endelman, 2011; Habier et al., 2011; Van-

Raden, 2008). Both GBLUP and rrBLUP assume normal

distribution and equal variance for marker effects (Endel-

man, 2011), whereas Bayesian models assume varying effects

and variances resulting in increased shrinkage for small sin-

gle nucleotide polymorphism (SNP) variation effects and less

shrinkage on large SNP effects (Habier et al., 2010). In con-

trast, ML models have lenient assumptions for the normality

and variance of markers, and they utilize nonlinear kernels

to capture complex and nonlinear interactions between mark-

ers and traits (Ogutu et al., 2011; Ryo & Rillig, 2017; Zhao

et al., 2020). In the present study, we evaluated 22 different

GS models of which some accounted for additive, dominance,

and epistatic interactions; fixed effect markers; multiple traits;

and so on using commercial and elite parental genotypes

having 12 years of phenotypic data from the Louisiana com-

mercial sugarcane breeding program and compared PAs for

sucrose and CY traits within and across different selection

stages.
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2 MATERIALS AND METHODS

2.1 Plant materials and traits

The experimental materials used in this study were sugarcane

genotypes used and/or developed by the sugarcane breeding

programs of the Louisiana State University (LSU) Agricul-

tural Center and Agricultural Research Service of the United

States Department of Agriculture (USDA). Data for six traits,

theoretical recoverable sugar (TRS), number of stalks (NS),

SW, CY, SY, and Fiber, were obtained in both plant cane (P)

and ratoon crops—first (R1) and second (R2) ratoon from four

different stages of sugarcane variety development, namely,

second line (stage 2), nursery (stage 3), infield (stage 4), and

outfield (stage 5) trials over 12 years (2010–2021). The soil

type of experimental locations was categorized into heavy-

textured (clay; H) type and light-textured (sandy loam; L)

type. Stage 2 trials were conducted in 4.88-m long plots at

two locations (one H and one L). Stage 3 experiments were

conducted at eight locations (four each of H and L) in plots of

4.88-m and 6.10-m long for on-station and off-station nurs-

eries, respectively. Stage 4 trials were carried out in 7.32-m

long plots at seven locations (2 H and 5 L). Stage 5 trial was

conducted in 15.24-m long plots at 14 locations (7 H and 7

L). The experiments were performed in a complete random-

ized block design with two replications for stages 3 and 4,

and three replications for stage 5 trials. Stage 2 genotypes

were not replicated within a location but repeated in locations

and years. Two commercial varieties (L 01–299 and HoCP

96–540) were used as checks for all the trials. An augmented

design was followed in stage 2 where the checks were repeated

thrice in each row and location/year that accounted for envi-

ronmental variations. A total of 567 genotypes were used in

the study with both phenotype and genotype information for

stages 2 (212), 3 (218), 4 (100), and 5 (37).

The NS per plot was taken before harvesting. In each plot,

10 stalks were harvested and weighed to determine the SW in

stages 2 and 3 and estimate TRS (sucrose content, kg Mg−1).

CY (Mg ha−1) was calculated as the product of NS and SW.

In stages 4 and 5, plots were harvested by a chopper harvester

that emptied into a single-axle, high-dump wagon equipped

with electronic load cells to record plot weight, which was

used to estimate CY. The harvested stalks were run through a

Spectracane near-infrared spectroscopic system (Bruker Cor-

poration) to estimate TRS. Fiber (fiber %) was measured as

described by Bischoff and Gravois (2003). Alternatively, for

the trials conducted by the USDA Sugarcane Research Unit,

sucrose was estimated using the methods described by Todd

et al. (2024). Stalks from stages 2 and 4 were processed using

the core press method (Legendre, 1992) to estimate TRS and

Fiber, and for stages 3 and 5, TRS was estimated from juice

extract from a roller mill. Lastly, SY (Mg ha−1) was computed

by multiplying CY with TRS.

2.2 Analysis of variance

Phenotypic datasets were stratified in 44 different ways (Table

S1) for analysis. A combined analysis was carried out with

data across environments (year and location) and crop types

(plant cane and ratoon crops 1 and 2). Further, phenotypic

analysis was performed by clustering the environments based

on soil type (H or L) and by sub-setting data based on crop

type (P, R1, and R2) to optimize the GS model for target

crop and soil type. Adjusted phenotypic means (i.e., best lin-

ear unbiased estimates [BLUEs]) were estimated using the

following mixed model in ASReml-R v4 as follows:

𝑌𝑖𝑗𝑘𝑙 = 𝜇 + 𝐸𝑖 + 𝑅𝑖𝑗 + 𝐶𝑘 + 𝐸𝐶𝑖𝑘 + 𝐺𝑙 + GC𝑘𝑙 + GE𝑖𝑙

+GCE𝑖𝑘𝑙 + 𝜀𝑖𝑗𝑘𝑙 (1)

Where Yijkl is the phenotype, μ is the mean effect, Ei is the

effect of ith environment (location and year), Rij is the effect

of jth replication nested in I environment j, Ck is the effect of

kth crop type, ECik is the effect of ith environment and kth crop

interaction, Gl is the effect of lth genotypes, GCkl is the effect

of lth genotype by kth crop interaction, GEil is the interaction

effect of lth genotype by ith environment, GCEikl is the inter-

action effect of lth genotype by kth crop by ith environment,

and εijkl is the residual effect. Pearson correlation coefficients

among the traits were determined using ggcorrplot package in

R.

2.3 Heritability

Broad-sense heritability estimate (H2) of the traits was cal-

culated as the proportion of total genetic variance to total

phenotypic variance. The “Ad hoc Holland” broad-sense heri-

tability method (Holland et al., 2002) was used to address the

differences in genotypes in different environments and crop

types. H2 was calculated assuming genotype and other effects

as random using the following formula:

𝐻2 =
𝜎2G

𝜎2G + 𝜎2GE
𝑛̃E

+ 𝜎2GC
𝑛̃C

+ 𝜎2GEC
𝑛̃EC

+ 𝜎2e
𝑛̃ECr

(2)

where σ2
G, σ2

GE, σ2
GC, and σ2

GEC represent genetic, genotype

by environment, genotype by crop type, genotype by envi-

ronment by crop type, and residual variances, respectively.

Here, 𝑛̃E, 𝑛̃C, 𝑛̃EC, and 𝑛̃ECr are harmonic means of geno-

types associated with environment, crop, environment × crop,

and residual variances, respectively. Narrow-sense heritabil-

ity was also calculated with the pedigree (h2p) as well as

marker genotype (h2m) information (described below) using

the restricted maximum likelihood approach implemented in

ASReml-R.
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2.4 Genotyping

Genomic DNA from sugarcane leaf tissues isolated with the

CTAB (cetyltrimethylammoniumbromide) miniprep method

was assessed for quality and quantity using 1% agarose-

TAE (Tris-acetate-EDTA) gel and ND-1000 (Nanodrop) as

described earlier (Fickett et al., 2019). For Capture-Seq based

genotyping, 20,000 probes (120 bp) were designed from

the sugarcane R570 mosaic monoploid genome (Garsmeur

et al., 2018) based on sorghum gene models and tiled at

3x. For library preparations, genomic DNA was sheared to

∼500 bp, fragments were end-repaired and A-tailed, fol-

lowed by incorporation of uniquely indexed Illumina adaptors

and PCR (polymerase chain reaction) enrichment. Samples

were pooled equimolar and sequenced on Illumina NovaSeq

(2 × 150 bp) at RAPiD Genomics LLC. Raw sequence

reads were demultiplexed using Illumina’s BCL-Convert,

quality-evaluated using fastp, trimmed for adaptors and length

with trimmomatic, and mapped against the R570 monoploid

genome with BWA. Variant (SNP) calls were performed using

Freebayes (Garrison & Marth, 2012), GBS Tassel (Glaubitz

et al., 2014), and Samtools (Li et al., 2009). SNPs called by

all three software were further filtered based on missing data

(≤20%) and minor allele frequency (≥10%). SNPs that were

in complete linkage disequilibrium (LD) (r2 = 1) were also

filtered to retain one representative SNP, resulting in 20,451

SNPs used in the study.

2.5 Genomic prediction

For GP, the GBLUP additive model was further extended

by including dominance (D), epistatic interactions [additive-

additive (GG), additive-dominant (GD], and genome-wide

average heterozygosity (H), which resulted in 10 different GS

models. The full model is as follows:

(𝐺 +𝐷 + 𝐺𝐷 + 𝐺𝐺 +𝐻) ∶ 𝑌 = 𝜇 + 𝐗𝐛 + 𝐙1𝐠 + 𝐙2𝐝

+𝐙3𝐠𝐠 + 𝐙4𝐠𝐝 + 𝜀 (3)

where Y is the phenotypic response, μ is the effect of the

overall mean, b is the vector of fixed effects, X is the inci-

dence matrix of fixed effects, and Z1, Z2, Z3, and Z4 are

the incidence matrices for random effects; g is the vector of

additive effects ∼ N (0, GAσ2
A), where GA is the genomic

relationship matrix (GRM) due to additive effect and σ2
A

is the additive genetic variance; d is the vector of domi-

nance effects ∼ N (0, GDσ2
D), where GD is the GRM due

to dominance effects and σ2
D is dominance genetic variance,

gg is a vector of additive-by-additive effects, where gg∼ N
(0, GAAσ2

AA) where GAA is the GRM due to additive-by-

additive effects and σ2
AA is the additive-by-additive variance;

gd is the vector of additive-by-dominance effects gd∼ N
(0, GADσ2

AD), where GAD is the GRM due to additive-by-

dominance effects and σ2
AD is the additive-by-dominance

variance; and the residual effect ε ∼ N(0, Iσ2
e) where I is the

identity matrix and σ2
e is the residual variance components.

