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This study investigated the use of bi-exponential diffusion-weighted imaging (DWI) combined with 
structural features to differentiate high-grade glioma (HGG) from solitary brain metastasis (SBM). A 
total of 57 patients (31 HGG, 26 SBM) who underwent pre-surgical multi-b DWI and structural MRI 
(T1W, T2W, T1W + C) were included. Volumes of interest (VOI) in the peritumoral edema area (PTEA) 
and enhanced tumor area (ETA) were selected for analysis. Histogram features of slow diffusion 
coefficient (Dslow), fast diffusion coefficient (Dfast), and perfusion fraction (frac) were extracted. 
Results showed that HGG patients had higher skewness of Dfast (P = 0.022) and frac (P = 0.077), 
higher kurtosis of Dslow (P = 0.019) and frac (P = 0.025), and lower entropy of Dslow (P = 0.005) and frac 
(P = 0.001) within the ETA. Additionally, HGG exhibited lower mean frac in both ETA (P = 0.007) and 
PTEA (P = 0.017). Combining skewness of frac in ETA with clear tumor margin enhanced diagnostic 
performance, achieving an optimal AUC of 0.79. These findings suggest that histogram analysis of 
diffusion and perfusion characteristics in ETA and structural features can effectively differentiate HGG 
from SBM.
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High-grade glioma (HGG) and brain metastasis are prevalent malignant neoplasms associated with substantial 
morbidity and mortality1–3. Differentiating a solitary brain metastasis (SBM) from an HGG has important 
prognostic and therapeutic implications.

HGG is commonly managed through surgical intervention followed by the Stupp protocol4. Brain metastases, 
which can present as single or multiple enhancing lesions, necessitate comprehensive whole-body staging5. Current 
treatment options for SBM include surgery or gamma-knife surgery and whole-brain radiation therapy6,7. Open 
surgical procedures are recommended for SBM patients with intractable intracranial hypertension, obstructive 
hydrocephalus, tumor apoplexy, and similar emergent situations8. However, considering that both HGG 
and SBM typically exhibit distinct imaging characteristics, including well-defined, ring-enhancing lesions in 
contrast-enhanced T1-weighted (T1W + C) imaging and high signal peritumoral edema in T2-weighted (T2W) 
imaging9, diagnosis may be challenging. Also, individuals with extracranial malignancies may develop gliomas10, 
which further complicates decision-making. Moreover, the incidence of geriatric glioma has been on the rise, 
challenging the notion that older individuals are more prone to developing brain metastases11. Furthermore, the 
clinical manifestations of HGG and SBM share similarities, such as secondary epilepsy, functional impairment, 
and intracranial hypertension, which contribute to the complexity of distinguishing between the two entities, 
both radiologically and clinically12.

Primary malignancy history, multiple lesions, and the combined localization of grey–white substances 
can help diagnose brain metastasis. Traditional morphological analyses, including assessments of tumor 
parenchymal or peritumoral edema volume, midline shift, and enhancement pattern in various conventional 
magnetic resonance sequences, have proven ineffective in differentiating HGG from SBM13,14. On the other 
hand, histogram and texture analysis techniques based on diffusion-weighted imaging (DWI) and diffusion 
kurtosis imaging have shown promising results in differentiating HGG from SBM. This method can reflect the 
distribution of diffusion within the tumor or edema area15,16. Furthermore, conventional perfusion MR studies 
utilizing dynamic susceptibility contrast (DSC), dynamic contrast-enhanced imaging, and arterial spin labeling 
have demonstrated excellent diagnostic performance in distinguishing these tumor types17,18. However, research 
focusing on analyzing perfusion histogram features is lacking.

Bi-exponential analysis of DWI data enables the simultaneous assessment of molecular water diffusion at 
high-b values and the microcirculation of blood capillaries associated with perfusion at low-b values (b < 200 s/
mm2)19. Previous studies have suggested that this imaging approach can accurately differentiate high-grade 
from low-grade gliomas20. In this study, we explored the potential of bi-exponential analysis of DWI data in 
differentiating HGG and SBM in both enhanced tumor area (ETA) and peritumoral edema area (PTEA) through 
histogram analysis combined with structural features.

Results
Clinical characteristics and structural differences between HGG and SBM
Among initially enrolled 81 patients with brain metastasis and 145 patients with HGG, 87 with incomplete 
image data, 11 with poor image quality, 25 with tumor tumors located below the tentorium cerebelli, and 46 
with more than one tumor lesion above the tentorium cerebelli were excluded. The final cohort consisted of 31 
patients with HGG (Table S1), with a mean age of 58.6 ± 19.37, and 26 patients with SBM (Table S2), with a mean 
age of 59.69 ± 11.59 (Fig. 1).

