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Abstract

BackgroundHighmyopia (HM), characterizedby a severemyopic refractive error, standsas
a leading cause of visual impairment and blindness globally. HM is a multifactorial ocular
disease that presents high genetic heterogeneity. Employing a genetic risk score (GRS) is
useful for capturing genetic susceptibility to HM.
Methods This study assesses the effectiveness of these strategies via incorporating rare
variations into the GRS assessment. This study enrolled two independent cohorts: 12,600
unrelated individuals of Han Chinese ancestry from Myopia Associated Genetics and
Intervention Consortium (MAGIC) and 8682 individuals of European ancestry from UK
Biobank (UKB).
ResultsHere, we first estimate the heritability of HM resulting in 0.53 (standard error, 0.06) in
the MAGIC cohort and 0.21 (standard error, 0.10) in the UKB cohort by using whole-exome
sequencing (WES) data. We generate, optimize, and validate an exome-wide genetic risk
score (ExGRS) for HM prediction by combining rare risk genotypes with common variant
GRS (cvGRS). ExGRS improved theAUC from0.819 (cvGRS) to 0.856 for 1219HanChinese
individuals of an independent testing dataset. Individuals with a top 5% ExGRS confer a
15.57-times (95%CI, 5.70–59.48) higher risk for developing HM compared to the remaining
95% of individuals in MAGIC cohort.
Conclusions Our study suggests that rare variants are a major source of the missing
heritability of HM and that ExGRS provides enhanced accuracy for HM prediction in Han
Chinese ancestry, shedding new light on research and clinical practice.

High myopia (HM) is generally defined for individuals with a spherical
equivalent (SE) of -6.00 diopters (D) or lower1. HM affects 2.8% of the
general population and is a risk factor for developing pathologic myopia
(PM) and its complications, most notably retinal degeneration or even
detachment, which can cause severe visual acuity (VA) loss and even
blindness2,3. HM is more common among Asian schoolchildren
(6.8–21.6%)4,5 than in non-Asians (2.0–2.3%)6.

HM is a multifactorial eye disease with a high genetic susceptibility.
Twin and family studies have demonstrated that HM has a high
heritability7,8. Over the past decades, numerous genome-wide association
studies (GWAS) of refractive error or myopia have revealed hundreds of
candidate genetic factors across different ethnic populations9–11. However,
the common variant uncovered by GWAS has a small effect size indepen-
dently; even the additive effects canonly explain a limited fraction ofmyopia
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Plain language summary

High Myopia (HM) is a disease of the eyes
frequently caused by one’s inherited genes.
Mathematical equations can be used to
predict disease risk based on a person’s
genetic make-up (profile). This calculation,
called a genetic risk score (GRS), doesn’t
include rare genetic changes and it is chal-
lenging to consider these in the calculations.
Here, we testwhether combining rare genetic
changes can help to predict HM risk. Our
calculations not only outperformed existing
methods used for HM risk, they also allow us
to estimate an individual’s risk of HM, show-
ing how important including rare genetic
changes are in accurately predicting risk of
this disorder.
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heritability (estimated heritability: 5.3% in Asians and 21.4% in
Europeans)11,12. Whole-exome sequencing (WES) studies of HM trios or
families have identified several novel mutations and genes in the Asian
populations, i.e., SCO213, BSG14, CCDC102B15, and LRPAP116. Moreover,
our recent WES study has also identified several HM-associated genes,
including rare coding variants,whichwere found tohave larger effect sizes17.
Hence, rare variants indeed contribute to the genetic architecture of HM,
although the extent to which they accounted for its heritability remains
unclear, leaving ample room for further investigation.

Polygenic risk scores (PRS) summarize the cumulative genetic effects
of numerous disease-associated variants, providing an overall measure of
genetic susceptibility to a particular disease for an individual18,19. Blood or
saliva samples can be used to predict a wide range of conditions, providing
the complementary need for any additional examinations or tests for
diagnosis20. In European populations, several large-scale studies have
demonstrated the effectiveness of utilizing the PRS to stratify myopia
risk10,11,21–24. Currently, the best-performing PRSs for refractive error explain
about 19% of the variance in the trait in individuals of European ancestry
and about 6% in those of East Asian ancestry23. The best area under the
receiver operating characteristic curve (AUROC) forHM is 0.783 and 0.672
in European and East Asian populations, respectively23. With most large-
scalemyopiaGWASs primarily performedamongEuropeanpopulations, it
remains unclear if these findings are generalizable to diverse populations of
non-European ancestry.

Thus, in this study, we estimated heritability explained by SNP-based
genetic variance and the gene-wise burden of rare alleles forHMusingWES
data in a large sample of 12,600 unrelated Chinese from the Myopia
Associated Genetics and Intervention Consortium (MAGIC) and 8682
Europeans from the UK Biobank (UKB) program. We constructed
common-variant-based genetic risk scores (cvGRS) and rare-variant-based
genetic risk scores (rvGRS) models and evaluated the performance of the
twomodels for genetic risk prediction in a subset ofMAGIC.Weproposed a
method, exome-wide genetic risk score (ExGRS), which combined cvGRS
and rvGRS, andobserved further improvement in genetic risk prediction for
HM. We demonstrated the creation of the ExGRS, which exhibits distinct
advantages over cvGRS, by incorporating rare variants identified in HM-
associated genes via burden tests, while also evaluating its portability across
ancestry in the UKB European populations.