Additive (A) (VanRaden, 2008), dominance (D) (Vitezica

et al., 2013), and pedigree and genomic information com-

bined (hybrid matrix; H) (Legarra et al., 2009) matrices were

constructed using R-package AGHmatrix (Amadeu et al.,

2016). Covariance matrices due to epistasis, additive-additive

(GG), and additive-dominance (GD) were computed using

Hadamard products of G and D matrices. The estimated aver-

age genome-wide heterozygosity (Miller et al., 2014) was

incorporated in the above model as fixed effects. AsReml-R

was used to perform eGBLUP models. An rrBLUP model was

run in the rrBLUP package (Endelman, 2011). Six Bayesian

methods (BL, Bayesian ridge regression [BRR], reproduc-

ing kernel Hilbert space [RKHS], Bayes A, Bayes B, and

Bayes C) were implemented with Bayesian generalized lin-

ear regression (BGLR) package (Pérez & de los Campos,

2014) with 12,000 iterations, 2000 burn-ins, thinning of five,

and default hyper-parameters. In addition, two nonparametric

ML methods, random forest (RF) and support vector machine

(SVM), were utilized. The RF method employed the ran-

domForest package in R (Cutler et al., 2022) and the SVM

method was implemented with a radial kernel and epsilon

regression using the R package e1071 (Meyer et al., 2019).

Altogether, 22 different prediction models were employed

for GP.

2.6 Genome-wide association study

Genome-wide association study (GWAS) was performed

using an enriched compressed mixed linear model executed in

Genome Association Prediction Integrated Tool in R (Lipka

et al., 2012) using 19 datasets (nine from S2 and five each

from S3 and S4) for each trait to identify significant marker-

trait associations (MTAs). Significant SNPs (p < 0.001)

from each dataset were used as fixed effect covariates in the

prediction model GBLUP for a particular trait/dataset.

2.7 Cross-validation and PA

First, a fivefold cross-validation approach was undertaken

within 15 selected datasets for the three stages (2, 3, and

4). Genotypes within each stage were randomly divided into

five subsets with four subsets used as the TP to predict the

fifth subset. Then a cross-stage approach was undertaken

where genotypes from stage 2 served as the training set to

predict the performance of the genotypes at stage 5 as the

validation population. The PA was assessed by the Pearson
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correlation coefficient between GEBVs and observed phe-

notypes (BLUEs). All GS models were compared using

both cross-validation methods. Further, to evaluate the effec-

tiveness of the GS models in identifying top- and bottom-

performing genotypes in the validation set, the coincidence

index for the 20% top (top coincidence index [TCI]) and bot-

tom (bottom coincidence index [BCI]) performing genotypes

was computed as described earlier (Fernandes et al., 2018;

Hamblin & Zimmermann, 1986).

2.8 Effect of marker density

To determine the effect of marker density on GS, nine dif-

ferent LD-based schemes of marker filters were evaluated

using markers with r2 < 0.1 (2792 markers), r2 < 0.15 (4399

markers), r2 < 0.2 (6112 markers), r2 < 0.3 (9091markers),

r2 < 0.4 (11,613 markers), r2 < 0.6 (15,592 markers), r2 < 0.8

(18,012 markers), and r2 < 0.99 (20,451 markers). Fivefold

cross-validation was carried out with the dataset from stage 2

in plant cane under light soil (S2PL).

2.9 Multi-trait GS

Considering that SY is a compound trait dependent on five

other traits, multi-trait genomic selection (MTGS) for SY was

performed using multi-variate genomic best linear unbiased

prediction (MVGBLUP) in ASReml-R and Bayesian multi-

trait model (BMTM) in R package BGLR. The model was

run with various combinations of other correlated traits as

responses to predict SY. Only the phenotype for SY was hid-

den in the validation population. The MTGS schemes used

genotypic information from both training and validation pop-

ulations and phenotypic data of correlated traits in validation

population. The S2PL data were used for within-stage fivefold

cross-validation and as a training set for cross-stage validation

to predict the performance of genotypes at stage 5 in plant

cane under light soil (S5PL) using the model:

𝐲 = 𝜇 + 𝐙𝛼 + 𝜀 (4)

where y is the vector of BLUEs for t traits; μ is the overall

mean effect; Z is the incidence matrix; α is the genotypic pre-

dictor ∼MVN (0, Σ ⊗ K), where Σ is the variance–covariance

matrix across traits, K is the realized additive GRM among

individuals estimated from the markers; and ε is the residual

errors vector ∼MVN (0, R ⊗ I), where R is the variance–

covariance matrix for the residual effects for each individual

among traits and I is the identity matrix. ⊗ is the Kronecker

product of two matrices. Σ was estimated as an unstructured

matrix and R as a diagonal matrix.

3 RESULTS

3.1 Phenotypic summary statistics, trait
correlation, and heritability

The average TRS over 12 years ranged from 93.10 Kg Mg−1 in

stage 2, first ratoon crop under heavy soil (S2R1H) to 119.89

Kg Mg−1 in stage 5, first ratoon under light soil (S5R1L)

(Table S1). SY averaged between 6.78 Mg ha−1 at stage 5 in

second ratoon under heavy soil (S5R2H) and 16.65 Mg ha−1

at S2PL. Likewise, for CY traits, NS had a minimum value

of 64,048 in stage 4, plant cane under heavy soil (S4PH), and

a maximum of 134,057 in stage 2, second ratoon under light

soil (S2R2L). SW ranged between 0.73 kg in stage 5, second

ratoon, heavy soil (S5R2H), and 1.22 kg in S2PL. The mean

CY values spanned from 59.08 Mg ha−1 (S5R2H) to 142.00

Mg ha−1 (S2PL). Fiber values ranged from 8.30 (S5PL) to

13.59 (S5R2L).

Stage-wise data revealed that all the traits showed signifi-

cant variation within a stage depending on the crop and soil

type (Table S1). Cross-stage comparisons showed that the

highest mean values of NS, SW, CY, and SY were observed,

as expected in small unreplicated trials in stage 2, which

decreased with the advancement of the stage. The TRS,

as expected with selection during advancement, showed an

increasing trend with the evaluation stage. On the other hand,

the Fiber was somewhat inconsistent until S4 and compara-

tively lower in S5. Such inconsistency in stages 2 and 5 could

be due to different methods of estimation between the LSU

and USDA breeding programs as described in the methods

section.

3.1.1 Correlation between traits

Overall, SY had a significant positive correlation with TRS

(0.33 at stage 2 to 0.54 at stage 5), CY (0.85 at stage 5 to 0.93

at stage 2), NS (0.21 at stage 5 to 0.54 at stage 2), and SW

(0.31 at stage 4 to 0.52 stage 3) (Figure 1). Correlation of SY

with Fiber was low (0.02 to 0.24) but significant (Figure 1,

Table 1). Correlations of TRS with CY, NS, SW, and Fiber

were non-significant with both positive and negative values,

except at stage 3 where it showed significant positive correla-

tion with NS (0.11). Expectedly, CY had significant positive

correlation with NS (0.28 to 0.58), SW (0.25 to 0.60), and

Fiber (0.01 to 0.33). NS had a significant negative correlation

with SW (−0.67 at stage 5 to −0.32 at stage 2), whereas it

had both negative and positive correlation with Fiber (−0.20

to 0.64). The correlation between SW and Fiber was also

inconsistent (−0.53 to 0.09). Similar trend was observed in

datasets across stage, crop, and soil type, where SY exhib-

ited a significant positive correlation with TRS (0.20–0.56),
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F I G U R E 1 Correlation among six cane and sugar yield traits in stage 2 (S2), stage 3 (S3), stage 4 (S4), and stage 5 (S5). CY, cane yield (Mg

ha−1); Fiber, fiber content (%); NS, number of stalks (ha−1); SW, stem weight (Mg); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable sugar

(kg Mg−1).

NS (0.04–0.71), and the highest with CY (0.76–0.97) (Table

S2). SY mostly displayed a positive correlation with SW.

Correlation between CY and TRS was either significant or

nonsignificant with negative or positive values. Likewise, CY

displayed a significant positive correlation with NS, and SW

for the most part. SW and NS were significantly negatively

correlated at −0.17 to −0.92.

