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Differential effects of fine particulate matter
constituents on acute coronary
syndrome onset

Yixuan Jiang1,5, Chuyuan Du1,5, Renjie Chen 1,5, Jialu Hu2, Xinlei Zhu1,
Xiaowei Xue1, Qinglin He1, Jun Lu1, Junbo Ge 2 , Yong Huo3 &
Haidong Kan 1,4

Fine particulate matter has been linked with acute coronary syndrome.
Nevertheless, the key constituents remain unclear. Here, we conduct a
nationwide case-crossover study in China during 2015–2021 to quantify the
associations between fine particulate matter constituents (organic matter,
black carbon, nitrate, sulfate, and ammonium) and acute coronary syndrome,
and to identify the critical contributors.Ourfindings reveal allfive constituents
are significantly associated with acute coronary syndrome onset. The magni-
tude of associations peaks on the concurrent day, attenuates thereafter, and
becomes null at lag 2 day. The largest effects are observed for organic matter
and black carbon, with each interquartile range increase in their concentra-
tions corresponding to 2.15% and 2.03% increases in acute coronary syndrome
onset, respectively. These two components also contribute most to the joint
effects, accounting for 31% and 22%, respectively. Our findings highlight tai-
lored clinical management and targeted control of carbonaceous components
to protect cardiovascular health.

Cardiovascular disease (CVD) has long stood as a predominant cause
ofmorbidity andmortality around theworld1,2. According to theWorld
Heart Report 2023, around 20.5 million deaths were attributable to
CVD globally in 2021, which was equivalent to around one-third of all
deaths3. Acute coronary syndrome (ACS) is one of the most fatal CVD
subtypes and can significantly impair the life quality of survivors4.
Thus, identifying modifiable risk factors of ACS is important for miti-
gating the disease burden. Epidemiological evidence has shown that
ambient air pollution, particularly fine particulatematter (PM2.5), is the
leading environmental risk factor for CVD5,6.

PM2.5 is a complex mixture comprising of various organic and
inorganic components,mainly including black carbon, organicmatter,
sulfate, nitrate, and ammonium7. Although relationships between
PM2.5 total mass and CVD have been well-documented8–11, the

differential effects of its components remain to be fully elucidated.
Toxicological research reported variations of physicochemical prop-
erties of PM2.5 constituents, which may potentially influence human
health in different ways12. Therefore, quantifying and identifying the
crucial toxic PM2.5 components can add knowledge to the cardiovas-
cular effects of PM2.5 for better CVD early prevention and
management13. Such knowledge can also provide valuable clues and
support for future research on source-specific effects of PM2.5.

In the past decades, only a few researches have evaluated the
associations of PM2.5 constituents with CVD and yielded mixed
results13–16. Heterogeneity might stem from factors including study
design, health outcomes, exposure assessment, and statistical meth-
ods. Previous time-series studies and aggregate-level case-crossover
studies often used daily pollutant concentrations and daily counts of
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CVD hospitalization or death in specific cities14,15,17, rather than
individual-level data, which can lead to apparent ecological fallacy18.
Accordingly, utilizing the individual-level time-stratified case-
crossover study design could significantly reduce this concern. Addi-
tionally, disease onset is more sensitive and immediate than hospital
admissions or deaths, which provides earlier opportunities for public
health interventions. Owing to data unavailability, most of previous
studies were confined to single or a few cities19–21, which compromised
the extrapolation of study results to broader populations. Exposure
data extracted from fixed-site monitoring stations further contributed
to exposure misclassification22,23. Furthermore, most studies investi-
gated the effect of individual constituent one by one without
accounting for their multi-collinearity14,20. Weighted quantile sum
(WQS) regression is an emerging statistical technique for evaluating
the joint effects of correlated co-exposures and identifying the crucial
contributors; however, few studies have utilized WQS to explore the
relationships between PM2.5 components and ACS onset.

In this work, we conduct a time-stratified case-crossover study
using a nationwide registry database of China to comprehensively
quantify associations between different PM2.5 constituents and ACS
onset, both overall and by subtypes. We also evaluate the joint effects
and individual contributions of all components and identify potential
effect modifiers. Our findings indicate that all five constituents exam-
ined in the present study (i.e., organic matter, black carbon, nitrate,
sulfate, and ammonium) are significantly associated with ACS onset,
among which organic matter and black carbon contribute most to the
joint effects.

Results
Descriptive results
There were 2,539,922 patients diagnosed with ACS between January 1,
2015, and December 31, 2021, in the Chinese Cardiovascular Associa-
tion (CCA) Database-Chest Pain Center. After excluding patients with
no information on symptom onset date and those being transferred
from other hospitals, a total of 2,113,728 cases from 2096 hospitals
were finally included in the analysis (Supplementary Fig. 1). Among
them, 758,464 (35.9%) were diagnosed with ST-segment-elevation
myocardial infarction (STEMI), 449,161 (21.2%) non-ST-segment-
elevation myocardial infarction (NSTEMI), and 906,103 (42.9)
unstable angina (UA) (SupplementaryTable 1). Half of thepatientswere
older than 65 years and 67.7% were male. The average concentrations
of PM2.5 total mass, organic matter, black carbon, nitrate, sulfate, and
ammonium at lag 0 day were 38.6, 9.3, 1.8, 8.1, 6.7, and 5.3μg/m3,
respectively (Table 1). Strong and positive correlations were observed
between PM2.5 total mass and each of the five main constituents
(Spearman correlation coefficient r = 0.88‒0.93) and among different
constituents (Spearman r = 0.70‒0.98) (Supplementary Table 2).