Methods
Overview of the high myopia sequencing consortium cohort
TheMyopiaAssociatedGenetics and InterventionConsortium(MAGIC) is
a large-scale genomic consortium integrating myopia cohorts and
sequencing data from many investigators. Over the past several years,
MAGIC has been able to collected samples at the Eye Hospital ofWenzhou
Medical University (Zhejiang Eye Hospital) through the Institute of Bio-
medical Big Data4. We recruited approximately ten thousand Chinese
schoolchildren with high myopia aged from 6 to 18 years fromMAGIC. In
the study, high myopia is defined as a spherical equivalent refraction (SER,
sphere + [cylinder/2]) of single eye -6.00 diopters(D) or less. The analysis
presented here is based on 21,227 unrelated human samples collected from
epidemiological studies of myopia. After removing samples showing poor
sequencing quality or ambiguous sex status, population outliers identified
by principal component analysis (PCA), we random selected approximately
70% (12,600) of participants as training samples, whereas the remaining
30% (5400) were assigned as validation samples.

The present study was approved by the Ethics Committee of the
Wenzhou Medical University Affiliated Eye Hospital (approval numbers
Wmu191204 andWmu191205). Written informed consent conforming to
the tenets of the Declaration of Helsinki and following the Guidance of
Sample Collection of Human Genetic Diseases (2021SQCJ5721) by the
Ministry of Public Health of China was obtained from all participating
individuals or their legal guardians before the study. All procedures were
carried out strictly following the guidelines of ‘Management of Human
Genetic Resources’, as stipulated by theMinistry of Science andTechnology

of China (no. BF2022060511307 and no. BF2022060611309, effective from
November 8, 2021).

UK Biobank (UKB) is a large-scale biomedical database and research
resource, containing genetic and health records from half a million indivi-
duals aged 40–69 years in the United Kingdom25. There were 488,000
participantswere genotyped for 805,426markers on theUKBiLEVEAxiom
array and UK Biobank Axiom array. UKB measured refractive error of
130,494 participants by non-cycloplegic autorefraction using a TomeyRC-
5000 AutoRefractor Keratometer. We excluded unreliable refractometry
results and calculated the spherical equivalent (SE) as spherical refractive
error plus half the cylindrical error. In addition, samples identified as out-
liers in heterozygosity and missing rates, participants with sex discrepancy,
and individuals of non-Caucasian ancestry were removed in our study
according to the sample QC provided by UKB.We estimated relatedness in
each cohort by PLINK and only kept one of any pair of individuals with
relatedness (πˆ) >0.2. Finally, we identified 2096 HM cases (participants
with SE of single eye ≤ –6.0D) and 6,586 controls (participants with SE of
single eye > –0.25D). UK Biobank data has approval from the North West
Multi-center Research EthicsCommittee (MREC) (RECreference: 16/NW/
0274). All participants gave informed consent for participation in UK
Biobank. Permission to access and analyse UK Biobank data was approved
under UK Biobank project 45270.

Quality control
Sample quality control (QC) and variant QC forMAGIC andUKB cohorts
in our previous study are used in this study. We first selected the samples
with phenotypes available and retained only the high-quality variants that
passed aGATKVariantQuality Score Recalibration (VQSR) approach, and
those located outside of low-complexity regions were remained. Genotypes
with a genotype depth (DP) < 10 and genotype quality (GQ) < 20 and
heterozygous genotype calls with an allele balance >0.8 or <0.2 were set as
missing. We then excluded variants with genotype missingness rate >0.05,
Hardy-Weinberg equilibrium (HWE) test P value < 10–6 or a MAC < 3
using PLINK v.1.926. Only retained individuals of East Asian (EAS) and
European ancestry were retained, which were classified by a random forest
algorithm with 1000 Genomes data. At the end of all the QC steps, we
retained 12,600 unrelated individuals of Han Chinese and 8,682 European.

Variant annotation
The annotation of variants was performed with Ensembl’s Variant Effect
Predictor (VEP v.99) for human genome assembly GRCh37. We used the
VEP27 to generate additional bioinformatic predictions of variant deleter-
iousness (Supplementary Table 1–2). Protein-coding variants were anno-
tated into the following four classes: (1) synonymous; (2) benign missense;
(3) damaging missense; and (4) protein-truncating variants (PTVs). In
detail, using VEP annotations (v.99), missense variants were classified as
“inframe_deletion”, “inframe_ insertion”, “missense_variant” or “stop_lost”
variants. Among the missense variants, one type of benignmissense variant
was predicted as “tolerated” and “benign” by PolyPhen-2 and SIFT,
respectively, and another type of benign mutation showed a combined
annotation dependent depletion (CADD) score <15. Furthermore, dama-
ging missense variants were predicted as “probably damaging” and “dele-
terious” by PolyPhen-2 and SIFT and CADD> 15. Finally, PTVs were
classified as “frameshift_variant”, “splice_acceptor_variant”, “splice_donor_
variant”, “stop_gained”, or “start_lost” variants.

