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Accurate prediction of runoff is of great significance for rational planning and management of regional 
water resources. However, runoff presents non-stationary characteristics that make it impossible for 
a single model to fully capture its intrinsic characteristics. Enhancing its precision poses a significant 
challenge within the area of water resources management research. Addressing this need, an ensemble 
deep learning model was hereby developed to forecast monthly runoff. Initially, time-varying 
filtered based empirical mode decomposition (TVFEMD) is utilized to decompose the original non-
stationarity runoff data into intrinsic mode functions (IMFs), a series of relatively smooth components, 
to improve data stability. Subsequently, the complexity of each sub-component is evaluated using 
the permutation entropy (PE), and similar low-frequency components are clustered based on the 
entropy value to reduce the computational cost. Then, the temporal convolutional network (TCN) 
model is built for runoff prediction for each high-frequency IMFs and the reconstructed low-frequency 
IMF respectively. Finally, the prediction results of each sub-model are accumulated to obtain the 
final prediction results. In this study, the proposed model is employed to predict the monthly runoff 
datasets of the Fenhe River, and different comparative models are established. The results show that 
the Nash-Sutcliffe efficiency coefficient (NSE) value of this model is 0.99, and all the indicators are 
better than other models. Considering the robustness and effectiveness of the TVFEMD-PE-TCN model, 
the insights gained from this paper are highly relevant to the challenge of forecasting non-stationary 
runoff.
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River runoff is an important component of the natural water cycle, and plays a key role in the stable operation 
of regional water resource systems1. Accurate runoff prediction can provide the basis for difficult issues such 
as water conservancy project design, water resources planning and management, flood and drought disaster 
defense2,3. However, under the combined influence of multiple factors such as climate change and human water 
extraction activities, river runoff is highly variable, showing non-stationary and non-linear characteristics, 
making it a major challenge to improve the accuracy of runoff forecasting4,5.

Over the past decades, scientists have proposed various methods to improve the performance of runoff 
forecasting. These methods can be generally categorized into process-driven models and data-driven models6. 
Process-driven models are based on the flow process and utilize various hydrological parameters in the runoff 
formation process. However, the required hydrological conditions are complex and the difficulty and cost of 
obtaining detailed hydrological information of the basin from various departments are high7,8. Additionally, 
the approximation link in the model can lead to uncertainties in the prediction of inflow, which in turn leads to 
large errors in the prediction results9. Data-driven models, which use the relationship between input data and 
output data in historical time series to build mathematical models, have achieved rapid development because 
they do not need to consider complex watershed characteristics, have high accuracy and strong generalization 
ability10,11. Within the realm of data-driven models, traditional forecasting techniques, such as those based on 
linear regression, are particularly noteworthy. For instance, the autoregressive moving average (ARMA) model 
excels in dealing with linear data. Nevertheless, the inherent complexity, non-stationarity, and non-linearity of 
runoff data present significant challenges for linear regression models to yield precise runoff predictions12,13. 
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With the advancement of artificial intelligence, machine learning (ML) has been extensively applied in runoff 
forecasting14. For instance, prediction frameworks based on the Support Vector Machine (SVM) model have been 
proposed, emerging as one of the most representative methods for monthly runoff prediction15. Nevertheless, 
SVM models are sensitive to parameter selection. Improper choices of regularization parameters and kernel 
functions can lead to overfitting or underfitting, and they still exhibit poor performance in handling nonlinear 
data sequences16.