Effects of single exposures
Significant associationswere foundbetween PM2.5 totalmass as well as
constituents and ACS onset (Table 2). The lag patterns were similar,

but the magnitudes of effects varied across different constituents
(Fig. 1). Generally, the associations occurred immediately on the con-
current day of exposure, attenuated thereafter, and became null at lag
2 day. Thus, we reported results on lag 0 day in the subsequent ana-
lyses. Organic matter and black carbon had the strongest associations
with ACS onset, followed by sulfate, nitrate, and ammonium. Specifi-
cally, an interquartile range (IQR) increase of PM2.5, organic matter,
black carbon, nitrate, sulfate, and ammonium concentrations at lag
0 day was associated with 2.00% (95% confidence interval [CI]: 1.73%‒
2.26%), 2.15% (95%CI: 1.90‒2.41%), 2.03% (1.78%‒2.28%), 1.54% (1.28%‒
1.80%), 1.57% (1.32%‒1.81%), and 1.51% (1.25%‒1.77%) increase in ACS
onset, respectively. The corresponding risk estimates with each 10μg/
m3 increase of total PM2.5 and 1μg/m3 increase for chemical con-
stituents were presented in Supplementary Table 3.

Fig. 2 demonstrates the exposure-response relationships on lag
0 day. All curves increased monotonically with increasing concentra-
tions and were almost linear without any discernible thresholds.

The associations varied slightly by different ACS subtypes, with
stronger associations found for NSTEMI compared to the other sub-
types (Table 2). This patternwas consistent across PM2.5 totalmass and
its constituents. For example, an IQR increase of organic matter on lag
0 day was associated with 3.01% (95%CI: 2.45%‒3.56%) increase in
NSTEMI onset, while smaller effect estimates were observed for acute
myocardial infarction (AMI) (2.63%, 95%CI: 2.30%‒2.97%), STEMI
(2.42%, 95%CI: 1.99%‒2.85%), and UA (1.51%, 95%CI: 1.13%‒1.90%).
Exposure-response relationships of PM2.5 and its constituentswithACS
subtypes were similar to those observed for ACS, which were almost
linear without discernible thresholds (Supplementary Fig. 2–5).

Stratification analyses indicate that the associations of PM2.5 total
mass and constituents with ACS onset were stronger among patients
aged over 65 (Table 3 and Supplementary Table 4). The associations
were comparable between female and male patients. Stronger asso-
ciations were found during cold season for all exposures, while sig-
nificant effect modification of season was found for organic matter (p
for interaction = 0.05) and sulfate (p = 0.02). In addition, generally
higher effects were found among residents living in the south, with
significant effectmodifications for PM2.5 (p = 2.39×10-3), organicmatter
(p = 0.04), black carbon (p = 2.69×10-3), and sulfate (p = 1.23 × 10-5).

As shown in the Supplementary Table 5, reducing total PM2.5

concentrations by an IQR could have prevented 1.96% of ACS cases,
equivalent to41,348cases in thepresent database. If reducingdifferent
constituents of PM2.5 by an IQR, the preventable fractions of ACS cases
range from 1.49% for ammonium to 2.11% for organic matter, corre-
sponding to a reduction of 31,436 to 44,566 cases.

Effects of joint exposures
In the analysis of joint exposure to five constituents of PM2.5, ACSonset
increased by 1.09% (95%CI: 0.86%–1.32%) per quartile increase of the
WQS mixture index. As shown in Fig. 3, among the five constituents,
organic matter had the highest weight (i.e., 0.31), followed by black
carbon (i.e., 0.22), while the rest three ions were all below 0.20.

Table 1 | Distributions of air pollutants and meteorological factors at lag 0day during the study period

Variable Mean SD Minimum P25 Median P75 Maximum

PM2.5 (μg/m
3) 38.6 25.5 7.0 20.0 32.0 50.0 135.0

Organic matter (μg/m3) 9.3 6.1 1.6 4.8 7.7 11.9 33.1

Black carbon (μg/m3) 1.8 1.1 0.3 1.0 1.5 2.3 6.1

Nitrate (μg/m3) 8.1 7.0 0.8 2.9 5.9 11.1 34.9

Sulfate (μg/m3) 6.7 4.3 1.2 3.5 5.6 8.7 23.1

Ammonium (μg/m3) 5.3 4.3 0.6 2.1 4.0 7.2 21.6

Temperature (°C) 15.0 10.6 −22.4 7.6 16.7 23.8 32.8

Humidity (%) 63.2 19.6 3.5 48.8 66.7 79.2 99.9

SD standard deviation, P25 the 25th percentile, P75 the 75th percentile, PM2.5 fine particulate matter.
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Table2 | Percent changes in the risk of onset ofACSand its subtypesper interquartile range increase in concentrationsof PM2.5
total mass and its chemical constituents during different lag periods

Pollutants Lag ACS AMI STEMI NSTEMI UA

PM2.5 0 d 2.00 (1.73, 2.26) 2.40 (2.06, 2.74) 2.29 (1.85, 2.73) 2.74 (2.17, 3.31) 1.36 (0.96, 1.76)

1 d 0.55 (0.29, 0.82) 0.76 (0.42, 1.10) 0.69 (0.25, 1.13) 0.93 (0.36, 1.51) 0.23 (−0.17, 0.63)