Association test
We conducted a single-variant association analyses by using MLMA-
LOCO28. The test statistics obtained via linear regression were inflated
because of the population differentiation caused by genetic drift. Post hoc
correction approaches, such as “Genomic Control”, were used to correct
the inflation29. For the exome-wide association study, we first tested each
variant, regardless of allele frequency, for HM associations; we applied a
significance level of P < 4.3 × 10–7 for all variants30. To determine whether
a single gene was enriched in or depleted of rare protein-coding variants
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in HM cases, we performed four gene-level association tests including
Fisher’s exact test, burden, SKAT and SKAT-O, with previously defined
covariates (sample sex, PC1-PC10).

Heritability estimation
In each WES dataset, we stratified SNPs into 4 MAF bins
(0.0001 <MAF < 0. 0010, 0.001 <MAF < 0.010, 0.01 <MAF < 0.10 and
0.1 <MAF < 0.5). For each of the 22 autosomes, we calculated the linkage
disequilibrium (LD) score of each variant with the others on a sliding
window of 10Mb using GCTA software28. Each of the four MAF bins was
divided into two more bins, one for variants with LD scores above the
median value of the variants in the bin (high-LD bin) and one for var-
iants with LD score below the median (low-LD bin) (Supplementary
Table 3). We then used GCTA to perform a GREML-LDMS analysis on
HM in each dataset with either 20 PCs calculated fromHM3 SNPs or 160
PCs (20 PCs computed from each of the 8 MAF/LD bins) fitted as fixed
covariates.

Using variant annotations and the LD and MAF bins defined from
the GREML-LDMS analysis on the WES data mentioned above, we
further separated the low-LD and high-LD variants in the
0.0001 <MAF < 0.01 into four bins according to their predicted variant
effects: PTV, D-mis, B-mis and Synonymous. We then ran a GREML-
LDMS analysis with 8 Genome-wide Relationship Matrices (GRMs),
fitting the 160 PCs shown to capture the effect of population stratification
as well as fixed covariates in MAGIC and UKB. To compute the variance
explained per SNP, we divided the estimate of variance explained for each
bin by the number of variants in the bin. The s.e. was obtained by
dividing the s.e. of the estimated variance explained for the bin by the
number of variants in the bin. We estimated burden heritability for rare
variant by using BHR (v.0.1.0), which is implemented in R, and its source
code is publicly available at GitHub (https://github.com/ajaynadig/bhr).
To compute the effect-size variance explained per gene, we divided the
estimate of burden heritability for each bin by the number of variants in
the bin.

GRS design
Wederived cvGRS, rvGRSandExGRS in the 12,600unrelated individuals of
Han Chinese ancestry from MAGIC. For cvGRS derivation, we first gen-
erated 20 pruning and thresholding (P+T) scores over a range of P value
(1.0, 0.5, 0.05, 5 × 10–4 and 5 × 10-6) and r2 (0.2, 0.4, 0.6, and 0.8) thresholds.
We also computed 7 candidate cvGRSusing theLDPred2 algorithm31 across
the following range of rho (fraction of casual variants): 1.00, 1.00 × 10–1,
1.00 × 10–2, 1.00 × 10–3, 3.00 × 10–1, 3.00 × 10–2 and 3.00 × 10-3. Additionally,
the lassosum2 computational algorithm32 was used to generate a candidate
GRS forHM.Eachof the scores derivedabovewas subsequently assessed for
discrimination of HM cases from controls in theMAGIC validation dataset
(2697 cases and 2703 controls) after adjustment for age, sex and 160 PCs of
ancestry. The score with the best performance was defined by the maximal
area under the receiver operator curve (AUC) and the largest fraction of
variance explained. AUC confidence intervals were calculated using the
‘pROC’ package within R.

We aimed to assess if adding the rvGRS enhancedHM risk prediction.
We constructed the rvGRS from the results of the rare variant burden tests.
These were conducted per gene, and each gene had separate thresholds for
associated to HM (P value) and pathogenicity (PTV, D-mis, B-mis and
Synoymous variant) established in the training group. rvGRS models were
constructed byfitting logistics regressionmodels toHMon the rare variants
(AF < 1%) in significantly associated genes. A unified PRS model, ExGRS,
was also constructed, which summed the rare- and common-variant GRS
models per individual.We tested the ExGRS for associationwithHM in this
dataset.

Statistical analysis within the testing dataset
For HM, the ExGRS with the best discriminative capacity in the testing
dataset was calculated in the testing dataset of 1219 participants in MAGIC

and 8682 participants inUKB.Due to the limited availability of rare variants
shared across theHanChinese andEuropean cohorts, we used variantswith
concordant direction-of-effect between MAGIC and UKB to improve the
trans-ethnic performance of the score. The proportion of the population of
HM individualswith a givenmagnitude of increased riskwas determined by
comparing progressively more extreme tails of the distribution with the
remainder of the population. Logistic regression models were used for
predicting case-control status with adjustment for age, sex, and PCs of
ancestry using the glm function in R. We used the pROC R package to
calculate the AUC. We also expressed the effect of the standardized risk
score asORs (with 95%CIs) per s.d. unit of the control standard-normalized
risk score distribution in each of the testing cohorts. We examined the risk
score discrimination at tail cutoffs corresponding to the top 20, 10, 5, 2 and
1%of theGRS distribution by deriving theORs of disease for each tail of the
distribution compared to all other individuals in each cohort.