To address the aforementioned issues more effectively, experts have advanced a runoff prediction methodology 
based on deep learning17. This approach is adept at distilling the intricate information embedded within runoff 
data. In contrast to traditional machine learning models, deep learning models succeed in managing the 
nuanced decision boundaries inherent in sophisticated datasets18. They also demonstrate superior efficiency in 
the extraction and selection of data features. These advantages collectively contribute to heightened precision 
and enhanced predictive capacities in the domain of runoff forecasting19. Numerous models, including long 
short-term memory (LSTM), which are built upon the foundational architecture of recurrent neural networks 
(RNN), have been extensively deployed across various domains, notably in runoff prediction, where they have 
garnered remarkable success20,21. Nonetheless, it is important to acknowledge that these models are not without 
their inherent limitations. For instance, LSTM, while renowned for their sequential data processing capabilities, 
encounter difficulties with exploding or vanishing gradients as the sequence length grows22. This challenge 
impedes their capacity to effectively capture long-term dependencies within datasets. Although LSTM mitigate 
this issue by incorporating multiple gating mechanisms to regulate the flow of information, these enhancements 
can exacerbate the model’s complexity and inflate the number of parameters required. Furthermore, the sequential 
nature of their computational framework can hinder their efficiency, leading to increased computational 
demands and potentially slower processing times23. In response to the increasing demand for accuracy, we 
present temporal convolutional network (TCN). This network is based on the principles of convolutional neural 
network (CNN) for modeling temporal data and is enhanced by the integration of causal dilated convolutions 
and residual block structures24. Causal convolution differs from traditional convolutional networks by fully 
leveraging information prior to the predictive target instant. It is assisted by dilated convolution which effectively 
expands the receptive field of CNN and mitigates issues such as training complexity. Additionally, residual 
connection effectively captures the long-term dependencies inherent in time series data, addressing challenges 
such as gradient vanishing and gradient exploding that are common in traditional neural networks. Studies 
reveal that convolutional architectures surpass typical recurrent networks across diverse tasks and datasets, due 
to their longer effective memory, which enhances their capacity to capture and retain temporal patterns for 
informed decision-making25. This superior performance underscores the potential of utilizing convolutional 
architectures in a wide range of applications where accurate long-term temporal awareness is crucial. Beyond 
its superior accuracy over RNN, TCN is characterized by its streamlined structure and clear logical flow. This 
distinctive simplicity distinguishes TCN as an especially promising tool for runoff prediction, as it offers a more 
straightforward and coherent approach to understanding and modeling the intricate dynamics of water systems. 
The application of TCN in this context can potentially lead to more accurate, efficient, and robust forecasting, 
ultimately informing better water resource management and environmental planning26.

Although data-driven models demonstrate good generalization and adaptability in the field of runoff 
prediction, they exhibit a significant dependence on high-quality and large volumes of data during the model 
construction process15,27. Furthermore, the uncertainty in both quantity and quality of runoff sequences, 
coupled with their multimodal nature, leads to discrepancies between the models and the actual conditions. 
These discrepancies not only limit the generalization capabilities of model but also hinder its extraction of 
global temporal features, thereby adding complexity to the task of capturing the dynamic changes in complex 
hydrological processes28,29. Numerous studies have consistently demonstrated the substantial enhancement 
of runoff prediction accuracy enabled by the integration of pre-decomposition techniques. Empirical mode 
decomposition (EMD), for instance, has proven to be a powerful tool for processing non-stationary sequences, 
thus enhancing the performance of runoff predictions14. However, EMD still faces challenges including mode 
mixing and end effects, which can negatively impact the predictive performance of hybrid models30. To address 
these limitations, researchers have continuously refined and introduced methods such as the improved complete 
ensemble empirical mode decomposition with adaptive noise (ICEEMDAN)31, which have effectively mitigated 
these issues. Nonetheless, determining the optimal parameters for ICEEMDAN remains a complex task. 
Moreover, for nonlinear and irregular data segments, unresolved frequency components and residual terms may 
not be entirely solvable, potentially causing substantial interference with the prediction results and adversely 
affecting the accuracy of forecasting32. Compared with the aforementioned decomposition methods, time-
varying filtered based empirical mode decomposition (TVFEMD), which integrates time-varying filtering into 
EMD, not only addresses the issue of modal mixing but also preserves the time-varying characteristics of the 
signal33. This preservation is beneficial for subsequent predictive models that seek to thoroughly analyze the 
data, especially its high-frequency components34.