There were no significant differences in age or gender distribution between the HGG and SBM groups. 
However, SBM exhibited a significantly cleaner tumor margin than HGG (P = 0.017). No significant differences 
were observed between the two groups regarding tumor location, edema degree, or enhancement pattern. 
Detailed information is provided in Table 1.

Parametric value comparison between HGG and SBM
The histogram features of ETA and PTEA in patients with HGG) and solitary brain SBM are shown in Table 2. 
A significantly higher skewness of Dfast (1.1 ± 0.32 in HGG, 0.81 ± 0.54 in SBM, P = 0.022) and frac (1.02 ± 0.51 
in HGG, 0.6 ± 0.61 in SBM, P = 0.077), as well as higher kurtosis of Dslow (3.9 ± 1.22 in HGG, 3.39 ± 1.29 in 
SBM, P = 0.019) and frac (5.39 ± 2.07 in HGG, 4.51 ± 2.72 in SBM, P = 0.025) were observed for patients with 
HGG compared to SBM. Additionally, significantly lower entropy of Dslow (3.86 ± 0.21 in HGG, 4.01 ± 0.22 in 
SBM, P = 0.005) and frac (3.51 ± 0.3 in HGG, 3.78 ± 0.28 in SBM, P = 0.001) were observed in ETA for HGG. 
In addition, the mean of frac in both ETA (21.29 ± 4.02 in HGG, 25.09 ± 6.03 in SBM, P = 0.007) and PTEA 
(25.47 ± 4.46 in HGG, 28.37 ± 4.22 in SBM, P = 0.017) was significantly lower in HGG compared to SBM. 
Furthermore, there was a significant difference between the groups in the 10th percentile of frac (10.99 ± 2.56 
in HGG, 13.87 ± 4.66 in SBM, P = 0.009) in ETA. Representative images and histograms of Dfast, Dslow, and frac 
in the ETA volume of interest (VOI) for a patient with HGG (Fig. 2) and another with SBM (Fig. 3) are shown 
below.

Evaluating the performance with structural and histogram features
Through single-factor regression analysis, skewness of Dfast (OR = 0.22, 95%CI 0.06–0.80, P = 0.022) and frac 
(OR = 0.24, 95% CI 0.08–0.74, P = 0.013), the entropy of Dslow (OR = 26.20, 95% CI 1.71–402.6, P = 0.019) and 
frac (OR = 22.32, 95% CI 2.92–170.7, P = 0.003), and mean of frac (OR = 1.16, 95% CI 1.03–1.31, P = 0.014) 
in ETA, mean of frac (OR = 1.17, 95% CI 1.02–1.35, P = 0.025) in PTEA, and clear tumor margin on T2W 
(OR = 4.30, 95% CI 1.39–13.26, P = 0.011) were identified as associated factors for differentiating HGG from 
SBM (Table 3).

When combined with clear tumor margin on T2W imaging, the binary logistic regression analysis showed 
that skewness of Dfast (OR = 0.25, 95%CI 0.07–0.94, P = 0.040) and frac (OR = 0.21, 95% CI 0.06–0.68, P = 0.009), 
entropy of Dslow (OR = 21.77, 95% CI 1.21–392.7, P = 0.037) and frac (OR = 17.44, 95% CI 2.14–142.3, P = 0.008), 
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HGG (n = 31) SBM (n = 26) P

Demographics

 Age (year) 58.61 ± 9.37 59.69 ± 11.59 0.356

 Gender (male/female) 18/13 10/16 1

Tumor location 0.183

 Sub-cortex 13 16

 Deep white matter 18 10

T2 margin 0.017*

 Blurred margin 19 7

 Well-defined margin 12 19

Edema degree 0.63

 Mild 9 6

 Moderate 7 6

 Severe 15 14

Enhancement pattern

 Non-enhanced 1 0 0.901

 Focal 5 0

 Diffuse 9 15

 Ring-like 16 11

Table 1.  Clinical characteristics and morphological features comparison between HGG and SBM. *P < 0.05.

 

Fig. 1.  Study flow chart.
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and mean of frac (OR = 1.15, 95% CI 1.01–1.30, P = 0.032) in ETA, as well as mean of frac (OR = 1.18, 95% 
CI 1.01–1.37, P = 0.034) in PTEA, showed significant differences (Table 3). Among these factors, the entropy 
of frac in ETA exhibited the best performance for differentiation, with an AUC of 0.74 (sensitivity = 0.88, 
specificity = 0.55) in ROC analysis (Table 4; Fig. 4A). Furthermore, integrating clear tumor margin on T2W 
and skewness of frac in ETA improved the performance, with an optimal AUC of 0.79 (sensitivity = 0.81, 
specificity = 0.71) (Table 4; Fig. 4B). Moreover, calibration analysis using a bootstrap resampling method showed 
a good correlation between apparent and bias-corrected multivariate logistic regression in all the binary logistic 
regression models (Figure S1).