Statistics and reproducibility
Statistical analyses were conducted using R version 4.2.1 software (The R
Foundation). A two-sided P value < 0.05 was considered statistically
significant.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Results
Polygenic architecture of rare to common coding variants
Weused a dataset of 12,600 exomes ofHanChinese ancestry in theMAGIC
project and 8682 exomes of European ancestry in the UK Biobank (Fig. 1
and Supplementary Fig. 1). We analyzed variants observed at least three
times in our dataset, which corresponds to a minor allele frequency (MAF)
threshold of 0.01%. After quality control (QC), 2.6 and 2.2 million variants
were included in the further analysis in MAGIC and UKB cohorts,
respectively. First, based on commonSNPs, the estimated heritability (h2SNP)
of HM was calculated using the residual maximum likelihood analysis
(GREML) approach implemented in the software package GCTA28. This
analysis utilized a selected set of 43,367 and 66,091HapMap 3 (HM3) SNPs
from the MAGIC and UKB cohorts, respectively. After correcting for the
first 20 principal components (PCs) computed from HM3 SNPs, we esti-
mated an h2SNP of 0.31 (standard error, s.e. = 0.01) and 0.14 (s.e. = 0.02) for
HM inMAGIC and UKB cohorts, respectively (Supplementary Fig. 2). We
thenapplied variantswithMAFgreater than0.01% toestimate andpartition
additive genetic variances. We grouped variants according toMAF and LD
(Supplementary Fig. 3 and Supplementary Table 3), using the GREML-
LDMS partitioning method with a median-based LD grouping strategy33.
Corrected for the first 20 PCs from HM3 SNPs, we found the estimated
heritability based onWES data (h2WES) was 1.76 (s.e. = 0.03) and 0.20 (s.e. =
0.10) for HM in the MAGIC and UKB cohorts (Supplementary Fig. 2),
which suggested h2SNP in the MAGIC cohort may have been inflated by
confounding factors such as population structure.

To determine the contribution of uncaptured population stratification,
we utilized a linear model adjusted for PCs to assess the association of rare
variants (Supplementary Fig. 4) in both cohorts.We then used 160 PCs (20
PCs computed from each of the 8 MAF/LD bins) computed from inde-
pendent variants in the GREML-LDMS analyses, which decreased h2WES
from 1.76 (s.e. = 0.03) to 0.53 (s.e. = 0.06) in the MAGIC cohort and
increased h2WES from0.20 (s.e. = 0.10) to 0.21 (s.e. = 0.10) inUKB (Fig. 1 and
Supplementary Fig. 2). This suggests the presence of population stratifica-
tion effects not captured by the 20 common variant PCs used in MAGIC.
We also found that the difference of h2WES for HM betweenMAGIC cohort
and UKB cohort is predominantly explained by rare variants, in particular
those in lowLDwith nearby variants. For variants with anMAF > 0.01, 0.10
and 0.17 of the phenotypic variance was accounted in the MAGIC cohort
and UKB cohort, respectively. For variants with anMAF < 0.01, 0.33 of the
phenotypic variance in theMAGIC cohort was accounted for by variants in
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the low-LD group, while only 0.10 of the variance was accounted for by
variants in the high-LDgroup.However, in theUKBcohort, only 0.04 of the
phenotypic variance is accounted for by variants in the low-LD group and
0.01 by those in the high-LDgroup, suggesting that rare variants explain less
genetic heritability than common variants in UKB’s European populations
(Fig. 1). When we replaced all the called SNPs in the MAGIC cohort with
overlapped variants found in both theMAGIC and the UKBWES datasets,

the estimated heritability decreased from 0.53 to 0.06 (Supplementary
Fig. 5), with most differences arising from variants with 0.0001 <MAF <
0.01, which are almost EAS-specific (Supplementary Fig. 6). To further
estimate the associationbetweenSNPeffect andMAF,wedemonstrated this
relationship byplotting cumulative genetic variances explainedbyh2 against
MAF. Under an evolutionarily neutral model, h2 is linearly proportional to
MAF34. We found that the curves of cumulative genetic variances in the

Fig. 2 | Variance explained per variant (the estimate of genetic variance divided
by the number of variants in each bin) from GREML-LDMS with rare variants
partitioned into four categories according to the variant annotation. a Variance

explained per variant for Han Chinese individuals from MAGIC (n = 12,600).
b Variance explained per variant for European individuals from UKB (n = 8682).
Error bars indicate standard errors (SE).
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Fig. 1 | GREML-LDMS estimates fromWES data stratified in 8 bins, including 2
linkage disequilibrium (LD) bins for each of the 4 minor allele frequency (MAF)
bins, correcting for 160PCs (20 * 8 bins) forMAGIC andUKB. aEstimate forHM
with h2WES at 0.53 (s.e. = 0.06) in MAGIC (n = 12,600). b Estimate for HMwith h2WES

at 0.21 (s.e. = 0.10) in UKB (n = 8682). We stratified SNPs into 4 MAF bins

(0.0001 <MAF < 0. 0010, 0.001 <MAF < 0.010, 0.01 <MAF < 0.10 and
0.1 <MAF < 0.5). Each of the 4 MAF bins was divided into two more bins, one for
variants with LD scores above the median value of the variants in the bin (high-LD
bin) and one for variants with LD score below the median (low-LD bin) (Supple-
mentary Table 3). Error bars indicate standard errors (SE).
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MAGIC andUKB cohorts deviated from the neutral model, suggesting that
HM is under negative selection (Supplementary Fig. 7).