3.1.2 Heritability of the traits

The broad sense heritability (H2) and narrow sense heritabil-

ity based on pedigree (h2p) and markers (h2m) of six traits

showed a wide range of variation in different stages and

crop/soil combinations (Table S3). In general, H2 for all the

traits was low at stage 2 and then increased at advanced stages

with no significant differences among the traits. The varia-

tion in H2 for the traits did not follow a definitive pattern for

crop and/or soil type, which makes it difficult to identify loca-

tions within a stage that consistently provides reproducible

data. The H2 of SY and CY were comparable to each other

at all stages with combined data (Table S3). Interestingly for

the combined dataset, NS showed a moderately high H2 rang-

ing from 0.53 at stage 2 to 0.76 at stage 5. SW exhibited

higher values of H2 with 0.64 at stage 2 to 0.84 at stage 3

for the combined dataset, closely followed by TRS. Surpris-

ingly, Fiber had low H2 at stages 3 (0.15) and 4 (0.27) stage

compared to moderately high values at stages 2 (0.68) and 5

(0.78). The h2m values were higher for all traits compared to

h2p at all stages except at stage 2 where it was the opposite

(h2p > h2m). SW and TRS consistently displayed higher h2m

values ranging from 0.45 to 0.77 and 0.45 to 0.59 at S3 and

S5, respectively, except for the trial at S2 (0.18 for SW and

0.23 for TRS) as compared to other traits. For Fiber, the h2m

was the highest (0.58) only at S5. Traits such as CY and SY

demonstrated lower h2m compared to other traits.
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T A B L E 1 Correlation among six cane and sugar yield traits at different selection stages across crop and soil type.

Stage 2
SY TRS CY NS MSW Fiber

SY 1.00

TRS 0.33** 1.00

CY 0.93** −0.02 1.00

NS 0.54** −0.02 0.58** 1.00

SW 0.51** −0.02 0.56** −0.32** 1.00

Fiber 0.05 −0.05 0.07 −0.01 0.09 1.00

Stage 3
SY TRS CY NS MSW Fiber

SY 1.00

TRS 0.46** 1.00

CY 0.92** 0.10 1.00

NS 0.44** 0.11 0.45** 1.00

SW 0.52** −0.02 0.60** −0.41** 1.00

Fiber 0.02 −0.03 0.01 0.18 −0.17 1.00

Stage 4
SY TRS CY NS MSW Fiber

SY 1.00

TRS 0.37** 1.00

CY 0.89** −0.09 1.00

NS 0.39** −0.14 0.49** 1.00

SW 0.31** 0.14 0.25* −0.59** 1.00

Fiber 0.24* −0.08 0.29* −0.20 0.03 1.00

Stage 5
SY TRS CY NS MSW Fiber

SY 1.00

TRS 0.54** 1.00

CY 0.85** 0.03 1.00

NS 0.21 −0.02 0.28* 1.00

SW 0.38** 0.14 0.33** −0.67 1.00

Fiber 0.24* −0.03 0.33 0.64 −0.53 1.00

Abbreviations: CY, cane yield (Mg ha−1); MSW, mean stem weight (Mg); NS, number of stalks (ha−1); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable sugar;

Fiber, fiber content (%).

*p < 0.05. **p < 0.01.

3.2 Prediction models performance

3.2.1 Within stage cross-validation

The GP models in stage 2, stage 3, and stage 4 exhibited vary-

ing PAs for the six traits with fivefold cross validations of the

reference populations (Figures 2–4).

Stage 2
The PA for SY in combined datasets at stage 2 (S2) were not

significantly different (0.32–0.33) for the parametric models

except for HBLUP (0.27) (Figure 2, Table 2). The ML method

SVM recorded the lowest PA (0.26). However, the maximum

coincidence index (CI) of 0.34 was achieved with SVM for

the top 20% performing clones (TCI), while RF recorded the

highest CI for the bottom 20% performing clones (BCI). For

TRS, RF predicted with the highest accuracy at 0.33. All the

best linear unbiased prediction (BLUP methods showed sim-

ilar PA (0.26) except for HBLUP (0.22). While BRR had the

highest TCI (0.31), G + D had the highest (0.35) BCI. The

rrBLUP model had the highest PA (0.25) for CY. For CY,

the highest value of TCI and BCI was predicted by (G + D)

(0.26) and RF (0.31), respectively. Several BLUP methods

showed PA values of 0.14 for NS and 0.23 for SW. Bayesian

Lasso (BL) method showed the highest value of PA (0.09) for

Fiber.
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F I G U R E 2 Predictive ability (PA) of six cane and sugar yield traits in stage 2 (S2). BL, Bayesian Lasso; BRR, Bayesian ridge regression; CY,

cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G, GBLUP; GG, additive-additive; GD, additive-dominance; H, heterozygosity;

HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing kernel Hilbert space; rrBLUP; ridge regression BLUP;

SVM, support vector machine; SW, stem weight (Mg); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

When S2 data were stratified by crop and soil type, the

highest PA was recorded for SW (0.31) by both BRR and SVM

in plant cane crops under light soil (S2PL) (Table S4). RF

showed the highest CI for top (0.45) and RKHS for bottom

(0.42) performing clones for CY and NS, respectively. Under

heavy soil conditions (S2PH), Bayesian models predicted

with the highest accuracy both SY (BL) and SW (BayesA)

at 0.23, while the best TCI was recorded for CY (0.48) by

SVM (Table S5). BayesA also had the maximum PA for SY

(0.39) in ratoon crop under light soil (S2RL), whereas RKHS

and RF had the highest TCI for TRS (0.44) and BCI for TRS

(0.39), respectively (Table S6). For ratoon crop under heavy

soil conditions, S2RH (Table S7), BRR had the highest PA for

SY (0.39), but both TCI (0.42) and BCI (0.59) were the best

for Fiber by the eGBLUP methods.

Stage 3
In the stage 3 combined (S3) dataset, the highest PA was

0.24 for NS and 0.45 for SY (Figure 3, Table 3). All models

except HBLUP showed comparable PA for SY (0.41–0.45),

CY (0.36–0.38), and SW (0.17–0.25). For TRS, both RF

and SVM performed better with the highest (0.44) PA fol-

lowed by Bayes A (0.40). Similar to SY (0.45), SVM also

showed the highest prediction accuracies for NS (0.24) and

SW (0.25). The highest PA value for CY was 0.38 with

Bayes C. Both ML models scored the highest TCI and BCI,

both at 0.44 for TRS, while SVM outperformed others with

the highest TCI (0.39) for SY. Model G + D predicted the

top-performing clones with the highest TCI (0.35) for NS,

whereas Bayes A had the highest TCI of 0.38 for SW. Bayesian

models performed better than other models with higher PA for

Fiber.

In stage 3 plant cane crop under light soil (S3PL), the PA

for SY was the highest (0.42) with one of the eGBLUP mod-

els that accounted for heterozygosity (G + D + GG + H)

compared to the same model without H (0.41) (Table S8),

although the highest TCI (0.41) and BCI (0.44) for CY were

documented by BayesB or BL. In plant cane crop under heavy

soil (S3PH), maximum PA (0.40) was observed for SY by

HBLUP and RF, whereas HBLUP model had the highest TCI

(0.46) for SY and BCI (0.48) for TRS (Table S9). HBLUP also

had the highest PA (0.34) for SY with the dataset at stage 3 in

ratoon crop under light soil (S3RL), but the highest PA was

observed for TRS (0.46) by RKHS (Table S10). On the other
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F I G U R E 3 Predictive ability (PA) of six cane and sugar yield traits in stage 3 (S3) dataset. BL, Bayesian Lasso; BRR, Bayesian ridge

regression; CY, cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G, GBLUP; GG, additive-additive; GD, additive-dominance; H,

heterozygosity; HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing kernel Hilbert space; rrBLUP; ridge

regression BLUP; SVM, support vector machine; SW, stem weight (Mg); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

hand, G + D was the best for both TCI and BCI for SW (0.51)

and TRS (0.36), respectively. The highest PA (0.32) and BCI

(0.39) were shown by the ML method SVM for Fiber in stage

3 ratoon crop under heavy soil (S3RH) and the highest TCI

by an eGBLUP model for SY (0.28) (Table S11).

Stage 4
At stage 4 across crop and soil type, SVM showed the highest

PA of 0.14 and 0.34 for SY and TRS, respectively (Figure 4,

Table 4). While G + H and BL recorded the best TCI (0.44)

and BCI (0.34), respectively, for TRS, RF had the highest BCI

(0.26) for SY and G + D and Bayes A with the highest and

similar TCI and BCI (0.42) for CY. The PA of CY (0.12) and

SW (0.11) was low with the highest value recorded by RKHS.

The highest PA (0.34) for Fiber was obtained by rrBLUP.

The highest PA was demonstrated by Bayesian model,

BRR, for TRS (0.31), whereas BayesA had the best TCI

and BCI for TRS (0.44) and Fiber (0.43), respectively, in

the stage 4 plant cane under light soil (S4PL) (Table S12).