2 d −0.06 (−0.33, 0.21) 0.20 (−0.15, 0.54) 0.26 (−0.18, 0.71) 0.10 (−0.47, 0.68) −0.15 (−0.56, 0.27)

3 d −0.23 (−0.49, 0.04) 0.00 (−0.34, 0.34) −0.01 (−0.45, 0.43) 0.01 (−0.56, 0.58) −0.01 (−0.43, 0.41)

Organic matter 0 d 2.15 (1.90, 2.41) 2.63 (2.30, 2.97) 2.42 (1.99, 2.85) 3.01 (2.45, 3.56) 1.51 (1.13, 1.90)

1 d 0.69 (0.43, 0.94) 0.93 (0.60, 1.27) 0.84 (0.41, 1.26) 1.10 (0.55, 1.65) 0.34 (−0.04, 0.73)

2 d −0.06 (−0.31, 0.20) 0.24 (−0.10, 0.58) 0.28 (−0.15, 0.71) 0.16 (−0.38, 0.72) −0.15 (−0.55, 0.25)

3 d −0.21 (−0.46, 0.04) −0.07 (−0.40, 0.26) −0.02 (−0.44, 0.40) −0.17 (−0.71, 0.37) 0.09 (−0.31, 0.48)

Black carbon 0d 2.03 (1.78, 2.28) 2.45 (2.12, 2.78) 2.23 (1.81, 2.65) 2.88 (2.34, 3.43) 1.47 (1.09, 1.85)

1 d 0.63 (0.38, 0.88) 0.86 (0.53, 1.19) 0.71 (0.29, 1.13) 1.11 (0.57, 1.65) 0.32 (−0.06, 0.71)

2 d −0.05 (−0.30, 0.20) 0.26 (−0.07, 0.60) 0.35 (−0.07, 0.77) 0.12 (−0.42, 0.66) −0.20 (−0.59, 0.20)

3 d 0.03 (−0.22, 0.28) −0.02 (−0.35, 0.30) −0.02 (−0.43, 0.40) −0.04 (−0.57, 0.50) −0.04 (−0.43, 0.35)

Nitrate 0 d 1.54 (1.28, 1.80) 1.95 (1.61, 2.29) 1.77 (1.34, 2.21) 2.26 (1.70, 2.83) 1.00 (0.60, 1.40)

1 d 0.49 (0.22, 0.75) 0.63 (0.28, 0.97) 0.60 (0.16, 1.04) 0.67 (0.11, 1.24) 0.29 (−0.12, 0.69)

2 d −0.13 (−0.39, 0.14) 0.16 (−0.19, 0.51) 0.13 (−0.32, 0.57) 0.22 (−0.36, 0.79) −0.34 (−0.77, 0.09)

3 d −0.16 (−0.42, 0.10) 0.16 (−0.19, 0.50) 0.26 (−0.17, 0.70) −0.03 (−0.59, 0.54) −0.15 (−0.58, 0.28)

Sulfate 0 d 1.57 (1.32, 1.81) 1.90 (1.57, 2.22) 1.71 (1.31, 2.13) 2.21 (1.68, 2.74) 1.13 (0.76, 1.51)

1 d 0.68 (0.43, 0.93) 0.83 (0.50, 1.16) 0.66 (0.24, 1.08) 1.13 (0.59, 1.67) 0.46 (0.08, 0.84)

2 d 0.03 (−0.23, 0.28) 0.27 (−0.07, 0.60) 0.29 (−0.14, 0.71) 0.23 (−0.31, 0.78) −0.30 (−0.68, 0.09)

3 d −0.08 (−0.33, 0.16) 0.00 (−0.33, 0.33) −0.05 (−0.46, 0.37) 0.07 (−0.46, 0.61) −0.19 (−0.57, 0.19)

Ammonium 0d 1.51 (1.25, 1.77) 1.85 (1.51, 2.19) 1.68 (1.25, 2.11) 2.16 (1.60, 2.71) 1.05 (0.66, 1.44)

1 d 0.41 (0.15, 0.67) 0.55 (0.20, 0.89) 0.52 (0.08, 0.95) 0.60 (0.04, 1.17) 0.21 (−0.19, 0.61)

2 d 0.00 (−0.28, 0.28) 0.11 (−0.23, 0.46) 0.11 (−0.33, 0.55) 0.12 (−0.45, 0.69) −0.38 (−0.77, 0.01)

3 d −0.18 (−0.44, 0.08) 0.05 (−0.29, 0.40) 0.10 (−0.33, 0.53) −0.03 (−0.59, 0.53) −0.04 (−0.47, 0.38)