To investigate the contribution of low-LD variants with
MAF < 0.01 to heritability, we partitioned these variants into bins
according to the putative effects of protein-coding variants, as
annotated by VEP27. Protein-coding variants are categorized into four
annotations: (1) synonymous (Syn); (2) benign missense (B-mis); (3)
damaging missense (D-mis); and (4) protein-truncating variants
(PTVs) (Supplementary Table 4). The proportion of deleterious
protein-altering variants, including PTVs and D-mis, varied across
the LD and MAF groups, showing an increasing trend from low- to
high-MAF bins (Supplementary Fig. 8), consistent with purifying
selection on this class of variants. Interestingly, the average variance
explained per variant was greater for bins with PTVs (low-LD) than
for bins with other protein-altering or non-protein-altering variants
(low-LD) and high-LD variants (Fig. 2). To further validate the
robustness of the partitioned estimates by functional genomic
annotations, we quantified the heritability explained by the gene-wise
burden of rare coding variants35. We found that HM in the MAGIC
cohort and UKB cohort exhibits PTVs burden heritability of 0.7%
(s.e. = 0.15%) and 0.32% (s.e. = 0.25%), respectively (Supplementary
Fig. 9). Burden heritability is concentrated among variants with the
most severe predicted functional consequences: PTVs variants
account for the majority of burden heritability, followed by D-mis, B-
mis, and Syn variants, consistent with the GREML-LDMS
assessment.

Derive genetic risk scores of common coding variants for HM
The genetic risk score (GRS) serves as a reliable measure of an individual’s
overall genetic susceptibility to disease, an integral part of precision
medicine36. For HM in the MAGIC cohort, we created several candidate
cvGRS based on summary statistics from ExWAS in 12,600 participants
(6300 cases and6300 controls) ofChineseHan ancestry (Fig. 3). Specifically,
we derived 20 predictors based on a pruning and thresholding method,
seven additional predictors using the LDPred2 algorithm31, and one pre-
dictor using Lassosum232. These scores were validated within the MGAIC
cohort. We used a validation dataset of 5400 participants in the MAGIC
cohort to select the cvGRSs with the best performance, defined as the
maximum area under the receiver-operator curve (AUC). The predictors
hadAUCs ranging from0.598 to 0.895 in the validation set (Supplementary
Table 5; Fig. 4a). The best model, based on the P value thresholding (P+T)
method, involved 40,491 variants with nonzero weights selected based on
r2 = 0.2 and P = 1.0 (Supplementary Fig. 10). In the validation dataset, the
polygenic component of the score explained 4.9% of the variance (R2), with
one standard deviation (s.d.) of the score increasing HM risk by sevenfold
(odds ratio [OR] = 6.99, 95% confidence interval [CI] = 6.34–7.75,
P < 1.00 × 10–300) after controlling for age, sex and genetic ancestry.

GRS optimization by combining with rare variants
The second step to optimize the GRS model is to test the independent
contributions of rare variants (Fig. 3). To identify genes underlyingHM, we
performed rare-variant burden tests for 12,600 individuals in the MAGIC
cohort using four methods, namely, Fisher’s exact test [FET], Burden,

Rare variant analysesHM ExWAS summary statistics

Choose the best common variant GRS (cvGRS) 
based on maximal area under the curve (AUC) 
in MAGIC validation dataset (N = 5,400)

Development of combined risk prediction model

Assess associations of ExGRS with HM in both MAGIC test dataset (N = 1,219) and UK Biobank dataset (N = 1,200) 

MAGIC with exome sequencing:
• Train dataset: 12,600 (6,300 cases and 6,300 controls)

Derive 32 candidate genetic risk scores (GRS) for HM:
• Pruning and thresholding (24 scores)
• LDpred2 algorithm (7 scores)
• Lassosum2 (1 scores)

Derive burden scores for HM:
• PTVs
• Damage missense
• Benign missense
• Synonymous
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based on AUC among P-value thresholds 

Fig. 3 | Overview of the study design. The HM GRS was designed based on the
MAGIC. Validation and optimization were performed in two stages using common
variant GRS (optimization 1) and rare variant GRS (optimization 2). The optimal