Under heavy soil plant cane (S4PH), the highest PA (0.62)

was achieved with Bayesian models (BayesA, BayesB, and

BRR) as well as RF for SW. However, the PA for SY was

the lowest 0.07 (Table S13). The BayesB model had the high-

est CI for the top-performing clones for TRS (0.33), whereas

SVM had the maximum CI for bottom 20% clones for Fiber

(0.37). In ratoon crop under light soil (S4RL), RF exhib-

ited the highest PA at 0.46 for SY but both TCI and BCI

were recorded for Fiber by BL (0.47) and HBLUP (0.39),

respectively (Table S14). In the ratoon crop under heavy soil

(S4RH), the highest PA was obtained with RF for Fiber (0.45),

closely followed by Bayes C for TRS (0.44) and HBLUP for

SW (0.43) (Table S15), while the maximum TCI and BCI both

at 0.58 were recorded by RKHS for SW and RF for Fiber,

respectively.

3.2.2 Cross-stage GP

Cross-stage GPs were made for the performance of the clones

in advanced stages of the breeding trials as the testing popu-

lation based on the genomic breeding values estimated from

the clonal performance at the early stage 2 in plant cane

crop. When S2 (stage 2 combined across crop and soil type)

data were used to predict stage 5 combined (S5), plant cane
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F I G U R E 4 Predictive ability (PA) of six cane and sugar yield traits in stage 4 (S4). BL, Bayesian Lasso; BRR, Bayesian ridge regression; CY,

cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G, GBLUP; GG, additive-additive; GD, additive-dominance; H, heterozygosity;

HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing kernel Hilbert space; rrBLUP; ridge regression BLUP;

SVM, support vector machine; SW, stem weight (Mg); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

combined (S5P), and ratoon combined (S5R) (Table S16), ML

methods predicted with the highest accuracy of 0.44 (RF) for

TRS in S5, 0.33 (RF) for SW in S5R, and 0.51 (SVM) for SY

and 0.30 (SVM) for CY in S5P. For SY in S5, Bayes B had

the highest PA (0.32) and TCI (0.44), otherwise, RF recorded

maximum PA for SW (0.29) and Fiber (0.01) by RF and SVM

(same as BayesC for CY [0.24] in S5). In both S5P and S5R,

ML models again had the highest PA for SY, TRS, CY, SW,

and Fiber, except TRS (0.37) by HBLUP in S5R.

With S2P as the predictor, BRR and SVM recorded the

highest PA (0.49) for SY, SVM for TRS (0.42), and BRR for

CY (0.34) in clones at S5, S5P, and S5R, respectively (Table

S17). RKHS showed the highest PA for SW (0.46) and TCI

for SY (0.57) in S5, whereas SVM predicted top-performing

clones for TRS (0.52) in S5P.

When S2L was used to predict clones for S5PL, S5R1L,

and S5R2L (Table S18), the highest PA at 0.31 was shown by

HBLUP in S5PL and by Bayesian models (RKHS and BL)

in S5R1L for TRS. CY was best predicted with SVM (0.29)

in S5PL. RF had the highest ability to predict SW (0.41) in

S5R2L and Fiber (0.46) in S5R1L. With S2PL data as the

training set to predict clones for S5PL, S5R1L, and S5R2L

(Table S19), HBLUP method showed the maximum PA for

SY (0.59), CY (0.61), NS (0.54), and Fiber (0.50), while RF

performed the best with the highest PA of 0.24 for TRS and

SVM for SW (0.32) in S5PL. PAs of the traits for clones were

generally less in ratoon crops with the highest for SW by RF at

0.22 and 0.28 in S5R1L and S5R2L. Fiber was best predicted

at 0.46 accuracy by both RKHS and Bayes A closely followed

by BRR (0.45) in S5R1L.

When S2H dataset was modeled to predict clones in S5PH,

S5R1H, and S5R2H, SVM had the highest PA (0.39) for

TRS. BRR and Fiber recorded the highest TCI (0.35) and

BCI (0.38) for SY and Fiber in S5PH. The highest predic-

tion for S5R1H was made by HBLUP for TRS (0.66), whereas

BayesB and BL predicted the top- and bottom-performing

clones with TCI and BCI both at 0.55 for SY and CY, respec-

tively (Table S20). In S5R2H, HBLUP showed the highest PA

of 0.42 (TRS) followed by BL (0.40) for NS. BL had the high-

est TCI and BCI both at 0.35 for NS. The same TCI value was

recorded for SY by RF, while SVM had the same highest BCI

value for CY and SW. In the case where the S2PH was used

to predict S5PH, S5R1H, and S5R2H (Table S21), RF proved

to be the best for SW with PA at 0.35 as well as the highest
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T A B L E 2 Predictive ability (PA) of six cane and sugar yield traits in stage 2 across crop and soil type.

SY TRS CY NS SW Fiber
Model PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI
G 0.32 0.26 0.30 0.26 0.28 0.26 0.24 0.12 0.28 0.13 0.20 0.21 0.22 0.30 0.20 0.07 0.26 0.17

G + D 0.32 0.26 0.30 0.26 0.28 0.35 0.24 0.26 0.28 0.13 0.18 0.32 0.22 0.34 0.22 0.07 0.11 0.15

G + D + GG 0.32 0.26 0.30 0.26 0.28 0.25 0.23 0.12 0.28 0.13 0.20 0.21 0.21 0.29 0.20 0.07 0.26 0.17

G + D + GD 0.32 0.26 0.30 0.26 0.28 0.25 0.23 0.12 0.28 0.13 0.20 0.21 0.22 0.31 0.18 0.07 0.27 0.17

G + D + GD + GG 0.33 0.26 0.30 0.25 0.28 0.25 0.23 0.12 0.26 0.13 0.20 0.21 0.21 0.31 0.20 0.07 0.27 0.17

G + H 0.33 0.28 0.28 0.26 0.26 0.25 0.24 0.14 0.26 0.14 0.20 0.25 0.23 0.30 0.21 0.08 0.27 0.17

G + D + H 0.33 0.28 0.28 0.26 0.24 0.25 0.24 0.14 0.26 0.14 0.20 0.25 0.23 0.30 0.21 0.08 0.27 0.17

G + D + GG + H 0.33 0.28 0.28 0.26 0.26 0.25 0.24 0.14 0.26 0.14 0.20 0.25 0.23 0.30 0.21 0.08 0.27 0.17

G + D + GD + H 0.33 0.28 0.28 0.26 0.26 0.25 0.24 0.14 0.26 0.14 0.20 0.25 0.23 0.30 0.21 0.08 0.27 0.17

G + D + GD + GG + H 0.33 0.28 0.28 0.26 0.26 0.25 0.24 0.14 0.24 0.14 0.20 0.25 0.23 0.30 0.21 0.08 0.27 0.17

HBLUP 0.27 0.29 0.32 0.22 0.27 0.26 0.21 0.24 0.25 0.14 0.18 0.27 0.10 0.20 0.16 0.03 0.19 0.21

rrBLUP 0.32 0.26 0.30 0.25 0.26 0.26 0.25 0.14 0.28 0.13 0.20 0.21 0.23 0.30 0.28 0.09 0.27 0.17

RKHS 0.32 0.27 0.30 0.26 0.24 0.25 0.24 0.14 0.27 0.11 0.16 0.26 0.20 0.33 0.22 0.07 0.25 0.18

BRR 0.32 0.26 0.30 0.25 0.31 0.23 0.24 0.12 0.26 0.10 0.14 0.26 0.20 0.30 0.20 0.07 0.23 0.15

BayesA 0.32 0.26 0.30 0.27 0.24 0.23 0.24 0.12 0.26 0.10 0.14 0.26 0.22 0.30 0.20 0.08 0.25 0.19

BayesB 0.33 0.26 0.30 0.28 0.26 0.23 0.24 0.12 0.29 0.10 0.14 0.28 0.22 0.33 0.24 0.08 0.25 0.17

BayesC 0.32 0.26 0.32 0.26 0.28 0.27 0.24 0.13 0.29 0.11 0.14 0.28 0.22 0.33 0.18 0.08 0.27 0.15

BL 0.32 0.27 0.28 0.27 0.27 0.25 0.23 0.14 0.26 0.08 0.14 0.25 0.21 0.30 0.18 0.09 0.25 0.20

Non-parametric

RF 0.28 0.22 0.35 0.33 0.28 0.26 0.20 0.12 0.31 0.09 0.21 0.21 0.18 0.29 0.18 −0.05 0.24 0.14

SVM 0.26 0.34 0.30 0.26 0.26 0.29 0.20 0.19 0.28 0.13 0.24 0.23 0.22 0.28 0.22 0.07 0.25 0.21

Abbreviations: BCI, bottom coincidence index; BRR, Bayesian ridge regression; BL, Bayesian Lasso; CY, cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G,

GBLUP; GG, additive-additive; GD, additive-dominance; H, heterozygosity; HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing

kernel Hilbert space; rrBLUP; ridge regression BLUP; SW, stem weight (kg); SY, sugar yield (Mg ha−1); TCI, top coincidence index; TRS, theoretical recoverable sugar

(kg Mg−1); SVM, support vector machine.