Data preprocessing techniques can decompose runoff into high and low frequency sub-sequences. However, 
there is a certain subjectivity in determining only the IMF1 of a subsequence as a high-frequency sequence, 
ignoring the quantitative analysis of the frequency complexity of the subsequence35. To address this issue, many 
researchers have proposed the use of methods such as sample entropy for assessing the complexity of each sub-
sequence, and dividing the high and low frequency sequences according to the entropy value, and secondary 
decomposition of the high frequency sequences in order to realize the feature extraction of the high frequency 
sequences and to improve their prediction accuracy17,36,37. However, in the current research on high and low 
frequency sequences, most of them focus on secondary processing of high frequency sequences, while the study 
of low frequency sequences is rarely given attention. Since the decomposition of the original runoff sequence by 
TVFEMD greatly increases the number of sub-sequences to be predicted. An excessive number of low-frequency 

Scientific Reports |        (2024) 14:31699 2| https://doi.org/10.1038/s41598-024-81574-w

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


sequences not only significantly increase the time cost of the model, but also further generate cumulative errors. 
Therefore, to balance prediction efficiency and effectiveness, our study introduces the permutation entropy (PE) 
and clusters low-frequency sequences to cope with the complexity caused by different degrees of chaos within 
a single intrinsic modal function (IMF) and its correlation with the predicted data. PE is an effective tool for 
measuring the complexity and randomness of time series. It provides a quantitative analysis of changes in the 
structure of a sequence, which is particularly important for pattern recognition in both high-frequency and 
low-frequency sub-sequences38. This method is applicable to various types of sequence data and can measure 
the complexity and randomness of nonlinear time series, which is especially significant for complex systems 
that traditional linear methods struggle to handle. Additionally, PE exhibits greater robustness, providing stable 
measurement results even in the presence of noise or large fluctuations in the data39.

In summary, the current development status and challenges of runoff prediction modeling are mainly as 
follows:

 (1)  Under the influence of climate change and human activities, the complexity of runoff sequences is increas-
ing and runoff prediction is becoming more and more challenging. There is an urgent need for more pow-
erful methods to improve the accuracy of runoff prediction for application in practical engineering.

 (2)  In recent years, RNN models (e.g., LSTM ) have been widely used in runoff prediction28. However, due 
to the local connectivity of RNN, the unit usually only has direct access to short-term memory, making it 
difficult to capture dependencies between distant time steps and unable to effectively exploit early critical 
information. Thus, limiting the predictive performance of models with RNN.

 (3)   Despite the excellent performance of TCN in several fields, the application of TCN in monthly runoff 
prediction has not been deeply explored compared with traditional neural networks. In addition, the appli-
cation of TCN in hydrology has its unique characteristics. Unlike linguistic sequences, most hydrological 
time series consist of consecutive unidirectional numerical points. It is difficult to fully characterize the 
overall inherent strong stochasticity of runoff sequences. Therefore, a refined decomposition of the intricate 
runoff sequences is necessary to reveal the embedded key information. This facilitates the model to detect 
significant features in a targeted manner, enabling it to further delve into the intrinsic patterns. Such an en-
deavor ensures precise integration and utilization of the pivotal temporal sequence data, thereby enhancing 
capacity of the model to accommodate the unique characteristics of runoff forecasting27,40.

In response to the current research gaps, a monthly runoff prediction model TVFEMD-PE-TCN based on the 
“decomposition-clustering-prediction” architecture is proposed, inspired by the time-varying characteristics of 
TVFEMD, which aims at high-precision runoff prediction, and the effectiveness and applicability of the model 
are discussed. The main contributions of this paper are summarized as follows:

 (1)  A data processing technique is proposed to effectively refine the characteristics of complex monthly run-
off. The model utilizes the adaptive filtering function of TVFEMD to skillfully and adaptively process the 
non-stationary complex runoff time series, and adopts the cutoff frequency algorithm for effective domain 
segmentation to provide rich time-frequency information. This strategic approach effectively alleviates the 
problems of modal aliasing and edge effects.

 (2)  Embedding entropy clustering for model optimization. The complexity of each IMF is measured using PE, 
and the IMFs are categorized into high-frequency and low-frequency bands based on the entropy value. By 
clustering the low-frequency IMFs, the redundancy associated with the TVFEMD decomposition is miti-
gated, and the overall performance of the model is also improved.

 (3)  Through the integration of TVFEMD with TCN, the implied features of each IMFs are successfully cap-
tured. Compared with other coupled models, TCN is able to deeply excavate and process the local spectral 
information and long-term dependence relations contained in different frequencies separated by TVFEMD 
with high accuracy to achieve the effect of synergistic optimization. It is further improves the prediction 
efficiency of the submodels, and realizes the pioneering high-performance of non-stationary runoff predic-
tion.