GRS for HM was chosen based on the AUC in the MAGIC validation dataset
(n = 5400 Han Chinese). ExGRS performance validation was conducted in two
additional independent testing cohorts of diverse ancestries.
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SKAT, andSKAT-O.Using aMAF threshold of 0.1%,wedetected 651 gene-
phenotype associations with PTV variants and 1481 associations with D-
mis, using a GC-corrected FET’s P value of 0.1. We observed a positive
correlation between variant pathogenicity and ORs of risk genes for HM
under various cut-off P values (Supplementary Fig. 11). Given the higher
heritability and strong effect size of rare deleterious variants in the MAGIC
cohort, we reasoned that a cvGRS combining rare variants may effectively
identify individuals at high risk for HM. Here, we proposed a com-
plementary rvGRS based on a weighted sum of rare deleterious variants
from HM-associated genes. To construct the model, we initially fitted a
logistic regression model to HM using the rare PTVs and D-mis in asso-
ciated genes across 12,600 training subsets. Furthermore, we evaluated the
predictive power of the rvGRS on 5400 MAGIC cohort individuals pre-
viouslywithheld for validation.Weobserved the best performanceof rvGRS
for PTVs (AUC= 0.698) and D-mis (AUC= 0.772) based on HM-
associated genes selected using a FET’s P value of 0.1 (Supplementary
Fig. 12-14). Then, we compared the rare-variant association study (RVAS)
and rvGRS between PTVs andD-mis. Formatched significance thresholds,
we uncovered that only 4.3% of HM-associated genes identified by RVAS
overlapped between PTV and D-mis (Supplementary Fig. 15). We further
stratified the population according to rvGRSdeciles in PTVs anddiscovered
a striking gradient with respect to rvGRS inD-mis (Supplementary Fig. 15).
Therefore, we derived an rvGRS to predict HM by integrating HM-
associated genes carrying PTV andD-mis variants (AUC = 0.786) (Fig. 4b).

We assessed the predictive power of the rvGRS and the corre-
sponding cvGRS, as well as a combination of the two methods, on the

5,400-participant MAGIC validation dataset. A higher cvGRS was
observed in the top decile of the rvGRS (Fig. 4c). Although rvGRS
underperformed for average phenotype predictions, it may outperform
cvGRS for identifying individuals at risk extremes (Fig. 4d). Therefore,
we combined the rare- and common-variant GRS models into a unified
model (exome-wide genetic risk score, ExGRS), achieving a significant
improvement in genetic risk prediction for HM. The unified ExGRS
performed best, achieving a prediction AUC of 0.897, compared to 0.786
and 0.895 for the independent rare-variant and common-variant GRSs,
respectively (Fig. 4e). Consistent with the AUC results, the inclusion of
rvGRS enhanced HM risk prediction and improved case-control dis-
crimination: the risk of HM for predicted cases was 5.73-times higher
than for the predicted controls, surpassing the cvGRS (4.99-times) and
rvGRS (2.40-times) (Fig. 4f).

Portability of ExGRSs and validation in both independent cohorts
Having derived and validated a new polygenic predictor that considerably
outperformed earlier scores, we explored the predictive power of the ExGRS
on HM in 1219 Han Chinese individuals of an independent testing dataset.
We found the ExGRS exhibited highly reproducible performance, with an
AUC of 0.856 and an OR of 3.51 (95% CI: 3.05–4.07, P < 1.31 × 10–65)
(Fig. 5a andTable 1). The inclusion of the rvGRS risk genotype considerably
enhanced HM risk prediction in MAGIC cohorts, substantially improving
tail cutoff discrimination. Compared to the remaining 95% of individuals,
the risk for HM among the top 5% of individuals was approximately 9.95-
fold higher in themodel without rvGRS and 15.57-fold higher in themodel

Fig. 4 | Compare the GRS of common and rare variants and combine them into a
unified ExGRS model. a Receiver operating characteristic (ROC) curves for cvGRS
model to detect HM in the schoolchildren from the MAGIC cohort (n = 5400). The
solid black line represents chance-level prediction accuracy.bROCcurves for rvGRS
model to detect HM. c cvGRS for each individual according to 10 groups of the
validation dataset binned according to the quantiles of the rvGRS. d Enrichment of

outlier GRS scores in individuals who are extreme HM prediction risk. GRS ordered
from the 50% to the 100%percentile (x axis), and the y axis depicts the enrichment of
HM for each of the percentile-defined subgroups in reference to the baseline
population. e ROC curves for ExGRS model to detect HM. fOdds ratios for cvGRS,
rvGRS and unified ExGRSmodel by comparing those in the high-risk groupwith the
remainder of the population. Error bars based on confidence intervals (C.I.).
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with rvGRS (Table 1). The effects of the GRS stratified by with or without
rvGRS in MAGIC cohorts are depicted in Fig. 5b.

Next,weevaluated the robustnessof theExGRS in8682UKBEuropean-
ancestry individuals. Although there was significant between-population
correlation of allelic effects (i.e., logOR) for variants clumped with different
cut-off P-values (Supplementary Fig. 16), we detected significant differences
in the ExGRS across ancestries (Wilcoxon rank sum test, P < 2.20 × 10–16).
We then tested the final ExGRS in the UKB European cohort. Predictive
models basedon theMAGICandUKBoverlapped SNPs andHM-associated
genes, fitted with age, sex, and population structure, were predictive of HM
(versus all non-HMcontrols) withAUCvalues of 0.657, similar to 0.662with
cvGRS only (Fig. 5c). The rvGRS provides limited improvement over cvGRS
in the prediction ofHM risk. The combined ExGRSmodel resulted in anOR
per s.d. of 1.46, 95% CI = 1.41–1.52 and P = 2.35 × 10–82, which is lower than
cvGRS model (OR per s.d. = 1.78, 95% CI = 1.69–1.88, P = 2.14 × 10–105)
(Supplementary Table 6). Contrary to MAGIC Han Chinese ancestry

cohorts, the inclusion of rvGRS in the ExGRS decreased risk prediction in
UKB European cohorts (Fig. 5d). Therefore, the modeled risk in individuals
of European ancestry was entirely attributable to the cvGRS.