Discussion
By employing histogram analysis in combination with the structural feature, we examined the accuracy of 
DWI in distinguishing HGG from SBM. The inclusion of DWI parametric values combined with the presence 
of a clear tumor margin in T2W imaging improved the differentiation process. The significant differences in 
histogram features of Dfast, Dslow, and frac within ETA suggested distinct diffusion and perfusion heterogeneity 
between HGG and SBM.

The accurate differentiation between HGG and SBM is crucial for patient management and can significantly 
impact clinical outcomes. While conventional structural MR imaging may not provide sufficient distinguishing 
features between HGG and SBM9, advanced diffusion, perfusion, and molecular MR techniques have been 
explored either individually or in combination with other models21–23. Previous studies have predominantly 
employed region of interest (ROI) based methods for analysis, with limited utilization of VOI-based 
approaches24,25. In this study, we adopted a VOI-based histogram analysis to investigate the diffusion and 
perfusion differences between HGG and SBM within the enhanced tumor area and the peritumoral edema area. 
This approach was superior to localized hotspot techniques regarding interobserver agreement and diagnostic 
accuracy, as supported by previous studies24.

In the ETA, HGG showed significantly higher skewness (Dfast, frac) and kurtosis (Dslow, frac) while 
demonstrating significantly lower entropy (Dslow, frac) and mean (frac) compared to SBM. The higher kurtosis 
indicated that the distribution of water diffusion and microvascular perfusion in the enhanced tumor region 
was more concentrated in HGG, and the lower entropy in HGG suggested a lower degree of molecular disorder 
in the diffusion and perfusion patterns, as shown in Fig. 2 (HGG) and Fig. 3 (SBM). Moreover, the significantly 
higher kurtosis and skewness in HGG indicated the presence of more extreme perfusion values, implying that 

Mean Entropy Skewness Kurtosis
10th
percentile

90th
percentile

ETA

 Dfast (×10−4mm2/s)

 HGG 41.63 ± 3.34 3.62 ± 0.37 1.1 ± 0.32 5.48 ± 1.91 28.03 ± 3.71 58.54 ± 8.52

 SBM 42.22 ± 5.73 3.8 ± 0.42 0.81 ± 0.54 4.78 ± 2.2 26.61 ± 6.12 59.99 ± 11.66

 P 0.641 0.092 0.022* 0.082 0.628 0.598

 Dslow (×10−4mm2/s)

 HGG 9.27 ± 1.1 3.86 ± 0.21 0.73 ± 0.43 3.9 ± 1.22 6.89 ± 0.89 11.96 ± 1.42

 SBM 9.38 ± 1.37 4.01 ± 0.22 0.56 ± 0.53 3.39 ± 1.29 7.08 ± 1.13 11.94 ± 1.8

 P 0.748 0.005* 0.450* 0.019* 0.469 0.960

 frac (%)

 HGG 21.29 ± 4.02 3.51 ± 0.3 1.02 ± 0.51 5.39 ± 2.07 10.99 ± 2.56 33.08 ± 6.87

 SBM 25.09 ± 6.03 3.78 ± 0.28 0.6 ± 0.61 4.51 ± 2.72 13.87 ± 4.66 36.7 ± 8.61

 P 0.007* 0.001* 0.007* 0.025* 0.009* 0.088

PTEA

 Dfast (×10−4mm2/s)

 HGG 37.73 ± 2.99 3.29 ± 0.5 1.69 ± 0.67 8.91 ± 4.75 26.73 ± 3 51.93 ± 9.11

 SBM 37.9 ± 3.75 3.3 ± 0.66 1.58 ± 0.64 8.83 ± 4.63 25.82 ± 4.65 53.17 ± 12.56

 P 0.793 0.769 0.530 0.943 0.685 0.943

 Dslow (×10−4mm2/s)

 HGG 11.08 ± 1.44 4.06 ± 0.32 0.13 ± 0.46 2.9 ± 1.79 7.93 ± 0.95 14.18 ± 1.86

 SBM 11.32 ± 1.31 4.03 ± 0.23 0.03 ± 0.41 2.72 ± 1.05 8.25 ± 1.17 14.22 ± 1.68

 P 0.709 0.254 0.377 0.981 0.264 0.88

 frac (%)