In this study, Chap. 2 introduces the ERS unit root test, TVFEMD, PE, and TCN, as well as the construction 
of the prediction model; Chap. 3 describes the data sources and analysis; Chap. 4 compares and analyzes the 
prediction results of the main models; Chap. 5 summarizes the experimental results.

Materials and methods
ERS unit root test
Elliott et al.41 introduced a novel unit root test method, termed the ERS point optimal test. This method eliminates 
the need to specify the lag length value p. It constructs a statistical measure by regressing the approximated 
differential sequence of the series yt under test. The testing process proceeds as follows:

Let the least squares estimation of the residuals of d(yt |a ) = d(xt |a )δ(a) + ηt is given by 
η̂t(a) = d(yt |a ) − d(xt |a )δ(a).

The testing hypotheses are as follows: there exists a unit root (i.e., the runoff series is not stationary) for 
H0 : ρ = 1, and there is no unit root (i.e., the runoff series is stationary) for H1 : ρ ̸= 1.

The ERS test statistic is defined as follows:

 PT = (SSR(a) − aSSR(1))/f0 (1)
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wheref0is the residual spectral density at a frequency of zero. Specifically, SSR(a) =
∑

η2
t (a), 

SSR(1) =
∑

η2
t (1).

The ERS test is a one-sided test that rejects the null hypothesis of a unit root (H0) when the statistic is less 
than the critical value. The use of the modified Schwarz Information Criterion based on generalized least squares 
detrending can lead to substantial power gains42.

Time varying filtering based empirical mode decomposition
The TVFEMD employs a nonuniform B-spline approximation as a time-varying filter in the decomposition 
process. The local cutoff frequency of the TVFEMD is adaptively designed based on instantaneous amplitude 
and frequency information, and an approach to cutoff frequency rearrangement is introduced to address the 
intermittency problem. The calculation process of the TVFEMD method is illustrated in Fig. 143:

Permutation entropy
The PE, proposed by Bandt & Pompe44, is employed to characterize the complexity and self-similarity of a 
time series or a chaotic dynamical system. The method demonstrates remarkable ability to identify stochastic 
characteristics and fluctuations in non-linear time series. The methodology inherently has beneficial attributes 
for distinguishing signal randomness and isolating spurious elements. The process for calculating permutation 
entropy is as follows37:

The phase space of the runoff series is first reconstructed to obtain the reconstruction matrix X:

 

X =




x(1) x(1 + τ) · · · x(1 + (m − 1)τ)
x(2) x(2 + τ) · · · x(2 + (m − 1)τ)
x(j)

...

x(j + τ)
...

· · · x(j + (m − 1)τ)
...

x(K) x(K + τ) · · · x(K + (m − 1)τ)


 (2)

where j = 1, 2, …, K; m represents the embedding dimension, τ signifies the delay time, and K = n − (m − 1). 
Matrix X contains K rows of reconstructed components. Each reconstructed component is sequentially arranged 
in ascending order based on its values. As such, each row in the reconstructed matrix X can yield a sequence:

 s(g) = {r1r2 · · · rm} (3)

Fig. 1. Implementation steps of the TVF-EMD.
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where g = 1, 2, …, k and k ≤ m!, because there are m! different mapping sequences {r1r2 · · · rm}within the 
m-dimensional phase space. Assuming the probability of occurrence for each mapping sequence is P1, P2, … Pk, 
the permutation entropy of a runoff sequence {x(i), i=1,2, . . . , n} with k distinct mapping sequences can be 
defined as Eq. (4):

 
Hp = −

k∑
j=1

Pj In Pj  (4)

When Pj = 1/m!, HP reaches its maximum value of ln(m! ). Normalize the value of HP as Eq. (5):

 0 ⩽ H̄p = Hp(m)/ In(m!) ⩽ 1 (5)

The magnitude of H̄p represents the complexity or randomness of the runoff sequence. A larger value of H̄p 
indicates increased randomness within the runoff sequence correlating with a higher potential for abrupt events, 
while sequence with reduced randomness suggest a lower likelihood of significant change.