ACS acute coronary syndrome, AMI acute myocardial infarction, STEMI ST-segment-elevation myocardial infarction, NSTEMI non-ST-segment-elevation myocardial infarction, UA unstable angina,
PM2.5 fine particulate matter.
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Fig. 1 | Percent changes in the risk ofACS onset per interquartile range increase
in concentrations of PM2.5 total mass and its chemical constituents. Dots are
the estimated percent changes of ACS onset associated with an interquartile range
increase in concentrations of PM2.5 total mass and its chemical constituents, and
error bars indicate 95% confidence intervals. The x-axis labels specify the

corresponding lag days (0, 1, 2, and 3 days) for each estimate. A total of 2,113,728
participants were included in the analysis. Source data are provided as a Source
Data file. Abbreviations: ACS, acute coronary syndrome; PM2.5, fine particulate
matter.
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Results of sensitivity and supplementary analyses
Sensitivity analyses of controlling for PM2.5 total mass in the main
models show that the associations for organic matter, black carbon,
and ammonium remained stable, while those of nitrate and sulfate
became null (Supplementary Table 6). When restricting the analysis to
participants with complete onset addresses, the results were little
affected by using air pollutant concentrations matched by the
addresses of the event onset versus hospitals (Supplementary Table 7).
When further matching control days based on the temperature of the
case days, we observed slightly weaker but significant effects, and the
overall pattern for the differential effects of constituents remained
consistent (Supplementary Table 8). Quantile-based g computation
(QGC) analysis shows that a quartile increase in mixture of the five
constituents was significantly associated with an increase of 0.92%
(95%CI: 0.75%–1.09%) in the risk of ACS onset. Organic matter and
black carbon had higher weights, which was consistent with our initial
findings (Supplementary Fig. 6). Results of the supplementary analysis
arepresented in Supplementary Table 9 and Supplementary Fig. 7. The
effects of the remaining components were weaker thanorganicmatter

and black carbon, and comparable to nitrate, sulfate, and ammonium.
Including the remaining components in WQS regression also yielded
similar results, with a quartile increase in the WQS index associated
with a 1.01% (95%CI: 0.76%–1.25%) increase in ACS onset.

Discussion
This individual-level time-stratified case-crossover study comprehen-
sively differentiated the associations of PM2.5 constituents with
increased risk of ACS onset. Similar patterns were observed in lagged
effects and exposure-response curves for all five constituents, while
the estimated effects varied. Organic matter and black carbon might
contribute the most to the observed relationship. The adverse effects
were more evident for patients above age 65, residents in the south,
and during the cold season. This study provides valuable evidence for
informed and targeted public health strategies on air pollution control
in the future.

Prior evidence mainly stems from studies exploring the relation-
ships of PM2.5 constituents with CVD hospitalization or mortality, with
inconclusive findings. A time-series study conducted in the Denver
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Fig. 2 | Exposure-response curves for the associations of PM2.5 total mass and
its chemical constituents with ACS onset over lag 0 day. The solid lines repre-
sent the point estimates of percent change in the risk of ACS onset associated with
an interquartile range increase in concentrations of PM2.5 total mass (A), organic

matter (B), black carbon (C), nitrate (D), sulfate (E), and ammonium (F). The dashed
lines indicate the corresponding 95% confidence intervals. Source data are pro-
vided as a Source Data file. ACS acute coronary syndrome, PM2.5 fine particulate
matter.

Table 3 | Percent changes in the risk of onset of ACS per interquartile range increase in concentrations of PM2.5 totalmass and
its chemical constituents during lag 0 day, stratified by age, sex, and season

Subgroups PM2.5 Organic matter Black carbon Nitrate Sulfate Ammonium

Age

<65 1.83 (1.46, 2.21) 1.97 (1.61, 2.33) 1.84 (1.49, 2.20) 1.41 (1.05, 1.78) 1.39 (1.04, 1.73) 1.24 (0.88, 1.60)

≥ 65 2.15 (1.78, 2.52) 2.33 (1.97, 2.69) 2.22 (1.86, 2.57) 1.67 (1.30, 2.04) 1.74 (1.40, 2.09) 1.78 (1.41, 2.14)

Sex

Male 2.00 (1.69, 2.32) 2.23 (1.92, 2.54) 2.11 (1.80, 2.41) 1.50 (1.19, 1.81) 1.63 (1.33, 1.93) 1.48 (1.17, 1.79)

Female 1.90 (1.43, 2.37) 1.98 (1.53, 2.43) 1.87 (1.43, 2.32) 1.63 (1.16, 2.09) 1.44 (1.01, 1.87) 1.57 (1.11, 2.03)

Season

Warm 1.40 (1.03, 1.78) 1.78 (1.43, 2.14) 1.71 (1.36, 2.05) 1.03 (0.68, 1.39) 0.94 (0.58, 1.29) 1.02 (0.66, 1.38)

Cold 2.52 (2.13, 2.92) 2.60 (2.21, 2.98) 2.39 (2.02, 2.77) 2.02 (1.62, 2.42) 2.06 (1.71, 2.42) 1.94 (1.56, 2.33)

Region

South 2.14 (1.75, 2.53) 2.21 (1.82, 2.60) 2.32 (1.93, 2.71) 1.57 (1.18, 1.96) 2.12 (1.73, 2.51) 1.61 (1.21, 2.01)

North 1.88 (1.53, 2.22) 2.14 (1.79, 2.48) 1.87 (1.54, 2.21) 1.53 (1.19, 1.88) 1.31 (0.99, 1.64) 1.49 (1.15, 1.83)

ACS acute coronary syndrome, PM2.5 fine particulate matter.
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metropolitan area of the U.S. only observed significant effects of ele-
mental carbon and organic carbon on CVD hospitalization15. A case-
crossover study in southern China also revealed significant associa-
tions between carbonaceous components and myocardial infarction
deaths, with null associations identified for other components24. In
contrast, another twomulti-city studies in the U.S. and China reported
significant results for both carbonaceous and ionic constituents (e.g.,
sulfate, nitrate, and ammonium) with CVD hospitalization16,17. Besides,
a time-series study in China showed exposure to organic carbon, sul-
fate, and ammonium was significantly associated with increased
ischemic heart disease mortality, while non-significant associations
were found for elemental carbon and nitrate25. Most studies reported
the strongest associations on the concurrent day or 1 day after
exposure15,17,23–25. However, some studies found varying lagpatterns for
different constituents16,26. Inconsistency in these previous findings
might be explained by differences in study design, geographical cov-
erage, sample size, exposure assessment, and health outcomes. Based
on a national database covering 2.11million patients inChina, this case-
crossover study provides first-hand and compelling evidence that five
main constituents (i.e., organic matter, black carbon, nitrate, sulfate,
and ammonium) of PM2.5 could significantly trigger the onset of ACS
and its subtypes, with the most pronounced effects observed on the
concurrent day.