 HGG 25.47 ± 4.46 3.32 ± 0.25 0.55 ± 0.75 6.26 ± 3.62 14.99 ± 3.61 34.73 ± 5.47

 SBM 28.37 ± 4.22 3.39 ± 0.36 0.51 ± 0.71 5.55 ± 2.55 17.59 ± 4.2 38.81 ± 7.36

 P 0.017* 0.327 0.864 0.377 0.059 0.059

Table 2.  Comparison of parametric values in the volume of interest between HGG and SBM. ETA: enhanced 
tumor area; PTEA: peritumor edema area; * P < 0.05.
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micro-vessel characteristics influence microvascular perfusion in most ETA. A study conducted by Heynold 
et al. demonstrated that glioblastomas exhibit higher levels of neovascularization activity and metabolic rate 
of oxygen in the ETA compared to brain metastasis22. However, based on our findings of significantly lower 
mean and 10th percentile of frac in the ETA, we can conclude that HGG exhibits a predominantly poorer 
microvascular perfusion than SBM. This difference in perfusion could be due to the attenuation of blood supply 
caused by microscopic intravascular thrombosis26. HGG exhibits a pronounced capacity for neovascularization; 
nevertheless, most of these newly formed blood vessels are functionally inert26. These findings highlight the 
distinct diffusion and perfusion characteristics between HGG and SBM in ETA, shedding light on the underlying 
pathophysiological differences between the two tumor types.

In their recent study, Poulon et al.27 utilized real-time fresh human brain tumor samples imaging with 
endogenous fluorophores and observed higher microvascular density in metastasis compared to glioblastoma 
multiforme (GBM) and healthy tissues. They also found that the solid tumor component in GBM samples 
exhibited a highly disordered tumor cell architecture with microvascular growth, which could help explain the 
higher kurtosis values of Dslow and frac observed in our study. In the diffusion study of GBM and SBM differential 
diagnosis, Romano et al.25 found significantly lower mean apparent diffusion coefficient (ADC) values in GBM. 

Fig. 2.  A 63-year-old male diagnosed with glioblastoma. (A) T2W imaging. (B) T1W imaging. (C) Contrast-
enhanced T1W imaging. (D) Dfast (×10-4mm2/s). (E) Dslow (×10-4mm2/s). (F) frac (%). (G-I) Histogram 
plot of Dfast, Dslow, and frac of the enhanced tumor area. The MRI examination revealed an irregular lesion 
in the sub-cortex of the right frontal lobe, characterized by a blurred margin. The lesion exhibited diffuse 
enhancement, marked in red, along with hyper-intensity on T2-weighted imaging and hypo-intensity on T1-
weighted imaging. Peritumoral edema was also observed. Parametric values obtained from histogram analysis 
of the enhanced tumor area are as follows: Dfast: mean: 37.98, entropy: 3.19, skewness: 1.15, kurtosis: 6.60. 
Dslow: mean: 8.52, entropy: 3.68. skewness: 0.33, kurtosis: 3.60, frac: mean: 18.46, entropy: 3.07, skewness: 0.68, 
kurtosis: 5.06.
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Moreover, Chiang et al.28 reported higher ADC values in metastasis compared to HGG. On the other hand, 
Tsougos et al. found no significant difference in ADC and fractional anisotropy between the two tumor groups29. 
It is important to note that our study employed a VOI-based analysis and included HGGs in addition to GBM, 
whereas the mentioned studies utilized hotspot methods28,29, which could account for the observed discrepancies. 
In a DSC perfusion MRI study using histogram analysis, Qin et al. demonstrated that GBM exhibited a more 
heterogeneous distribution of blood perfusion in the enhancing tumor area than metastasis24. However, the 
mean value of absolute cerebral blood volume (CBV) did not show a significant difference, which aligns with 
previous research highlighting the limitations of relative CBV30. Our study focusing on micro-vessel perfusion 
revealed higher heterogeneity and significantly lower mean values in HGG compared to SBM. These findings 
suggest that micro-vessel perfusion parameters hold promise as potential discriminative factors warranting 
further investigation. Previous studies using DSC perfusion MRI have consistently shown higher perfusion 
values in the PTEA of GBM compared to brain metastasis28,29,31. Additionally, there is a decreasing gradient of 