Discussion
In our study, we estimated the heritability of HM captured by both rare and
commonvariants inunrelated individuals fromtwodistinct ancestry cohorts.
We identified additional variance attributed to rare variants, particularly rare
protein-alteringvariants in lowLDwithother genomic variants, beyondwhat
was captured by common HapMap3 variants. Our estimations largely,
though not entirely, recovered the heritability estimated from pedigree data,
particularly for theHanChinese ancestry cohort, but less so for the European
ancestry cohort. The remaining gap could be due to a combination of sam-
pling variance and remaining causal variants that are not captured by the
WES data. Based on the high heritability of HM, we described a systematic
approach to derive and validate the ExGRS, incorporating information from
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rare to common genetic variants, to predict polygenic susceptibility to HM.
Our studies demonstrated that the extreme tails of the risk ExGRS distribu-
tion (top 5%) conferred an approximately 15-fold increased risk for HM in
the Han Chinese population. Additionally, we tested the ExGRS in partici-
pants across twoancestries and found that the top5%riskExGRSdistribution
conferred an approximately twofold increased risk for HM in European
ancestry, which is lower than the 3.67-fold for cvGRS.

Beyond enhanced disease screening of asymptomatic individuals,
other potential applications of the ExGRS may include improved risk
stratification for schoolchildren at risk or enhanced assessment of early-
onset myopia. Our results underscore the urgent need to test the individual
ExGRS in this setting to better assess its impact on the risk of pathological
myopia and other HM complications. The ability to quantify inborn sus-
ceptibility using ExGRS is likely generalizable across a broad range of
complex diseases, contingent upon the availability of large-scale discovery
WES, independent validation and testing datasets, and the extent of herit-
ability of a given disease explained by rare and common variants. Predictive
power is expected to further improve in the coming years due to larger-scale
WES and WGS discovery studies and advancements in computational
algorithms that integrate functional genomics annotations, variant-variant
interactions, and rare large-effect variants into the predictive model.

We note that the extremes of both the cvGRS and rvGRS distributions
(top 5%) identically predispose individuals to a 10.0-fold greater risk
compared to the remainder of the population. Consistent with the higher
heritability of rare variants, a higher risk was observed in the rvGRS model
(OR = 11.15, P = 0.006) compared to cvGRS (OR = 5.05, P = 0.037) for the
top 1% versus the bottom 99%. Although the combined ExGRS model
substantially improved prediction performance, it demonstrated incom-
plete penetrance, as not all carriers manifest HM. This observation aligns
with recent PGS studies that combine common and rare variants across a
broad range of complex diseases, including coronary artery disease, atrial
fibrillation, type 2 diabetes, inflammatory bowel disease, kidneydisease, and
breast cancer20,37–40. Additional studies of large unascertained populations
are needed to determine whether a larger effect size for rvGRS can be found
amongadults, and the extent towhich a favorablepolygenic backgroundcan
explain the absence of HM noted among many mutation carriers. Because
our score is based on an ExWAS and RVAS for HM in Han Chinese
ancestry, the allelic effect estimates are heavily biased by Han Chinese
participants.We used variants with concordant direction-of-effect between
MAGICandUKB to improve the trans-ethnic performance of the score and
further enhanced the model by including the rvGRS model. We demon-
strated that rvGRS has an additive effect with cvGRS and significantly

improves case-control discrimination in theHanChinese cohort. However,
because allele frequencies, linkagedisequilibriumpatterns, and effect sizesof
polymorphisms vary by ancestry, this specific ExGRS will not have optimal
predictive power for European ethnic groups.

Although the average refractive error has increased substantially across
multiple populations, the variability within a given population has also
increased, suggesting that an increasingly myopiagenic environment may
have led to a preferential “unmasking” of inherited susceptibility in those
with the highest genetic risk12,41,42. For example, prior studies suggest that the
effects of education,metabolism, nearwork, and timeoutdoors on refractive
error are most pronounced in individuals with a genetic predisposition43–46.
The ability to identifyhigh-risk individuals frombirthmay facilitate targeted
strategies for HMprevention with increased effectiveness or cost-efficiency.
The ExGRS permits the identification of individuals from birth who inherit
high susceptibility, even before clinical diseasemanifests itself. Careful study
of individuals at the extremes of an ExGRS distributionmight uncover new
causal risk factors or underlying disease pathways. Similarly, clinical and
multi-omicprofiling of individuals at the extremes of anExGRSdistribution
for HMmay reveal the contributions and molecular correlates of pathways
related to ocular development47, neurotransmission48, and scleral
remodeling49, and might enable the identification of clinically relevant
subtypes of severe myopia that most benefit from a given pharmacologic or
behavioral intervention.