Existing studies typically explored the key components by com-
paring the effects of specific constituents derived from single-
pollutant models14,16,20, which did not account for potential collinear-
ity across these simultaneous exposures. In this study, we used WQS
regression to address this concern13,27. Results suggest that organic
matter and black carbon are themain contributors to the PM2.5-related
ACS onset. The two components predominantly originate from the
combustion process and traffic emissions21, and have been suggested
to interact with multiple pathological pathways associated with CVD,
including systemic inflammation, oxidative stress, dysfunction of the
autonomic nervous system, and atherosclerosis development28–31. Our
findingswere consistentwith prior studies, which also observedhigher
cardiovascular impacts of carbonaceous components than secondary
constituents such as sulfate and nitrates15,21,24. Analyses based on QGC
revealed similar results withWQS, except that the estimatedweight for
nitrate became negative. Setting a negative effect direction ensured

convergence of QGC32. The negative weight for nitrate does not
necessarily indicate a significant negative association. This may be
explained by high correlations among these constituents, which can
lead to some constituents being non-significant in QGC and ultimately
result in the overall negative effect being close to zero and negative
weights being substantive33. Similar patterns have also been observed
in other studies33–35. Although carbonaceous components showed
relatively stronger effects, other components (e.g., sulfate, nitrate, and
ammonium) should not be overlooked. Specifically, we observed that
sulfate, which is mainly in the form of ammonium sulfate, exhibited a
stronger health effect per unit increase in concentration compared to
that of total PM2.5 mass in the single-pollutant models. Besides, it
should also be noted that these five constituents do not account for all
of PM2.5 total mass, and the weights derived fromWQS and QGC only
represent each component’s contribution to the health effects of the
mixtureof thefivemeasured constituents. The supplementary analysis
based on the remaining components also reveals that there may be
important unmeasured constituents in PM2.5 that warrant further
investigation.

In our analysis,mostPM2.5 components exhibited linear exposure-
response relationships with ACS onset. However, the exposure-
response curves of some components, such as black carbon, flat-
tened slightly at higher concentrations, indicating a lower health
impact per unit increase of the components on highly polluted days.
One possible explanation for this flattening is the limited number of
data points at higher concentrations, which may lead to less stable
estimates. Another possible explanation is that the sources of these
components may vary with concentration levels. For instance, a time-
series study conducted in Dhaka, Bangladesh, observed a similar pla-
teau in the exposure-response curve at higher PM2.5 levels36. Their
findings suggest that at lower concentrations, PM2.5 is primarily from
fossil fuel combustion, while at higher concentrations, biomass burn-
ing, which has lower cardiovascular toxicity, may become more
dominant. However, due to the lack of nationwide PM2.5 source data
with high spatiotemporal resolution in China, future research on
source-specific effects is warranted to fully elucidate this issue.

In the models adjusted for total PM2.5 mass, we observed robust
effect estimates for organic matter, black carbon, and ammonium, but
not for nitrate and sulfate. However, this finding does not necessarily
imply that the effects of nitrate and sulfate are completely dependent
on the total PM2.5mass due to the following reasons. First, constituent-
PM2.5 models may mask the effects of specific components due to
overadjustment related to the high collinearity with PM2.5, leading to
an underestimation of associations37. Second, the impacts of exposure
measurement errors usually become more complicated in multi-
pollutant models, adding to the statistical uncertainty of results. Fur-
thermore, ammonium is often correlated with nitrate and sulfate17,
which complicates the interpretation of the results, as the observed
health effects may be attributed to nitrate and sulfate rather than
ammonium itself. Therefore, results on ammonium should be inter-
preted with caution and warrant future elucidation.

Our results show that stronger associations were observed for
NSTEMI, followed by STEMI, and UA, which was consistent across
different PM2.5 constituents. Evidence on the associations between
specific constituents of PM2.5 and ACS subtypes is limited, making
direct comparisons with previous studies difficult. However, previous
findings on the associations between total PM2.5 mass or other air
pollutants and AMI provide some support for our results. For example,
a few studies reported stronger associations of air pollution with
NSTEMI than STEMI38–40. Nevertheless, another study in the U.S. found
statistically significant associations between PM2.5 and STEMI, rather
than NSTEMI41. Mechanistically, STEMI mainly results from coronary
artery occlusion following plaque rupture, and can lead to complete
blood flow cessation and ischemic necrosis of the myocardial region.
In contrast, NSTEMI usually involves plaque erosion and less severe
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Organic matter
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Fig. 3 | The importance of PM2.5 chemical constituents in the associations with
ACS onset. Each bar represents a specific component, with the bar length indi-
cating its relative weight derived from the WQS regression. The weight values are
shown along the x-axis, while the components are listed on the y-axis. Source data
are provided as a SourceData file. PM2.5 fineparticulatematter, ACS acute coronary
syndrome, WQS weighted quantile sum.
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coronary artery obstruction41,42. The observed stronger association
with NSTEMI than STEMI suggests that acute exposure to PM2.5 and its
constituents is more likely to trigger plaque erosion and less severe
obstructions, compared to complete coronary artery occlusion40. UA
usually results from various causes, including coronary artery spasm,
transient increases in myocardial oxygen demand, and partial
blockages of coronary artery43. The diverse causes may make UA
influenced by multiple factors beyond acute PM2.5 exposure, which
helps explain its weaker association with PM2.5 and constituents.
Nevertheless, given the mixed findings and scarce existing evidence,
further research is urgently warranted to corroborate our results and
fully elucidate the underlying mechanisms.