Fig. 3.  A 34-year-old female diagnosed with brain metastasis originating from breast cancer. (A) T2W 
imaging. (B) T1W imaging. (C) Contrast-enhanced T1W imaging. (D) Dfast (×10-4mm2/s). (E) Dslow 
(×10-4mm2/s). (F) frac (%). (G-I) Histogram plot of Dfast, Dslow, and frac of the enhanced tumor area. 
The MRI examination revealed an irregular lesion with a well-defined margin in the sub-cortex of the right 
occipital lobe. The lesion exhibited diffuse enhancement, marked in red, and appeared hyper-intense on 
T2-weighted imaging, hypo-intense on T1-weighted imaging, and was accompanied by peritumoral edema. 
Additionally, central necrosis was observed within the lesion. Parametric values obtained from histogram 
analysis of the enhanced tumor area are as follows: Dfast: mean: 45.38, entropy: 3.80, skewness: 0.70, kurtosis: 
4.42; Dslow: mean: 8.55, entropy: 4.09, skewness: 0.47, kurtosis: 2.85; frac: mean: 25.15, entropy: 3.76, skewness: 
0.49, kurtosis: 3.31.
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AUC
(95% CI)

Sensitivity
(95% CI)

Specificity
(95% CI)

Accuracy
(TN + TP)/(N + P)

PPV
(TP/P)

NPV
(TN/N) Threshold

ETA

 Dfast_skewness 0.67
(0.52,0.83)

0.58
(0.38.0.77)

0.77
(0.61,0.90)

0.68
(39/57)

0.68
(15/22)

0.69
(24/35) 0.87

 Dslow_entropy 0.71
(0.58,0.85)

0.88
(0.77,1.00)

0.55
(0.39,0.71)

0.70
(40/57)

0.62
(23/37)

0.85
(17/20) 3.85

 frac_mean 0.71
(0.57,0.85)

0.58
(0.38,0.77)

0.87
(0.74,0.967)

0.74
(42/57)

0.79
(15/19)

0.71
(27/38) 24.74

 frac_entropy 0.74
(0.61,0.87)

0.88
(0.73.1.00)

0.55
(0.39,0.71)

0.70
(40/57)

0.62
(23/37)

0.85
(17/20) 3.51

 frac_skewness 0.72
(0.58,0.86)

0.54
(0.35,0.73)

0.90
(0.81,1.00)

0.74
(42/57)

0.82
(14/17)

0.70
(28/40) 0.52

PTEA

 frac_mean 0.65
(0.50,0.79)

0.62
(0.42,0.81)

0.65
(0.48,0.81)

0.63
(36/57)

0.59
(16/27)

0.67
(20/30) 27.29

clear_t2_margin 0.67
(0.55.0.79)

0.73
(0.54,0.88)

0.61
(0.42,0.77)

0.67
(38/57)

0.61
(19/31)

0.73
(19/26) 0.44

ETA

 Dfast_skewness
+clear_t2_margin

0.76
(0.63,0.89)

0.77
(0.62,0.92)

0.68
(0.48,0.84)

0.72
(41/57)

0.67
(20/30)

0.78
(21/27) 0.44

 Dslow_entropy
+clear_t2_margin

0.76
(0.63,0.89)

0.65
(0.46,0.85)

0.81
(0.68,0.94)

0.74
(42/57)

0.74
(17/23)

0.74
(25/34) 0.54

 frac_mean
+clear_t2_margin

0.76
(0.63,0.89)

0.50
(0.31,0.69)

0.94
(0.84,1.00)

0.74
(42/57)

0.87
(13/15)

0.69
(29/42) 0.61

 frac_entropy
+clear_t2_margin

0.78
(0.66,0.90)

0.77
(0.62,0.92)

0.71
(0.55,0.87)

0.74
(42/57)

0.69
(20/29)

0.79
(22/28) 0.49

 frac_skewness
+clear_t2_margin

0.79
(0.67,0.91)

0.81
(0.65,0.92)

0.71
(0.55,0.87)

0.75
(43/57)

0.70
(21/30)

0.81
(22/27) 0.42

PTEA

 frac_mean
+clear_t2_margin

0.75
(0.62,0.88)

0.85
(0.69,0.96)

0.58
(0.42.0.74)

0.70
(40/57)

0.63
(22/35)

0.82
(18/22) 0.36

Table 4.  Univariate logistic regression and binary logistic regression performance in the differentiation of 
HGG and SBM. HGG: high-grade glioma; SBM: solitary brain metastasis; ETA: enhanced tumor area; PTEA: 
peritumor edema area. AUC: area under the curve; PPV: positive predictive value; NPV: negative predictive 
value. 95% CI: 95% confidence interval; TN: true negative; TP: true positive; N: negative; P: positive.

