Skip to main content
. 2024 Dec 30;15:10913. doi: 10.1038/s41467-024-55315-6

Table 1.

Dynamics of the different model variants, where ht is the cortical RNN state, zt the readout and ct cerebellar feedback

No feedback Readout feedback Cerebellar feedback No feedback (cerebellar readout)
ht αht−1 + Whhf(ht−1) + Wihxt αht−1 + Whhf(ht−1) + Wihxt + Wzhzt αht1+Whhf(ht1)+Wihxt+WChct αht−1 + Whhf(ht−1) + Wihxt
zt Wrdtf(ht) Wrdtf(ht) Wrdtf(ht) C(f(ht))
ct NA NA C(f(ht1)) NA

For the experiments presented here we set f=tanh and C is the cerebellar feedforward network with one hidden layer, Cfh=WPFfCWMFf(h). Whh RNN recurrent weights; Wih stimulus-to-RNN weights, Wrdt (cortical) readout weights; WCh, cerebellar-to-RNN weights, WMF cerebellar mossy fibre weights, WPF cerebellar parallel fibre weights; fC set as ReLU.