TCI for Fiber (0.38) in S5PH. In both S5R1H and S5R2H,

HBLUP performed the best with a PA of 0.44 and 0.43 (same

as RF), respectively, for TRS. But G + D had the highest TCI

of 0.55 for both TRS (same as BL for SY) and CY and SVM

predicted with the highest accuracy for the bottom 25% of the

clones for CY (0.55) in S5R1H. In S5R2H, all the Bayesian

models except RKHS had similar TCI (0.35) and BCI (0.55)

for TRS.

With S2RL dataset as the predictor for clones at S5R1L and

S5R2L (Table S22), the predictions for most traits were low

except BayesB and BayesC, which had the highest PA for SW

(0.35) in S5R1L, while HBLUP was the best for TRS at both

S5R1L (0.18) and S5R2L (0.23). While both ML models had

the highest TCI (0.35) for SY and SW in S51RL, SVM had

the highest BCI (0.55) for SY in S52RL. When the S2RH data

were used as a predictor (Table S23), SVM showed the best

PA for TRS in both S5R1H (0.39) and S5R2H (0.56), whereas

RF had the highest TCI (0.55) and SVM with the highest BCI

(0.35) for the same trait.

Using S2P data as the training set to predict S5R1 and

S5R2, RF had the best PA (0.51) and SVM with the best

TCI (0.35) for TRS at S5R1 (Table S24). The highest BCI

(0.35) was recorded by both RF and SVM for Fiber. For

S5R2, however, SVM had the highest PA (0.39) for TRS,

whereas the top-performing clones were best predicted by

HBLUP for TRS and SVM for SW and Fiber all at 0.35. There

was no difference between the models for the BCI for most

traits.

Finally, when the S2R dataset was used to predict S5R1 and

S5R2 (Table S25), SVM was the best with the PAs of 0.56 and

0.49 for TRS in both S5R1 and S5R2, respectively. While all

models yielded negative predictions for Fiber (except RF) and

NS, G + D + GD + H had the highest TCI (0.35) for Fiber

and BL for NS (0.17).

Interestingly, the PA of some of the traits in some datasets

increased with HBLUP that jointly considered pedigree and

marker-based information. For example, the PA increased

with HBLUP for CY in S2PH and S2RH; SY in S3PH and

S3RL; SW in S4RH; TRS in S5, S5R from S2, SY, CY, NS,

and Fiber in S5PL from S2PL; TRS in S5PH, S5R1H, and

S5R2H; and CY in S5R1H from S2H as well in some stage 4

trials.
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T A B L E 3 Predictive ability (PA) of six cane and sugar yield traits in stage 3 across crop and soil type.

SY TRS CY NS SW Fiber
PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI

G 0.43 0.37 0.31 0.37 0.40 0.35 0.38 0.29 0.33 0.20 0.29 0.25 0.23 0.32 0.20 0.24 0.26 0.29

G + D 0.43 0.37 0.31 0.37 0.39 0.37 0.38 0.32 0.24 0.21 0.35 0.26 0.23 0.35 0.26 0.24 0.20 0.12

G + D + GD 0.44 0.37 0.29 0.38 0.35 0.35 0.38 0.29 0.33 0.21 0.29 0.27 0.23 0.33 0.24 0.24 0.26 0.29

G + D + GG 0.44 0.36 0.29 0.38 0.34 0.33 0.38 0.29 0.33 0.21 0.27 0.27 0.22 0.33 0.22 0.23 0.26 0.29

G + D + GD + GG 0.44 0.37 0.29 0.38 0.34 0.35 0.38 0.29 0.33 0.21 0.29 0.27 0.23 0.36 0.22 0.23 0.26 0.29

G + H 0.43 0.38 0.31 0.36 0.38 0.33 0.37 0.29 0.31 0.17 0.27 0.24 0.22 0.34 0.20 0.22 0.26 0.31

G + D + H 0.43 0.34 0.31 0.37 0.38 0.33 0.37 0.29 0.31 0.17 0.27 0.24 0.22 0.36 0.24 0.22 0.26 0.31

G + D + GD + H 0.43 0.34 0.33 0.37 0.38 0.33 0.37 0.29 0.31 0.17 0.27 0.24 0.22 0.33 0.24 0.22 0.26 0.31

G + D + GG + H 0.43 0.34 0.31 0.38 0.38 0.35 0.37 0.29 0.31 0.17 0.27 0.24 0.23 0.34 0.26 0.22 0.26 0.31

G + D + GD + GG + H 0.43 0.34 0.31 0.37 0.34 0.33 0.37 0.29 0.31 0.17 0.27 0.24 0.22 0.36 0.24 0.22 0.26 0.31

Hmat 0.36 0.31 0.32 0.32 0.28 0.27 0.34 0.32 0.35 0.19 0.24 0.21 0.06 0.22 0.20 0.24 0.19 0.31

RR_20K 0.43 0.37 0.31 0.37 0.40 0.35 0.38 0.29 0.33 0.20 0.29 0.25 0.23 0.32 0.20 0.23 0.26 0.30

RKHS 0.45 0.34 0.35 0.38 0.38 0.33 0.37 0.29 0.29 0.21 0.25 0.25 0.23 0.32 0.19 0.24 0.24 0.30

BayesA 0.45 0.36 0.31 0.40 0.36 0.37 0.38 0.29 0.30 0.20 0.26 0.25 0.24 0.38 0.22 0.22 0.24 0.29

BayesB 0.44 0.36 0.29 0.39 0.36 0.33 0.38 0.29 0.29 0.20 0.27 0.27 0.23 0.32 0.20 0.24 0.26 0.31

BayesC 0.45 0.37 0.35 0.39 0.34 0.35 0.38 0.29 0.29 0.21 0.29 0.27 0.22 0.30 0.20 0.23 0.24 0.30

BL 0.44 0.36 0.38 0.35 0.42 0.35 0.38 0.25 0.33 0.21 0.25 0.27 0.22 0.32 0.22 0.20 0.26 0.29

BRR 0.45 0.34 0.33 0.39 0.38 0.40 0.37 0.29 0.28 0.20 0.27 0.27 0.22 0.30 0.19 0.23 0.24 0.29

Non-parametric

RF 0.41 0.32 0.26 0.44 0.44 0.44 0.31 0.31 0.31 0.14 0.21 0.22 0.17 0.28 0.19 0.23 0.24 0.31

SVM 0.45 0.39 0.37 0.44 0.44 0.44 0.36 0.33 0.30 0.24 0.25 0.25 0.25 0.36 0.20 0.10 0.18 0.24

Abbreviations: BCI, bottom coincidence index; BRR, Bayesian ridge regression; BL, Bayesian Lasso; CY, cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G,

GBLUP; GG, additive-additive; GD, additive-dominance; H, heterozygosity; HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing

kernel Hilbert space; rrBLUP; ridge regression BLUP; SW, stem weight (kg); SY, sugar yield (Mg ha−1); TCI, top coincidence index; TRS, theoretical recoverable sugar

(kg Mg−1); SVM, support vector machine.

3.2.3 Significant SNP-MTAs as fixed effects

Genome-wide association mapping identified significant

MTAs for the six traits at different stages of the breeding

trials with different combinations of crop type and soil type

(Table S26). MTAs common among the traits were observed

at all stages except with the second stage plant cane heavy

soil (S2PH) dataset. A small number of significant marker

associations were identified for SY (2), TRS (4), CY (2), and

Fiber (3) whereas eight and 17 markers showed associations

with NS and SW, respectively, in S2PH. Similarly, except for

10 markers with TRS, four (SY and CY) or five (NS, SW,

and Fiber) markers showed significant associations in S4PH.

Markers unique for a trait at a given stage and condition were

used as fixed effects in GBLUP model (G + S) to determine

their effect on the GP.

Significant SNPs improved the PA in some cases, whereas

there was either no change or reduction in PA with the use of

putative-associated SNPs (Figures 5–7). With fivefold cross-

validation in S2PL, G + S had the highest PA for SY, which

was a 154% increase over GBLUP (Figure 5, Table S26). In

S2PH, the SNPs had a positive effect in predicting CY with

higher accuracy by 378% increase over GBLUP, highest PA

for TRS, SW, and Fiber in S2RH. At stage 3, G + S did not

show much improvement over GBLUP but resulted in the

highest PA for TRS and CY at S3RL (Figure 6, Table S27).

At stage 4, fixed effect SNPs resulted in the highest PA for SY

at S4PL, the highest PA for SY and CY with a significantly

higher percentage increase over GBLUP in S4PH (Figure 7,

Table S27). The G + S model accounted for the highest PA for

SY, TRS, and SW at S4RL, with 23.62%–42. 84% increase in

PA over GBLUP. In S4RH, significant SNPs did not improve

the PA for the traits except for SW.

Inconsistent but more negative results were obtained with

the fixed effect SNPs for the cross-stage prediction of the traits

(Table S28). Higher accuracy values were obtained with G +
S model for TRS, CY, and SY with 18.74%, 104.98%, and

93.47% increase over GBLUP, respectively, at S5PL when

predicted from S2L. Similarly, fixed effect SNPs improved

the PAs of TRS (43.86%) and SW (90.77%) at S5PH with

prediction from S2H. The PA for CY was increased exor-

bitantly higher (935.60%) with associated SNPs as a fixed

effect in the model. Likewise, there was a 1494.28% and

1345.48% increase for SY and CY, respectively, with the G
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T A B L E 4 Predictive ability (PA) of six cane and sugar yield traits in stage 4 genotypes across crop and soil type.