Stratification analyses showthe associationswere stronger among
the elderly patients, which was echoed by previous studies14,16,44.
Elderly individuals are more susceptible to air pollution exposure due
to the degradation of their cardiovascular function and immune sys-
tem. Additionally, the increased likelihood of having comorbidities,
such ashypertension andhyperlipidemia,may further elevateCVD risk
among them. Higher ACS risks associated with PM2.5 and its con-
stituents were observed during cold season, which was expected as
biomass and fossil fuel combustion, major sources of PM2.5 pollution,
usually increase during winter24. In addition, low temperature during
the cold seasonmay increase the burdenon the cardiovascular system,
which can also lead to higher vulnerability to cardiovascular events.
Residents living in the south had higher risk of ACS. This finding was
supported by another study reporting higher CVD incidence asso-
ciated with PM2.5 constituents among southern Chinese people44. The
regional heterogeneity could be attributed to various factors, includ-
ing emission source apportionment, exposure concentrations, cli-
mate, and population characteristics25,45.

Our results have important implications for patients, clinicians,
and policymakers. Individuals at risk of CVD should be educated about
the detrimental effects of short-term exposure to PM2.5 and its con-
stituents. They should adopt necessary lifestyle adjustments such as
reducing outdoor activity and using indoor air purifiers during epi-
sodes of air pollution, and promptly seek medical assistance if
needed46. Clinicians need to place greater emphasis on air pollution
exposure when interacting with patients, and make sufficient medical
preparations during heavily-polluted days. Integration of environ-
mental factors into clinical practice can enhance precision in preven-
tion and treatment of CVD, and facilitate personalized care. For
policymakers, it is critical to consider implementing stringent strate-
gies to reduce PM2.5 pollution, with specific attention to carbonaceous
components which are primarily originated from biomass and fossil
fuel combustion process. Additionally, targeted protective measures
should be taken for vulnerable populations.

There were several strengths of this study. First, this nationwide
health database with more than 2 million ACS patients from all major
cities and hospitals across China is a representative sample of ACS
patients in China, and ensures high data quality and adequate statis-
tical power for this analysis. Second, our constituent data were from a
high spatial and temporal resolution model, which can substantially
reduce exposure misclassification compared to exposure data
from fixed-site monitoring stations. Last, this study used WQS
regression to address collinearity of multiple PM2.5 constituents and
to estimate the joint effects of PM2.5 constituents as well as their
relative contributions.

Several limitations should also be acknowledged. First, exposure
misclassifications are possible. Even though we used high-resolution
exposure assessment model to measure PM2.5 and its constituents
among our study population, exposure in indoor environment was not
captured. Second, in the main analysis, we matched exposure data for
each patient based on hospital addresses rather than the specific
addresses of symptom onset, as more than 50% of patients did not
provide complete onset addresses.However, thiswould notbe amajor

concern because: 1) ACS patients in China are always sent to the
nearest hospital for timely care, and we had further excluded those
transferred from other hospitals; 2) the median distance between
hospitals and the onset addresswas 6.2 kilometers among participants
who provided complete onset addresses; and this distance is generally
acceptable in epidemiological studies on short-term exposures, in
which the temporal variations of exposures are more important than
spatial variations; and 3) our sensitivity analysis based on addresses of
disease onset yielded comparable results to those estimated using
hospital addresses. Third, given the high correlation between different
constituents, our results only reflect statistical associations rather than
causal relationships, and the strength of their health effects was eval-
uated primarily based on statistical findings. Therefore, the findings
should be interpreted with caution, and future researches, such as
toxicological studies and randomized controlled trials, are warranted
to validate the true effects of the components and better understand
their individual contributions. Fourth,WQS assumes linearity for these
relationships. Although most components exhibited a linear relation-
ship with ACS onset, some of the exposure-response curves flattened
slightly at higher concentrations,which could affect the stability of our
estimates. Fifth, both WQS and QGC provide fixed index weights
without confidence intervals, which is a shortcoming in this field as it
prevents estimating the statistical significance of the weights. Sixth,
due to data unavailability, we failed to consider the health impacts of
metallic elements as well as the PM2.5 sources that were shown
previously47. Last, residual confounding from time-varying lifestyle
factors, which could not be collected from patient’s medical records,
might still introduce bias to our results. Nevertheless, we believe that
this would not significantly influence our results as these factors are
unlikely to undergo substantial changes within one month in such a
large population.

In summary, this nationwide case-crossover study, based on 2.11
million ACS patients from 2096 hospitals in China, provides compel-
ling evidence on differential effects of various PM2.5 constituents on
the onset of ACS and its subtypes. Our findings underscore the critical
roles played by carbonaceous components (i.e., organic matter and
black carbon) in the observed relationships. This information holds
significant implications for clinical management, public health inter-
ventions, and environment policies in the future.