Temporal convolutional network
The fixed-length receptive field in CNN might not capture long-term dependencies in data sequences, thereby 
limiting accuracy in predictions. Responding to this, Bai et al.24 introduced an advanced CNN model: TCN. TCN 
is a novel approach to processing time series data, comprising crucial components such as causal convolution, 
dilated convolution, and residual connections. An illustration of TCN’s fundamental building blocks is presented 
in Fig. 2.

Causal convolution
CNN is highly proficient in feature extraction but is rarely employed in time series prediction due to its 
structural defect - an inherent ‘information leakage’, as shown in Fig. 3-a, where the output of a current timestep 
is concatenated with elements from the future, which compromises predictive accuracy23. TCN addresses this 
by employing a technique known as causal convolution. This technique circumvents the issue of information 
leakage, rendering it suitable for time series forecasting. Additionally, TCN employs a convolution stride of 1 
and employs zero-padding that matches the kernel size minus one. This paradigm enables TCN to preserve the 
dimensionality of the input in the output as it processes temporal data through a fully convolutional network, 
thereby enhancing the model’s performance and precision. Figure 3-b illustrates the enhanced architecture of 
causal convolution45.

Dilation convolution
Observing Fig.  3b, it becomes evident that, while causal convolutions adhere to the principles of temporal 
continuity, they have a limited coverage of past input information, which can result in the loss of many historical 
data points. To mitigate this issue, TCN introduces a dilation rate d. This is achieved by inserting spaces or ‘gaps’ 
between the elements of the convolution kernel46. Figure 3- illustrates the concept. The mathematical model for 

Fig. 2. Architectural elements in a TCN.
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the dilated convolution, which is unfolded on a sequence element X of the one-dimensional sequence input and 
the filter f(i)(i = 0, 1, · · · , k − 1), is presented as Eq. (6):

 
F (s) = (X ∗ df)(s) =

k−1∑
i=0

f(i)·Xs−d·i (6)

where s corresponds to the element of the one-dimensional input sequence,  signifies the filter of size k, d 
represents the dilation rate, and s − d · i is the index of the time step that has regressed47.

Residual connections
During the integration of causal and dilated convolutions to extend the receptive field of TCN, there is an 
increase in the number of layers in the network. This can potentially lead to problems related to the vanishing or 
exploding of gradients. To address these challenges, residual connections are employed to maintain the stability 
and efficiency of the training. The fundamental concept of a residual connection is that it enables a certain layer 
within the network to directly access information from preceding layers. Through skip or shortcut connections, 
inputs can be transmitted to the next layer and reappear after skipping certain layers. This method effectively 
solves the problems of gradient disappearance and explosion during backpropagation by allowing gradients 
to be ‘short-circuited’ through these connections, thereby preserving gradient stability. The residual structure 
design is depicted in Fig. 2-c, featuring several residual units that directly map deep-level temporal sequence 
characteristics, thereby enhancing the learning capability of the TCN47.

Proposed hybrid modeling
In this study, we initially applied the ERS unit root test to the monthly runoff sequence, revealing its non-
stationary nature. Subsequently, we employed the TVFEMD technique to decompose the non-stationary runoff 
series into multiple IMFs. Next, the IMFs were classified into high-frequency and low-frequency components 
based on their permutation entropy values. This was followed by clustering the low-frequency components. 

Fig. 3. Structures of three different convolution.
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We then utilized the TCN model to forecast the subsequences of the runoff sequence. The forecasts for both 
high-frequency and low-frequency components were combined to yield the definitive runoff prediction. The 
TVFEMD-PE-TCN composite model effectively combines the strengths of its constituents, providing a more 
reliable and accurate monthly runoff prediction. In the final assessment, the model’s applicability was evaluated 
using performance metrics, and the integrated TVFEMD-PE-TCN model is illustrated in Fig. 4.