SY TRS CY NS SW Fiber
PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI PA TCI BCI

G 0.13 0.23 0.22 0.30 0.40 0.25 0.08 0.40 0.32 −0.04 0.16 0.11 0.09 0.18 0.18 0.33 0.40 0.34

G + D 0.13 0.27 0.22 0.30 0.18 0.27 0.09 0.42 0.33 −0.04 0.23 0.12 0.09 0.22 0.16 0.33 0.19 0.18

G + D + GD 0.13 0.27 0.22 0.30 0.40 0.25 0.09 0.40 0.37 −0.04 0.16 0.11 0.09 0.18 0.18 0.32 0.32 0.34

G + D + GG 0.13 0.26 0.22 0.30 0.40 0.25 0.08 0.36 0.32 −0.04 0.16 0.11 0.09 0.18 0.18 0.30 0.37 0.34

G + D + GD + GG 0.13 0.23 0.22 0.30 0.40 0.25 0.08 0.36 0.29 −0.04 0.16 0.11 0.09 0.18 0.18 0.30 0.37 0.34

G + H 0.12 0.23 0.22 0.29 0.44 0.26 0.06 0.40 0.29 −0.09 0.20 0.11 0.10 0.18 0.22 0.34 0.37 0.34

G + D + H 0.12 0.23 0.22 0.29 0.44 0.26 0.06 0.40 0.29 −0.09 0.20 0.11 0.10 0.18 0.22 0.33 0.37 0.34

G + D + GD + H 0.12 0.23 0.22 0.29 0.44 0.26 0.06 0.40 0.29 −0.09 0.20 0.11 0.10 0.18 0.22 0.32 0.32 0.34

G + D + GG + H 0.12 0.23 0.22 0.28 0.44 0.26 0.06 0.37 0.29 −0.09 0.20 0.11 0.10 0.18 0.22 0.30 0.40 0.34

G + D + GD + GG + H 0.12 0.19 0.22 0.29 0.44 0.26 0.06 0.37 0.29 −0.09 0.20 0.11 0.10 0.18 0.22 0.31 0.33 0.34

Hmat −0.06 0.15 0.11 0.16 0.27 0.23 0.06 0.20 0.29 −0.15 0.15 0.20 −0.16 0.11 0.18 0.18 0.34 0.22

rrBLUP 0.13 0.23 0.22 0.30 0.40 0.25 0.08 0.40 0.32 −0.04 0.16 0.11 0.09 0.18 0.18 0.34 0.37 0.34

RKHS 0.12 0.33 0.22 0.30 0.40 0.30 0.12 0.37 0.41 0.01 0.16 0.11 0.11 0.23 0.18 0.31 0.35 0.34

BayesA 0.11 0.27 0.22 0.28 0.40 0.26 0.11 0.40 0.42 −0.02 0.16 0.15 0.08 0.18 0.18 0.30 0.36 0.34

BayesB 0.12 0.23 0.22 0.31 0.40 0.22 0.12 0.40 0.38 −0.06 0.16 0.11 0.09 0.22 0.14 0.30 0.32 0.38

BayesC 0.10 0.23 0.22 0.29 0.40 0.30 0.10 0.37 0.38 −0.04 0.16 0.08 0.09 0.23 0.14 0.31 0.31 0.30

BL 0.14 0.23 0.22 0.27 0.31 0.34 0.12 0.40 0.41 −0.06 0.20 0.19 0.10 0.18 0.18 0.32 0.23 0.30

BRR 0.12 0.24 0.22 0.29 0.40 0.26 0.09 0.37 0.37 −0.04 0.16 0.11 0.07 0.18 0.14 0.30 0.37 0.34

Non-parametric

RF 0.04 0.19 0.26 0.27 0.39 0.22 0.03 0.31 0.33 −0.22 0.20 0.03 0.03 0.18 0.08 0.06 0.43 0.20

SVM 0.14 0.27 0.21 0.34 0.39 0.22 0.09 0.25 0.41 0.02 0.28 0.08 0.04 0.23 0.14 0.10 0.30 0.14

Abbreviations: BCI, bottom coincidence index; BRR, Bayesian ridge regression; BL, Bayesian Lasso; CY, cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G,

GBLUP; GG, additive-additive; GD, additive-dominance; H, heterozygosity; HBLUP, hybrid matrix; NS, number of stalks (ha−1); RF, random forest; RKHS, reproducing

kernel Hilbert space; rrBLUP; ridge regression BLUP; SW, stem weight (kg); SY, sugar yield (Mg ha−1); TCI, top coincidence index; TRS, theoretical recoverable sugar

(kg Mg−1); SVM, support vector machine.

+ S model when the performance of the clones at S5R2L was

predicted from S2L. In cross-stage predictions also, there was

an increase in the PA for traits, except NS and Fiber at S5R2H

from S2H.

3.2.4 Multi-trait genomic selection

The PA in MTGS increased with the increase in the correla-

tion of these traits with SY. Multi-trait modeling with fivefold

cross-validation in S2PL showed a PA for SY (originally with

a PA of 0.08) ranging from 0.07 with Fiber to 0.96 when TRS,

NS, SW, and Fiber were all included in BMTM and from

0.00 to 0.84 with the same traits with multivariate GBLUP

(MVGBLUP; Figure 8, Table S29). Using only TRS in the

model, up to 0.23 (286.5% increase) PA was obtained. Simi-

larly, when TRS and NS both were included in the prediction

model, an accuracy of 0.48 (BMTM) to 0.53 (MVGBLUP)

was achieved. On the other hand, the accuracy of multi-trait

modeling for cross-stage prediction in S5PL using S2PL as the

reference population for SY (originally with 0.14 PA) was the

lowest (0.19 for MVGBLUP and 0.25 for BMTM) when SW

and Fiber were considered, while the highest value of 0.78 was

observed with CY as the predictor for both models (Figure 9,

Table S29). Accounting TRS and NS, which had significantly

positive correlation with SY at different stages (Table S30) in

the multi-trait models, resulted in a high PA of SY at 0.63 for

MVGBLUP and 0.68 for BMTM.

3.2.5 Effect of marker density on GP

A comparative assessment of PA for six traits using differ-

ent marker numbers, selected based on the LD between them,

with five models, BRR, e(G)BLUP, RKHS, and rrBLUP sug-

gested that the marker density significantly affected model

performance. The PA generally increased with an increase in

the number of markers; however, it plateaued for all the mod-

els at 18,012 (Figure 10). For NS and SW, the PA reached

its maximum at 9091 markers and remained unchanged after-

ward. Prediction for Fiber showed the highest accuracy at

4399 (and 9091) markers. The number of markers for opti-

mal PA also depended on the traits. For NS, SW, CY, and

Fiber, all models predicted the highest accuracy with 15,592
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F I G U R E 5 Predictive ability (PA) of GBLUP with significant single nucleotide variations (SNPs) as fixed effect (G + S) model and

percentage change compared to genomic best linear unbiased prediction (GBLUP) model in stage 2 (S2) datasets. The bar graph, red point, and blue

lines show the PA of G + S model, the highest PA, and percentage change of the PA by G + S model compared to GBLUP, respectively. CY, cane

yield (Mg ha−1); Fiber, fiber content (%); H, heavy; L, light soil; NS, number of stalks (ha−1); P, plant cane; R, ratoon; SW, stem weight (Mg); SY,

sugar yield (Mg ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

SNPs after which it plateaued or started to decline. On the

other hand, for maximum accuracy of prediction for TRS and

SY, 18,012 SNPs were optimal. Across all models, however,

the scenario was slightly different. For traits, such as TRS,

NS, and Fiber, there was no significant difference in the PA

beyond 6112 SNPs. Likewise, for SY, CY, and SW, the PAs

were not significantly different after 9091 markers.

4 DISCUSSION

The availability of low-cost, advanced genotyping tech-

nologies that generate abundant markers has facilitated the

wide adoption of genomics-assisted breeding in several plant

breeding programs. The identification of multiple QTLs and

SNPs associated with TRS, NS, SW, CY, SY, and Fiber in

sugarcane indicates that these traits are genetically complex

and governed by both large and small-effect QTLs, thus mak-

ing their utilization in MAS difficult. GS, as a genome-wide

molecular MAS, has shown to be promising in sugarcane

(Islam et al., 2021, 2022; Satpathy et al., 2022; Yadav et al.,

2021), which can be used as a powerful tool to select supe-

rior parents and/or progenies and enhance genetic gain in

sugarcane.