Methods
The Institutional Review Board at the School of Public Health, Fudan
University approved the study protocol (IRB#2021-04-0889), and
waived the requirement for informed consent because the study
involved analysis of deidentified data. None of the authors were
involved in the collection of data from the participants. Our study
adhered to the Strengthening the Reporting of Observational Studies
in Epidemiology (STROBE) reporting guideline.

Study design
The time-stratified case-crossover study design was used to investi-
gate the associations between daily PM2.5 constituents and ACS onset.
This design has been widely used to quantify the associations
between short-term exposure to environmental risk factors and acute
health events9,48. The case daywas defined as the day ofACS onset and
were matched with 3 or 4 control days, which were selected from the
days that were in the same year, month, and day of the week with the
case day to control for time trends and seasonality. Because each
patient serves as his or her own control, variables that are time-
invariant or can remain stable within one month (e.g., age, sex,
socioeconomic status) are not considered as confounders. Specifi-
cally, if anACS event occurredonWednesday, September 12, 2018, we
defined September 12, 2018 as the case day, and all otherWednesdays
in September 2018 (i.e., September 5, 19, and 26) were defined as the
control days.
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Health data
ACS cases were extracted from the CCA Database-Chest Pain Center.
The database was a national registry established in China since 2015
covering all patients visiting chest pain centers in Chinese mainland.
Information on demographic characteristics such as age and sex, date
of ACS onset, clinical diagnosis, test results, and treatments of each
patient was recorded. The Expert Committee and the Executive
Committee of the China Chest Pain Center implemented a standar-
dized registry system to ensure stringent data quality control. Details
on CCA database have been published previously40,49,50.

In the present analysis, we included patients diagnosed with
STEMI, NSTEMI, and UA in the CCA Database-Chest Pain Center
between January 1, 2015 andDecember 31, 2021, and identified themas
ACS patients. The distribution of the hospitals where the patients were
treated was provided in a previous publication51. STEMI and NSTEMI
patients were further combined into AMI. All diagnoses were made by
cardiologists or clinicians based on symptoms, electrocardiographic
results, and biochemical examinations, following the Chinese Society
of Cardiology guidelines52,53. Patients with no information on symptom
onset date and those being transferred from other hospitals were
excluded to ensure proper matching with environmental
exposure data.

Environmental exposure assessment
Daily concentrations of PM2.5 and its constituents, including organic
matter, black carbon, nitrate, sulfate, and ammoniumduring the study
period were extracted from Tracking Air Pollution in China (TAP)
dataset (http://tapdata.org.cn)54,55. Details could be found in Supple-
mentary Methods. In brief, by combining the Weather Research and
Forecasting–Community Multiscale Air Quality modeling system,
ground observations, a machine learning algorithm, and multisource-
fusion PM2.5 data, TAP dataset provides a full-coverage daily PM2.5 and
its constituents in China at a 10×10 km resolution. Concentrations of
PM2.5 constituents predicted from the TAPdataset have been shown to
demonstrate high correlations with actual observations (correlation
coefficients ranging from 0.67 to 0.80)54. To avoid the potential
influence of extreme values in air pollutants concentrations, the
highest and lowest 2.5% of daily concentrations during the study per-
iod were trimmed before formal analyses49,56. Daily temperature and
relative humidity data over the same period were extracted from the
fifth-generation European Centre for Medium-Range Weather Fore-
casts atmospheric reanalysis (ERA5)of the global climate57. Tomeasure
each patient’s environmental exposure, we matched the geocoded
hospital address where the patient was admitted with the nearest grid
cells in the TAP and ERA5 dataset, and used estimates in these grids
during the corresponding periods to represent exposures. For each
case or control day, exposure to PM2.5, PM2.5 constituents, tempera-
ture, and relative humidity were measured for up to 3 days prior.

Statistical analyses
Effects of individual constituents. Conditional logistic regression
models were applied to investigate the associations of daily exposure
to PM2.5 and its constituents with the onset of ACS and its subtypes,
including AMI, STEMI, NSTEMI, and UA. Consistent with previous
studies on air pollution and cardiovascular health8,9,49, we first fitted
regression models using a linear term for PM2.5 total mass and its
constituents, respectively, assuming linear exposure-response rela-
tionships. Different lag periods of exposure (i.e., lags of 0, 1, 2, 3 day)
before the case and control day were applied. Then we replaced the
linear term with a natural cubic spline with 4 degrees of freedom to
explore possible non-linear exposure‒response relationships. To
control for potential confounding from time-varying factors, we
included a binary variable for public holidays and natural cubic spline
functions with 6 and 3 degrees of freedom for 3-day average tem-
perature and humidity, respectively, in the covariates8,49.

To identify potential effectmodifiers, subgroup analyses stratified
by age (<65 vs. ≥ 65 years), sex (male vs. female), season (warm:
April–September, vs. cold: October–March), and geographic region
(south vs. north) were performed. Potential effect modifications were
examined by including interaction terms between the grouping factor
(i.e., age, sex, season, and region) and PM2.5 constituents in themodels.