Evaluation indicators
To assess the effectiveness of the new runoff forecasting method and compare the proposed model with other 
benchmark models, five evaluation metrics were utilized. These include the root mean square error (RMSE), 
coefficient of determination (R2), mean absolute error (MAE), qualification rate (QR), Nash-Sutcliffe efficiency 
coefficient (NSE), and Kling-Gupta efficiency coefficient (KGE). MAE and RMSE assess the magnitude of errors 
between predicted and actual values, while NSE and R² gauge the fitting effect of hydrological forecast values 
against actual data. QR serves as an index for evaluating the predictive accuracy of hydrological models. KGE 
takes into account multiple aspects of model performance, including bias, variability, and correlation, offering a 
more comprehensive assessment than other measures. As KGE, NSE, and R2 approach 1, and RMSE and MAE 

Fig. 4. Flow chart of the hybrid TVFEMD-PE-TCN model.
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lower, QR approaches 100%, indicating a reduction in model prediction errors and an increase in predictive 
precision, thereby providing more reliable and accurate solutions for practical applications48–50. The calculation 
formulas are presented in Eqs. (7)-(12) as follows:

 

RMSE =

√√√√ 1
n

n∑
i=1

(ŷi − yi)2 (7)

 
R2 =

[∑n

i=1 (yi − ȳ)(ŷi − ¯̂y)
]2

∑n

i=1 (yi − ȳ)2 ∑n

i=1 (ŷi − ¯̂y)2  (8)

 
MAE = 1

n

n∑
i=1

|ŷi − yi| (9)

 
NSE = 1 −

∑n

i=1 (yi − ŷi)2

∑n

i=1 (yi − ȳ)2  (10)

 
QR = k

l
× 100% (11)

 KGE = 1 −
√

(α − 1)2 + (β − 1)2 + (γ − 1)2 (12)

where, yi represents the original runoff sequence, ȳ is the mean of the original runoff sequence, ŷi denotes 
the predicted runoff sequence values, ¯̂y is the mean of the predicted runoff sequence values, n is the count of 
runoff sequences, k represents the number of qualified predictions, and predictions are considered satisfactory 
if the absolute value of the relative prediction error is less than 20%. l is the length of the runoff sequence in the 
verification period. α = σ(yi/ŷi)is variability bias,β = µ(yi/ŷi)is the mean bias, r is the correlation coefficient, 
and σ and μ represents the standard deviation and the mean of the observed values, respectively.

Case study
Study areas
The Fenhe River spans a total length of 716 km(35°20′-38°56′N, 110°30′ − 113°32′ E), ranking as the second-
largest tributary of the Yellow River. The Fenhe River basin, covering an area of approximately 3.9 × 104 km2. 
The topography diminishes from south to north, with a relatively large undulation and varied terrain. In recent 
years, a combination of natural factors and increased human water use has led to a significant reduction in 
the measured annual runoff of the Fenhe River basin51. This has severely impacted the economic and social 
development within the basin and exacerbated the degradation of the ecological environment. The upper reaches 
of the Fenhe River, as a crucial water source area of the river, also serve as an important surface water source 
for the capital city, Taiyuan, in Shanxi province49. Against the backdrop of ecological construction, enhancing 
the accuracy of runoff forecasting is of critical importance for adaptive water resource management. To explore 
the model robustness to different runoff sizes at different hydrological stations, we selected three hydrological 
stations in the upper Fenhe River basin for our study: Shangjingyou, Lancun, and Jingle, as illustrated in Fig. 5. 
Three stations with significantly different catchment areas and runoff conditions were selected for model 
performance evaluation. Specifically, the Jingle station is located in the upper reaches of the Fenhe River basin, 
where the runoff variations are influenced by measures such as soil and water conservation. The Shangjingyou 
station is situated on a tributary of the Fenhe River basin, characterized by a relatively small runoff volume, 
which is subject to influences from various topographic and geomorphological features. In comparison, the 
Lanchun station has the largest drainage area under its control, with its runoff being significantly affected by 
large-scale human activities. Considering the uneven distribution of hydrological stations in the basin and the 
comprehensive coverage of the impact of human activities on runoff changes upstream, a further analysis of 
the model’s applicability under different flow and runoff conditions within the same basin is conducted52. By 
establishing an accurate runoff prediction model, scientific management strategies can be provided for local 
governments, which will have a profound impact on economic development and people’s production and life.

Data source
In this study, 70% of the data is set aside for training, while the remaining 30% is designated as the test set for 
each dataset. This allocation is intended to prevent any ‘leakage’ of calibration data during the validation phase. 
It is designed to guarantee that the performance of model on the test set is robust and not unduly influenced by 
random variations53. This step is essential to overcome any biases in the model results that might arise from the 
use of future data. The original runoff sequence is illustrated in Fig. 6.