 

Univariate logistic regression OR (95% CI) P Binary logistic regression OR (95% CI) P

ETA

 Dfast_skewness 0.22 (0.06,0.80) 0.022* Dfast_skewness 0.25 (0.07,0.94) 0.040*

+clear_t2_margin 3.93 (1.21,12.72) 0.022*

 Dslow_entropy 26.20 (1.71,402.6) 0.019* Dslow_entropy 21.77 (1.21,392.7) 0.037*

+clear_t2_margin 3.91 (1.20,12.75) 0.024*

 Dslow_kurtosis 0.71 (0.44,1.13) 0.146

 frac_mean 1.16 (1.03,1.31) 0.014* frac_mean 1.15 (1.01,1.30) 0.032*

+clear_t2_margin 3.64 (1.11,11.87) 0.032*

frac_entropy 22.32 (2.92,170.7) 0.003* frac_entropy 17.44 (2.14142.30) 0.008*

+clear_t2_margin 3.48 (1.02,11.85) 0.046*

 frac_skewness 0.24 (0.08,0.74) 0.013* frac_skewness 0.21 (0.06,0.68) 0.009*

+clear_t2_margin 5.43 (1.55,18.97) 0.008*

 frac_kurtosis 0.84 (0.65,1.09) 0.190

PTEA

 frac_mean 1.17 (1.02,1.35) 0.025* frac_mean 1.18 (1.01,1.37) 0.034*

+clear_t2_margin 4.34 (1.31,14.31) 0.016*

clear_t2_margin 4.30 (1.39,13.28) 0.011*

Table 3.  Univariate and binary logistic regression analysis. HGG: high-grade glioma; SBM: solitary brain 
metastasis; ETA: enhanced tumor area; PTEA: peritumor edema area. OR: odds ratio; 95% CI: 93% confidence 
interval; * P < 0.05.
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relative CBV values from the region adjacent to the enhancing solid lesion to the normal white matter in GBM, 
whereas this gradient is less pronounced in brain metastasis25,32,33. The differential growth patterns of GBM and 
metastasis, with GBM exhibiting infiltrative growth beyond the boundaries of the enhancing tumor core34,35 and 
metastasis primarily expanding and causing vasogenic edema36, contribute to the distinct microenvironments 
associated with these tumors. These variations in microenvironments can lead to differences in diffusion and 
perfusion characteristics. However, in this study, only the mean value of the frac parameter showed a significant 
distinction between GBM and metastasis in the PTEA. Interestingly, this parameter did not outperform other 
measurements in the ETA. The presence of a perfusion gradient within the PTEA and the utilization of a VOI-
based analysis in our study may account for these findings. It is worth noting that the distribution of Dfast, Dslow, 
and frac varies among different lobes, and the localization of the edema area also differs across lobes, which 
could potentially impact the observed outcomes37.

In this study, we included solitary brain metastases originating from various primary sites but mostly from 
lung, which is consistent with previous studies17,38,39. Among these, lung adenocarcinoma was the most prevalent 
histological subtype. In their analysis of the tumor and immune cell phenotypic composition in metastatic breast 
cancer, Kuett et al. highlighted significant heterogeneity both within individual patients and across different 
metastatic sites40. Research suggests that techniques like PET can assist in predicting the primary site of brain 
metastases38, which implies that brain metastases originating from different primary sites may exhibit distinct 
perfusion or metabolic patterns, reflecting their varied biological behaviors. However, a meta-analysis by Fioni 
et al. involving 399 HGG and 232 SBM cases found that the relative CBV values in the central area of the tumor 
did not significantly differ between HGG patients and SBM/controls.41 These findings highlight the need for 
further research with larger, more balanced cohorts to investigate whether metastases from different sites will 
lead to differences in imaging.

The DWI scanning protocol with 12 b-values ranging from 0 to 2000 s/mm2 was adopted in our study, while 
data analysis was performed with a bi-exponential fitting model using b-values of 200 to 1200  s/mm2. This 
range was selected because pseudo-diffusion from blood flow occurs at a faster rate than bulk-water diffusion, 
and diffusion signals below 200–400 s/mm2 are predominantly influenced by perfusion-diffusion effects42. Our 
initial analysis revealed poor fitting when data points at b = 1500 and 2000 s/mm2 were included (Figure S2). 
Currently, there is no universally standardized b-value protocol for multi-b DWI analysis, and different studies 
have used different b-value settings43,44. Han et al. reported significantly lower ADC values in the peritumoral 
region of HGG compared to SBM, with an AUC of 0.922 at b-values of 3000 s/mm2 and 0.886 at 1000 s/mm2 
based on ROC analysis45. In our future work, we plan to investigate the potential of Cramer Rao Lower Bound 
analysis for selecting optimal b-values46,47.