Several factors, such as genetic architecture and heritabil-

ity of the trait, training sample size, population structure,

that is, relatedness of the training set with testing population,

genes or loci associated with trait, genome size, ploidy level,

gene action (additive/non-additive), marker density, and sta-

tistical models affect prediction accuracy in GS (Bernardo,

2014; Islam et al., 2021; Maulana et al., 2021; Rutkoski et al.,

2014; Yadav et al., 2021). In this study, traits with higher her-

itability, such as SW and TRS, exhibited higher prediction

accuracies when compared to traits with lower heritability

such as NS and CY. This suggests that a greater proportion

of their phenotypic variation is explained by genetic factors,
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F I G U R E 6 Predictive ability (PA) of with significant single nucleotide variations (SNPs) as fixed effect (G + S) model and percentage change

compared to genomic best linear unbiased prediction (GBLUP) model in stage 4 (S3) datasets. The bar graph, red point, and blue lines show the PA

of G + S model, the highest PA, and percentage change of the PA by G + S model compared to GBLUP, respectively. CY, cane yield (Mg ha−1);

Fiber, fiber content (%); H, heavy; L, light soil; NS, number of stalks (ha−1); P, plant cane; R, ratoon; SW, stem weight (Mg); SY, sugar yield (Mg

ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

making them more suitable for predictions based on genomic

information. Several previous studies have demonstrated a

strong correlation between heritability and prediction accu-

racy (Kaler et al., 2022; Kwong et al., 2017). Highly heritable

traits are generally controlled by a few major QTLs as com-

pared to the multiple small-effect genes controlling a trait

with low heritability. Optimal GP for traits with low heri-

tability such as NS and CY observed in our study can be

achieved by increasing the TP size (N) to enhance the power

of the models, which is influenced by N × h2 (Bernardo,

2016).

Previous studies have suggested various GS models provide

different prediction accuracy across crop species and traits

(Bernardo, 2014; De Los Campos et al., 2010). In this study,

we evaluated 20 parametric and two nonparametric models

to examine their prediction reliability within and across var-

ious stages of sugarcane breeding programs in Louisiana.

For most datasets, there was not much difference in the PA

between GBLUP and Bayesian models. In agreement with our

results, similar or very little difference was observed for PA

between GBLUP and nonlinear Bayesian models (Deomano

et al., 2020; Moser et al., 2009). On the other hand, extend-

ing additive GBLUP to incorporate dominance, epistasis, and

average heterozygosity (eGBLUP) resulted in improvement

of PA for some traits in a few datasets, for example, SY and

Fiber in S3PL, but not in all datasets. In sugarcane, nonaddi-

tive genetic effects were considered significant for complex

traits such as CY (Yadav et al., 2021). In addition to the

potential reduction of inbreeding depression risk using mod-

els accounting for nonadditive effects and heterozygosity in

commercial populations for traits such as CY (de Azeredo

et al., 2016), dominance effects were considered important

for selecting parents based on the GP of cross-appraisal in

clonal breeding programs (Werner et al., 2023). While Islam

et al. (2022) observed significant differences in traits between

the models with and without nonadditive effects in the model,
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F I G U R E 7 Predictive ability (PA) of with significant single nucleotide variations (SNPs) as fixed effect (G + S) model and percentage change

compared to genomic best linear unbiased prediction (GBLUP) model in stage 4 (S4) datasets. The bar graph, red point, and blue lines show the PA

of G + S model, the highest PA, and percentage change of the PA by G + S model compared to GBLUP, respectively. CY, cane yield (Mg ha−1);

Fiber, fiber content (%); H, heavy; L, light soil; NS, number of stalks (ha−1); P, plant cane; R, ratoon; SW, stem weight (Mg); SY, sugar yield (Mg

ha−1); TRS, theoretical recoverable sugar (kg Mg−1).

Yadav et al. (2021) obtained higher PA for CY with eGBLUP

but no improvement for SY and Fiber yield where nonaddi-

tive variance and heterozygosity were included. Only a slight

increment in PA with eGBLUP was noted in other crops such

as potato (Endelman et al., 2018), whereas de Bem Oliveira

et al. (2019) observed no difference in PA with models

considering additive and nonadditive genetic components in

tetraploid blueberry for fruit firmness, fruit weight, and yield.

The PA for these traits also did not improve with average het-

erozygosity incorporated into the GBLUP model, which was

explained by the lack of variation in average heterozygosity

among the genotypes.

The use of a relationship matrix including pedigree and

genomic information (HBLUP) in GS models was shown to

improve PA (Crossa et al., 2010; Sukumaran et al., 2017),

especially when very precise pedigree data including sev-

eral generations were available (Juliana et al., 2017). In our

study, the HBLUP model outperformed other models for a few

traits in both within-stage cross-fold validations and cross-

stage predictions in some datasets. Including pedigree can

increase prediction performance where markers may not be

sufficient to capture the genetic variations at the population

and family levels (Velazco et al., 2019), otherwise the combi-

nation matrix may not be beneficial in mixed models due to

information matrix redundancy (Albrecht et al., 2011). Also,

pedigree-based methods reportedly tend to overestimate the

reliability of GS and PA (de Bem Oliveira et al., 2020; Gorjanc

et al., 2015).

Nonparametric ML models are more flexible and adaptable

to various data patterns with no requirement for predefined

parameter specifications as the data determine the struc-

ture of the model. These models are useful especially when

datasets are complex or where relationships are undefined

(Montesinos-López et al., 2022). In this study, ML methods

such as RF and SVM performed better compared to other

models, especially for the traits with low heritability such as
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F I G U R E 8 Multi-trait genomic prediction of sugar yield accounting for various traits in Bayesian multi-trait model and multi-variate genomic

best linear unbiased prediction (GBLUP) model in stage 2 in plant cane under light soil (S2PL). BMTM, Bayesian multi-trait model; CY, cane yield

(Mg ha−1); Fiber, fiber content (%); MVGBLUP, multi-variate genomic best linear unbiased prediction; NS, number of stalks (ha−1); PA, predictive

ability; SW, stem weight (Mg); TRS, theoretical recoverable sugar (kg Mg−1).

NS. However, coincidence index, which signifies the potential

of model to select better performing genotypes or discard the

low-performing genotypes, was comparable to or lower than

other methods. Therefore, ML methods may not be the best

choice for GS as they require higher computational time. This

suggests if large-scale genotyping is conducted on almost all

clones included in field trials in the breeding program over

several years (as was the case here), a GBLUP model will

be sufficient for genetic evaluations of clones for traits with

moderate to high heritability.

The accuracy has been reported to increase by incor-

porating major effect markers as fixed effect covariates in

the prediction model in wheat (Sarinelli et al., 2019), rice

(Anilkumar et al., 2023), and other crops (Chen et al., 2023;

Kim et al., 2022). Similar results were obtained in sugarcane

where Islam et al. (2021) found an increased prediction for

brown rust disease resistance with the use of a major resis-

tance gene Bru1 as a fixed effect. On the other hand, no

significant difference in the accuracy was observed with the

addition of the SNP markers as fixed-effect covariates in corn

and sorghum (Rice & Lipka, 2019). In our previous study

also (Satpathy et al., 2022), mixed results were obtained for

cane and sucrose yield traits with putatively associated SNPs

as fixed effects in rrBLUP model. In the present study, the

GBLUP model with GWAS-derived SNPs as fixed effects (G

+ S) performed better with improved PA in a few datasets. For

example, the G + S model significantly increased prediction

of SY in S5PL, S5R1L, and S5R2L, TRS in S5PL and S5PH,

CY in S5PH, and SW in S5R2H using S2L, S2PL, and S2H as

the training set. However, such improvement was inconsistent

across traits and datasets. A possible explanation is that the

SNPs identified from GWAS study performed across different

datasets were used as fixed effect covariates for all predic-

tions. So, some of these SNP markers possibly are not strongly

associated with a trait in a particular dataset. Therefore, the

SNPs need to be validated before they can be effectively used

as fixed effects in the model. While implementing GS in prac-

tical breeding, the choice of prediction models would depend

on the heritability and genetic control of the trait(s) of interest

as well as the availability of validated, small-to-large effect

markers associated with the traits. However, if computational

resources are not limited, we propose to use eGBLUP models
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F I G U R E 9 Genomic predictive ability (PA) of sugar yield accounting various traits in Bayesian multi-trait model and multi-variate genomic

best linear unbiased prediction (GBLUP) model for prediction in stage 5 in plant cane under light soil (S5PL) from stage 2 in plant cane under light

soil (S2PL). BMTM, Bayesian multi-trait model; CY, cane yield (Mg ha−1); Fiber, fiber content (%); MVGBLUP, multi-variate genomic best linear

unbiased prediction; NS, number of stalks (ha−1); PA, predictive ability; SW, stem weight (Mg); TRS, theoretical recoverable sugar (kg Mg−1).

with trait-associated SNPs as fixed effects in the prediction

models.

It is possible that the unbalanced nature of historical

datasets where a few entries are represented over years (Table

S31), especially at the early stage of selection where geno-

typic diversity is higher, can confound the accuracy of model

training and thereby influence the model generalizability.

Nevertheless, GRM estimated with high-density marker data

of nonoverlapping genotypes across years, defined target

environments over time, and overlapping genotypes across

selection stages (Table S33) can help model genetic covari-

ances for genotypes repeated in different years, which allows

effective utilization of multi-year historical data (Bernal-

Vasquez et al., 2017). Successful utilization of historical

breeding trial data in GP has been reported in different

breeding programs including wheat (Dawson et al., 2013;

Gonzalez et al., 2018; Sarinelli et al., 2019; Sneller et al.,

2021). The PA values showed an increase for most traits with

the advancement of stages. This was probably not due to the

skewness of the traits toward higher values at later stages

following selection, as the PA would depend primarily on

GRM/marker effect rather than the absolute values. However,

the lower range of variation in the dataset across environments

(especially years) at the advanced stages may increase the PA

for the traits.