To convey the public health significance more clearly, we further
calculated the fraction (AFi) and number (ANi) of ACS cases that could
be prevented in the present database if the level of each constituent is
reduced by an IQR using the following equations:

AFi =
eβi × IQRi � 1
eβi × IQRi

ð1Þ

ANi =AFi ×N ð2Þ

where βi is the regression coefficient of the ith constituent from the
conditional logistic regression; IQRi is the interquartile range of the ith

constituent concentrations; and N is the total ACS cases recorded in
the present database.

Effects of joint exposure to different constituents. Joint effects of
simultaneous exposure to all constituents were estimated using WQS
regression. This is a multi-step modeling approach that can address
collinearity across multiple correlated exposures58, and has been
widely used in environmental health studies to explore the health
effects of air pollutants mixtures, including PM2.5 chemical
constituents13,27,59–61. The main principle is to combine multiple corre-
lated predictors into a single index that represents the overall mixture.
The original data is randomly split into a training dataset and a vali-
dation dataset. Each of the constituent is converted into a categorical
variable representing the quantiles (quartiles in our case). The model
first estimates the empirical weight index of each exposure among
bootstrapping samples from the training dataset based on the asso-
ciation between quantiles (quartiles in our case) of each exposure
component and the health outcome. The weights are scaled to sum to
one. The final weights are defined as average weights across the
bootstrap samples. Then a weighted index is constructed by using
these final weights and subsequently incorporated into the regression
model using the validation dataset to estimate the joint effects of
components mixture on the health outcome. In the present analysis,
the data were divided into 40% of the dataset for training and 60% for
validation, and the bootstrap was set as 100 times. The direction of
association was assumed positive for all the constituents according to
existing evidence13,16. Since WQS regression cannot address the cor-
relation within the clusters (i.e., the self-controlled pairs), we adjusted
for age and sex in addition to all covariates included in the conditional
logistic models when estimating the weights62. Results of the WQS
regression include estimated weights for each constituent, which can
be interpreted as the relative contributions of these constituents to the
overall effect, and estimates for the joint effects of five PM2.5 con-
stituents on ACS onset. The threshold for the key components was
defined as weight > (1/number of species). More details on WQS
regression were provided in Supplementary Methods.

Sensitivity and supplementary analyses. We conducted several
sensitivity analyses. First, to control for the potential confounding
from PM2.5 total mass on constituents, we built “constituent-PM2.5

models” as a sensitivity analysis by adding the present-day PM2.5 total
mass to the constituentmodels63. Second, we restricted the analysis to
participants who provided complete addresses of their location at the
time of ACS onset, and reran the main model using air pollution data
matched according to the address of disease onset and reporting
hospital, respectively. Third, we re-performed the main analysis by
selecting control days by matching temperatures64,65: (1) control days
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were chosen from the same year and month as the case days; (2)
control days and case days had to be at least 3 days apart from each
other to avoid short-term autocorrelation; (3) the difference in daily
average temperature between control days and casedayswas less than
2 °C. Fourth, we explored the joint effects of five constituents by using
QGC. This methodmaintains the simple inferential framework of WQS
without assuming directional homogeneity32, and the weights may go
in either direction. The sum of positive and negative weights is both
equal to 1. The weights are only compatible with other weights in the
same (i.e., positive or negative) direction, whereas positive and nega-
tive weights should not be compared with each other.

To explore the potential effects of the remaining unmeasured
components, we conducted a supplementary analysis. Specifically, we
subtracted the concentrations of the five measured constituents from
the total PM2.5mass to obtain the remaining unmeasured components,
and reran the main models based on these remaining components.

All statistical analyses were performed using R software (Version
4.0.0, R Project for Statistical Computing) and “survival”, “splines”,
“gWQS”, and “qgcomp” packages. All tests were two-sided with an α of
0.05. Percent changes and 95%CIs in the disease onset associated with
each IQR increase inexposurewerecalculatedby the following formulas:

Percent change= eβ× IQR � 1
� �

× 100% ð3Þ

Lower 95%CI = eðβ�1:96× SEÞ× IQR � 1
� �

× 100% ð4Þ

Upper 95%CI = eðβ+ 1:96× SEÞ× IQR � 1
� �

× 100% ð5Þ

where β is the regression coefficient, and SE is the corresponding
standard error. To better facilitate comparisons of the results with
other literature, the risk of ACS onset associated with each 10μg/m3

increase in total PM2.5 and 1μg/m3 increase in chemical constituents
was also reported.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in this manuscript are
available in the article and in the Supplementary Information. The
disease onset data was obtained from the Chinese Cardiovascular
Association (CCA) Database-Chest Pain Center. Due to data manage-
ment requirements and patients’privacy considerations, access to the
disease onset data can be obtained by contacting the corresponding
authors, Junbo Ge (ge.junbo@zs-hospital.sh.cn), Yong Huo
(huoyong@263.net.cn), and Haidong Kan (kanh@fudan.edu.cn), and
requests will be addressed within 12 weeks. The air pollution data
were obtained from Tracking Air Pollution in China (TAP) dataset,
accessible at http://tapdata.org.cn. Meteorological data were sourced
from the fifth generation atmospheric reanalysis product (ERA5),
accessible at https://cds.climate.copernicus.eu/cdsapp#!/search?
type=dataset. Source data are provided with this paper.

Code availability
R codes for statistical analysis are available upon request from the
corresponding authors, Junbo Ge (ge.junbo@zs-hospital.sh.cn), Yong
Huo (huoyong@263.net.cn), and Haidong Kan (kanh@fudan.edu.cn).
We will respond to the requests within 2 weeks.
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