Several important limitations of this work need to be discussed. First,
our study is significantly limited by the lack of large-scale WES for HM
across multiethnic populations, as well as the small size of existing cohorts
that could optimize performance in European and Asian groups. The
assumption of fixed allelic effects across different ancestry groups is likely
inaccurate, as many disease-related lifestyle factors and environmental
exposures associated with ancestry can modify allelic effects. Accordingly,
the overall tail discrimination of the score was lower in European cohorts
than in Han Chinese cohorts, with notably lower sensitivity at the top 5%
GPS cutoff. Although overcoming this limitation is not possible in the
present study, ourExGRSapproach could be refined by incorporating larger
WES studies for HM when they become available in the future. Second,
performance comparisons between different ancestral groups might be
biased due to differences in genotyping platforms and ascertainment
methods employedby various biobanks. For example, theUKB represents a
population-based cohort that recruits European participants aged 40-60,
while theMAGIC case-control cohorts target schoolchildren. The inclusion
of older participants in UKB cohorts might lead to some cases being mis-
classified due to age-related refractive error decline, resulting in

Table 1 | The performance metrics of the GRS in the testing cohorts

Models OR per s.d. (95% CI), P AUC PRS threshold OR (95% CI), P Prevalence of HM

cvGRS 3.74 (3.19–4.44), 3.27 × 10–55 0.819 Top 20% versus other 80% 9.58 (6.43–14.68), 5.70 × 10–41 0.86

Top 10% versus other 90% 10.93 (5.92–22.05), 7.11 × 10–23 0.90

Top 5% versus other 95% 9.95 (4.24–28.50), 1.94 × 10–11 0.90

Top 2% versus other 98% 7.19 (2.13–37.86), 2.4 × 10−4 0.87

Top 1% versus other 99% 5.05 (1.07–47.61), 0.037 0.83

rvGRS 2.24 (1.99–2.54), 4.92 × 10–38 0.759 Top 20% versus other 80% 9.21 (6.21–14.04), 5.33 × 10–40 0.86

Top 10% versus other 90% 9.96 (5.50–19.54), 7.25 × 10–22 0.89

Top 5% versus other 95% 9.95 (4.24–28.50), 1.94 × 10–11 0.90

Top 2% versus other 980% 7.19 (2.13–37.86), 2.4 × 10–4 0.87

Top 1% versus other 99% 11.15 (1.61–480.32), 0.006 0.91

ExGRS 3.51 (3.05–4.07), 1.31 × 10−65 0.856 Top 20% versus other 80% 12.45 (8.07–19.86), 3.58 × 10-47 0.89

Top 10% versus other 90% 15.13 (7.59–34.31), 3.74 × 10−26 0.92

Top 5% versus other 95% 15.57 (5.70–59.48), 1.47 × 10–13 0.93

Top 2% versus other 980% 7.19 (2.13–37.86), 2.4 × 10–4 0.87

Top 1% versus other 99% 11.15 (1.61–480.32), 0.006 0.91
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underestimated risk in cohortswith olderparticipants. Finally, it is crucial to
consider other factors that can affectPRS transferability. Environmental and
lifestyle factors, such as near-work activities, outdoor exposure, and edu-
cational attainment, play significant roles in the development and pro-
gression of high myopia. In light of these complexities, a comprehensive
assessment of an individual’s genetic susceptibility, considering specific
environmental factors, should be developed for the future.

In summary, this study highlighted the importance of rare variants in
addressing the current gap in heritability of various traits or diseases, using
WES data. In this study, we derived, optimized, and validated a new tool,
ExGRS, for HM prediction across ancestries. The variants uncovered by
cvGRS and rvGRS had additive effects on HM, resulting in a nearly 15-fold
increased risk for HM among individuals in the highest 5% of the risk score
distribution.This result underscores the significanceof genetic risk scores that
combine rare variants, which may provide higher prediction accuracy for
many polygenic diseases. The potential implications of the ExGRS include its
ability to identify at-risk individuals before thedisease or traitmanifests.With
the cost of WES no longer being prohibitive, a population-based genetic
screening approach for common eye diseasesmay prove to be a cost-effective
public health strategy.While our studymarks an initial step in this direction,
prospective studies are warranted to evaluate the performance of this
approach in clinical practice and to analyze its cost-effectiveness.

Data availability
The raw genetic sequencing data for patients and control individuals gen-
erated in this study have been deposited in the Genome Sequence Archive
(GSA, https://ngdc.cncb.ac.cn/gsa-human/) under accession numbers
HRA007816 in BIG Data Center, Beijing Institute of Genomics (BIG),
ChineseAcademyof Sciences.All raw sequencingdata deposited inGSAare
under restricted access, and only academic use will be approved via email to
Jianzhong Su (sujz@wmu.edu.cn). A response would be expected within a
week. Source data underlying Fig. 1 and Fig. 2 is supplied as Supplementary
Data 1, as well as in the public repositoryfigsharewith the identifier (https://
doi.org/10.6084/m9.figshare.27896016)50. All other data are available from
the corresponding author on reasonable request. The data are not publicly
available due to them containing information that could compromise
research participant privacy/consent. Researchers who would like to obtain
the data related to this study will be presented with a Data Use Agreement
which requires that participants will not be reidentified and no data will be
shared between individuals, or third parties, or uploaded onto public
domains. Upon reasonable request, a data sharing agreement can be initi-
ated between the interested parties and the clinical institution following
institution-specific guidelines.

Code availability
All the code used is publicly available at https://github.com/sulab-wmu/
MAGIC-PIPELINE51.
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