Advanced magnetic resonance techniques offer valuable insights into the diffusion, perfusion, and 
metabolism of different lesions, while histogram analysis provides additional information for understanding 
tumor pathogenesis. Furthermore, radiomics, genomics, and neural network can deepen investigations, 
providing advanced tools for tumor differentiation. For example, the model of neurite orientation dispersion 
and density imaging radiomics within the solid tumor area showed promising performance for preoperative 
discrimination between glioblastoma and SBM (AUC = 0.904)48. GoogLeNet performed better than previous 
methods at differentiating HGG from SBM both in core (external dataset, accuracy of 86.76%, sensitivity of 

Fig. 4.  The ROC curves for univariate (A) and binary (B) logistic regression analysis.
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81.82%, specificity of 83.33%, and AUC of 0.866) and peritumoral edema area (external dataset, accuracy of 
79.31%, sensitivity of 81.82%, specificity of 77.78% and AUC of 0.826)49.

However, the higher-dimensional results from multi-omics can be challenging to interpret biologically, so 
there is a need for more practical and straightforward approaches that can be easily implemented in smaller 
medical facilities and time-limited clinical practice. In clinical settings, structural features are still widely utilized. 
Yamamoto et al.50 evaluated the efficacy of an extensive peritumor hyperintense rim in differentiating metastatic 
brain tumors from GBM using contrast-enhanced Fast imaging employing steady-state acquisition and reported 
high sensitivity (0.95), specificity (0.95), and accuracy (0.93) compared to conventional MR-based tumor shape 
analysis. However, they did not provide the AUC value. Herein, we identified a clear tumor margin on T2W 
imaging as the only structural feature distinguishing HGG from SBM. Further ROC analysis revealed that when 
combined with the skewness of frac in the enhanced tumor region, it significantly improved the differentiation 
performance, yielding the highest AUC of 0.79 (sensitivity = 0.81, specificity = 0.71). Moreover, they included 
metastasis cases with multiple lesions (32.6%), which may have potentially exaggerated their findings. Another 
efficient tool for tumor differential diagnosis is the Artificial Intelligence-Assisted Decision-Making System51; 
however, bridging the gap between experimental research and regulatory standards requires further validation, 
standardization, and extensive clinical trials.

The present study has some limitations. First, the number of patients included was relatively small, and there 
was variability in the original metastasis lesions. Second, external verification was lacking as all patients were 
from one medical center. Third, detailed pathological information, such as immunohistochemical staining, cell 
distribution density, and micro-vessel density, was not utilized in this study, and incorporating these factors 
in future research could provide valuable insights and help validate the findings. In our next study, we plan to 
compare diffusion kurtosis between HGG and SBM and analysis using the Cramer Rao Lower Bound method 
to determine the most suitable b-values.

Methods
Study population
Patients who underwent MR examination between December 2020 and June 2022 were included in this 
retrospective study. The inclusion criteria were: (1) patients with histopathologically or molecularly genotyped 
HGG (according to the WHO 2016 Classification52) or brain metastasis; (2) patients who received no 
radiotherapy or who did not undergo surgical treatment before diagnosis; (3) age > 18 years old. The exclusion 
criteria were: (1) tumors located below the tentorium cerebelli; (2) presence of more than one tumor lesion above 
the tentorium cerebelli; (3) incomplete imaging data; (4) poor imaging quality, such as severe motion artifacts, 
significant cystic, hemorrhagic, or extensive tumor necrosis. The pathology tissue was acquired through a 
craniotomy or robotic-assisted biopsy surgery about one week after the MR scanning. The patient enrollment 
process is depicted in Fig. 1.

This study was conducted in accordance with the guidelines outlined in the Declaration of Helsinki and was 
approved by the institutional review board of Fifth Hospital of Shanxi Medical University/Shanxi Provincial 
People’s Hospital, Taiyuan, Shanxi, P. R. China. Informed consent was waived due to the retrospective nature of 
the study.

Imaging data acquisition
The imaging protocol was performed in the following order: T2W, T1W, DWI, contrast injection, and T1W + C. 
All magnetic resonance scans were conducted using a 3.0T MR scanner (Discovery MR 750 W, GE Healthcare, 
Waukesha, WI, USA) equipped with a 24-channel head-neck coil, ensuring consistent positioning. Axial 
DWI imaging utilized 12 b-values (0, 20, 40, 80, 110, 150, 200, 400, 800, 1200, 1500, and 2000 s/mm2) with 
corresponding acquisition times of 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, and 4 s. The following parameters were used: 
repetition time/echo time (TR/TE) = 5400/90 ms, field of view (FOV) = 220 × 220 mm2, matrix size = 110 × 110, 
slice thickness = 4.0  mm, number of slices = 24, gap = 1.0  mm, and acquisition time = 5  min and 28  s. Axial 
T2W imaging was performed using the following parameters: TR/TE = 7900/125 ms, FOV = 230 × 230 mm2, 
matrix size = 380 × 380, slice thickness = 4.5  mm, number of slices = 30, gap = 5  mm, flip angle = 140°, and 
acquisition time = 2 minutes. For axial T1W imaging, the following parameters were used: TR/TE = 2500/24 ms, 
FOV = 230 × 230 mm2, matrix size = 320 × 224, slice thickness = 4.0 mm, number of slices = 30, gap = 5 mm, flip 
angle = 110°, and acquisition time = 1 min and 19 s. T1W + C imaging employed the same parameters as T1W, 
and gadodiamide was power-injected at a rate of 2 ml/s, with dosages calibrated based on the patient’s body 
weight (0.2 ml/kg). The scan began 3–5 min after the injection. Images were acquired sequentially in the axial, 
sagittal, and coronal planes. The total imaging time was approximately 20 min.