GP can facilitate prediction of progeny performance across

locations over years by improving the efficiency of multi-

environment testing in cultivar development pipeline as it

helps to discard low- to mediocre-performing breeding lines

in the early stages, thus saving valuable time and resources

(Atanda et al., 2021). Therefore, GP-based sparse testing

will be a viable approach to reduce the number of breeding

lines yet keeping the same or even increasing the number

of trial environments without increasing costs but maintain-

ing the selection intensity in the early stages of evaluation

(Montesinos-López et al., 2023). In crops such as sugarcane

where it takes ∼12 years from planting the seedlings in the

field to potentially releasing a variety, genetic gain can be

realized faster if the breeding cycle length can be reduced con-

sidering that optimal selection intensity has been realized by
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F I G U R E 1 0 Predictive ability (PA) using five different models with different linkage disequilibrium (LD) pruning values in stage 3 in plant

cane under light soil (S3PL). CY, cane yield (Mg ha−1); D, dominance; Fiber, fiber content (%); G, GBLUP; NS, number of stalks (ha−1); RKHS,

reproducing kernel Hilbert space; rrBLUP; ridge regression BLUP; SW, stem weight (Mg); SY, sugar yield (Mg ha−1); TRS, theoretical recoverable

sugar (kg Mg−1).

phenotypic or MAS of the traits of interest. Therefore, deploy-

ment of GS to select better performing clones as early as stage

1 or 2 will be very beneficial for the sugarcane industry. To

this end, the performance of the clones at S5 was predicted as

test population based only on their genotype using the models

that accounted for the performance of the training set at S2

and S3.

In cross-stage validation, PA was slightly higher when pre-

dicted from S3, which is replicated as against unreplicated S2

dataset. Expectedly, PA varied based on the traits and their

heritability, population size, crop type, environment, and the

models used. When S2 data combined across crop and soil

were used, higher PAs of 0.44 for TRS, 0.42 for SW, and

0.51 for SY were obtained. Again, as was observed for within-

stage cross-fold validations, the PAs were comparatively less

for CY and NS at 0.30 and 0.17, respectively, in S5 trials

predicted from S2. In a more practical sense, it will be benefi-

cial to predict the performance of the clones at S5 at the plant

cane crop in S2. In this scenario, PAs of 0.59 for SY, 0.61

for CY, 0.54 for NS, 0.32 for SW, and 0.50 for Fiber were

obtained in S5PL. These results were comparable to those

from other studies (Deomano et al., 2020; Gouy et al., 2013;

Hayes et al., 2021; Yadav et al., 2021). Actual genetic gain

obtained with the clones at S5 selected through phenotypic

recurrent selection vis-à-vis that obtained using GEBV from

S2 showed mostly improvement for the traits (Table S32).

Considering the number of years taken for advancing these

clones from S2 to S5 through recurrent selection (10 years)

and through GEBV (7 years), the rate of gain was higher with

GS for the SY attributing traits, with a 101% increase for

TRS and 11% for SW compared to the conventional pheno-

typic selection. However, the rate was lower for NS, which

was expected because of the low PA of the trait. In addi-

tion to shortening the breeding cycle, saving investments in

land and planting resources via early selection of the clones is

paramount.

The agronomic performance of a sugarcane clone in

ratoon crops is an important consideration for its advance-

ment/release as a variety in the US sugarcane industries,

especially in Louisiana where it is only a 7- to 8-month crop.

Therefore, the performance of the clones in the ratoon crops

was predicted from plant cane datasets early in the breeding

cycle. When the combined dataset of S2 was used as the TP,

the PAs for different traits in S5 ratoon crop irrespective of
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soil and crop were 0.14 for SY, 0.29 for TRS, 0.24 for NS and

CY, 0.33 for SW, and 0.10 for Fiber. Similar prediction of sug-

arcane ratooning ability with an accuracy of 0.21 for NS and

0.31 for SY was observed for Florida clones with a fivefold

cross-validation approach (Islam et al., 2023). As expected,

our results suggested that the performance prediction of the

clones at S5 in light soil should be made from S2 light soil

data and likewise for S5 heavy soil from S2 heavy soil data,

where the PAs ranged from 0.05 to 0.31 for SY and from 0.44

to 0.66 for TRS instead of cross-soil prediction. Prediction of

the clones for all traits at S5 first ratoon crop was less accurate

than in the plant cane and second ratoon crop under light soil

when S2 combined data under light soil was used as TP.

Most GS studies in sugarcane reported so far used single-

trait GP models for predicting a trait of interest. However,

PA of a trait has been shown to improve by incorporating

multiple traits in the prediction models in crops such as wheat

(Gill et al., 2023; Hayes et al., 2017; Lado et al., 2018; Michel

et al., 2018; Shahi et al., 2022; Zhang-Biehn et al., 2021)

and potato (Ortiz et al., 2023). For example, multi-trait GP

improved the accuracy by nearly 100% (0.75) for baking

absorption and by 63% for loaf volume in wheat compared

to single-trait prediction (Gill et al., 2023). We observed that

MTGS improved PA for SY, although the extent of improve-

ment varied depending on the extent of correlations between

SY and the traits incorporated in the model (Table S29).

For example, there was very little improvement in PA when

Fiber was used in the model in contrast to significantly higher

improvement when highly correlated traits such as CY and

TRS were used. In sugarcane, traits such as NS and TRS can

be available early in the growing season and using them as

early as S2 in GS to predict SY for S5 can be very useful.

This was evident from the increase in prediction of SY with

single-trait model (0.30) to 0.50 and 0.41 using a multi-trait

model with NS and TRS, respectively, and up to 0.66 when

both traits were considered, for cross-stage prediction from

stage 2 as training set to stage 5 as test population.

Marker density has also been shown to influence PA (Nor-

man et al., 2018; Zhang et al., 2019). While the big sugarcane

genome may warrant a large SNP dataset generated through

next-generation sequencing (NGS)-based genotyping tools, it

is important to determine the marker density that is required

to obtain optimally high PA considering the high LD of sug-

arcane and the fact that most markers are phenotypically

irrelevant or neutral (Weber et al., 2023). Our evaluation

showed a generally linear relationship where PA increased

with an increase in the number of markers. It is possible that

more markers distributed across chromosomes could accu-

rately capture most contributing QTLs, ultimately leading to

an increased prediction. The marker density at which the PA

plateaued depended on the traits studied. We found that 9091

markers for highly heritable traits such as TRS, SW, and SY,

and 15,592 for low-heritable traits such as NS and CY were

sufficient for optimal GP accuracy. This result is compara-

ble with a study in blueberry where 10,000 SNPs were found

optimum for GP (de Bem Oliveira et al., 2020). While such

a high marker number is expected for genome coverage in a

polyploid crop such as sugarcane and blueberry, other stud-

ies in sugarcane suggested that 5000 (Islam et al., 2022) and

3000 (Islam et al., 2021) SNPs were enough for optimal PA.

However, both these reports were based on brown rust and

orange rust resistance with reportedly high heritability. These

results suggested that the number of markers used in GS of

crops with large LD such as sugarcane can be reduced with-

out compromising its performance as long as the markers

are evenly represented in the LD blocks across the genome

(Ballesta et al., 2020; Silva et al., 2018). Selection of optimal

subsets of markers for specific traits has also been proposed to

increase GP accuracy (Alemu et al., 2023; Filho et al., 2019).

In addition, inclusion of run of heterozygosity and continu-

ous genotype of the clones in the models has shown potential

for the improvement of PAs for the trait(s) of the interest in

sugarcane (Yadav et al., 2024).

5 CONCLUSIONS

GS showed great promise to increase the rate of genetic gain

per year at a lower cost and in less time compared to the

conventional recurrent selection method for key traits in sug-

arcane variety development programs by considering GEBVs

for these traits early in the breeding cycle. Taken together,

our resultsn sugarcane and previous findings in sugarcane

and other polyploid crops reflected on the successful imple-

mentation of GS in sugarcane breeding program where using

historical data in the TP set is beneficial to predict GEBV of

the clones early to facilitate their testing in multi-environment

yield trials in subsequent years. Specifically, selection of bet-

ter performing clones or elimination of low performers at S2,

especially at S2P, can save at least 2–3 years of S4 testing,

thus potentially enhancing the rate of genetic gain by reducing

the breeding cycle length. Alternatively, the selected clones

at S2P can be grown in S3 nurseries to increase the popula-

tion for testing directly at S5 to select the potential variety.

However, in a complex crop such as sugarcane, it is better to

have data on a larger TP for better fit of the models to be used

for GP, especially for traits with low heritability and com-

plex genetic architecture. Multi-trait GP using NS and SW,

available early at S2, is a better strategy for improving PA of

SY.
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