Volume of interest (VOI)
VOI for the PTEA and ETA were delineated by two experienced neuroradiologists with 20 and 25 years of 
experience, respectively. Consensus was reached between the radiologists during the delineation process, which 
was performed on a slice-by-slice basis using 3D-slicer software (version 4.10, available at ​h​t​t​p​s​:​/​/​w​w​w​.​s​l​i​c​e​r​.​
o​r​g​​​​​​)​ referring to the T2W and T1W + C images for PTEA and ETA, respectively. We especially made sure to 
minimize the inclusion of calcifications, intra-tumor hemorrhage, cysts, and hyperintensity surrounding the 
ventricular system and skull base, as suggested by previous studies53,54.

Bi-exponential analysis
For the calculation of the slow diffusion coefficient (Dslow), fast diffusion coefficient (Dfast), and perfusion 
fraction (frac) within the VOI, an in-house program was developed in MATLAB 2018b. The program utilized 
the bi-exponential fitting approach defined by:
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	 Sb = [frac × exp (−b × Dfast) + (1 − frac) × exp (−b × Dslow)] × S0� (1)

where Sb and S0 represents the signal intensity under b > 0 s/mm2 and b = 0 s/mm2, respectively. The diffusion 
data were used to fit the bi-exponential model using a bound-constrained optimization mini-search approach 
implemented in the MATLAB code55. Before the fitting process, a linear fitting was performed on the logarithm 
of the diffusion data with 1200 > b > 200 s/mm2 to generate the Dslow parametric map. Furthermore, another 
internally developed program was employed to extract histogram features of Dslow, frac, and Dfast from the 
parametric maps. These features included the 10th and 90th percentile, entropy (a measure of molecular 
disorder), kurtosis (a measure of the tailedness of a distribution), and skewness (a measure of the asymmetry of 
a distribution). The processing time per patient was approximately 10 min, including 3 min for ROI drawing in 
3D Slicer, 5 min for bi-exponential analysis, and 1 min for histogram feature extraction in MATLAB.

Structural features evaluation
The structural characteristics were assessed by the same neuroradiologist, who was blinded to the patients’ initial 
diagnosis. The tumor site was divided into sub-cortex and deep white matter based on the distance between the 
tumor body and the cortex. Similar to the previously described method50, tumors were categorized based on the 
presence or absence of a peritumoral hyperintense rim on T2-weighted imaging into those with well-defined 
and blurred margins. The degree of edema was classified as mild, moderate, or severe, according to the criteria 
proposed in a previous study56. Mild edema was defined as hyperintensity on T2-weighted imaging within 
the radius of the tumor, while severe edema indicated edema extending beyond the diameter of the tumor. 
Additionally, the classification of enhancement patterns proposed by Wang et al.57 was used. Focal enhancement 
was defined as the absence of obvious hyperintensity on T1W + C imaging, with a smooth border and a maximal 
enhancing focal diameter of < 1.5 cm. Diffuse enhancement was characterized by enhancements with rough 
edges and maximal diameters > 1.5  cm. Ring-like enhancement was used to describe peripherally enhanced 
cystic necrosis. No obvious hyperintensity on T1W + C was considered evidence of non-enhancement.

Statistical analysis
Statistical analysis was conducted after confirming the normality and homogeneity of variance. Quantitative 
variables were presented as mean ± standard deviation and compared using either Student’s t-test or Wilcoxon 
test (Mann-Whitney U test). The Chi-square test was employed to compare age and gender. Subsequently, 
variables that exhibited significant differences were further analyzed using univariate logistic regression, and the 
best combination model was determined using binary logistic regression. The performance of logistic regression 
was evaluated using receiver operating characteristic (ROC) analysis, with calculations of the area under the 
ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV). 
All statistical analyses were performed using the R software (version 4.0.0). A P-value of < 0.05 was considered 
statistically significant.

Data availability
The datasets generated and analyzed during the current study are available from the corresponding author upon 
reasonable request.
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