To enhance the convergence speed of the model, normalization was applied to all the data, ensuring that the 
range of all values is scaled between 0 and 1. The description of this expression is as follows:

 
x

′
i = xi − xmin

xmax − xmin
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where x
′
i and xi represent the normalized result and sample data, respectively; xmax and xmin are the maximum 

and minimum values in the sample, respectively.

Runoff characteristics analysis
Descriptive statistical analysis was conducted on the monthly runoff datasets from the three hydrological 
stations. The results of this analysis are presented in Table 1. As demonstrated in Table 1, the monthly runoff at 
the three hydrologic stations exhibited significant variation, with an uneven distribution throughout the year, 
substantial variation, and the presence of numerous extreme values.

The monthly runoff datasets from the three hydrological stations were tested the stationarity, and the results 
of the ERS unit root test are shown in Table 2. It can be seen from Table 2 that the ERS unit root test statistics 
P for the three hydrological stations all exceeded the critical values at the 1% significance level. Therefore, we 
cannot reject the null hypothesis of the presence of a unit root, indicating that the runoff series for the three 
hydrological stations possess strong characteristics of non-stationarity.

Determining input variables and model parameters
The autoregressive coefficient method to ascertain the lag time, which serves as an input variable for the model. 
The Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) are utilized to select the 
optimal lag time, thereby defining the input step length of the model.

Figure 7 presents the ACF and PACF plots for the three stations. The plots indicate that the ACF estimates for 
each station peaked at the 12th delay time point, while the PACF estimates stabilizing within the 95% confidence 
interval beyond the 12th lag. Consequently, the input data for the runoff prediction model consist of historical 
runoff data covering the previous 12 months.

Fig. 5. Geographical overview of the study area. The map was generated using ArcMap 10.8  (   h    t t  p s  :  /  /  w w w  . e s r  i . 
c   o m / e  n - u s / a r c g i s / p r o d u c t s / a r c g i s - d e s k t o p / o v e r v i e w     ) .    
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This research involved multiple experiments with different combinations of model parameters at the 
Shangjingyou hydrological station. By comparing the prediction loss functions and the predictive performance 
on the test set, the most optimal model construction strategy was identified. Table 3 presents the optimal sets of 
parameters for constructing each model.

Results
Decomposition and clustering results
Figure 8 presents the results of the TVFEMD for the monthly runoff data sets measured at three hydrological 
stations. The original dataset is decomposed into IMFs with different frequencies, thereby enhancing the 

Data Set P-Statistic Stationary?

Shangjingyou 17.03 Nonstationary

Jingle 5.7 Nonstationary

Lancun 38.14 Nonstationary

5% Critical Value 4.22

Table 2. ERS Unit Root Test results for three hydrological stations data set.

 

Min (104 m3/s) Max (104m3/s) Mean (104m3/s) Std (104m3/s) Skewness Kurtosis

Shangjingyou 28 8379 383.63 575.68 7.22 72.37

Jingle 148 26,728 1596.77 2243.67 7.42 71.56

Lancun 6 51,252 2782.06 3785.61 6.27 57.50

Table 1. Characteristics of monthly runoff data of three hydrological stations.

 

Fig. 6. Hydrological station data set image.
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Model Parameter Value

TVFEMD
B-spline order n 50

Bandwidth threshold ζ 0.25

TCN

Kernel size 8

Residual block 2

Filters 64

Learning rate 0.001

Batch size 128

Epochs 500

Activation function ReLU

Optimizer Adam

Loss function RMSE

LSTM

Hidden layers 2

Hidden size 256

Learning rate 0.001

Epochs 500

Optimizer Adam

Loss function RMSE

CNN

Convolutional layers 2

Kernel size 3 × 1

Batch size 128

Epochs 500

Activation function ReLU

Optimizer Adam

Loss function RMSE

SVM
c 4.0

Gamma 0.8

PE Embedded dimension 5

Table 3. Parameter settings of the models.

 

Fig. 7. ACF and PACF diagrams of initial runoff series.
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potential for increased prediction accuracy. However, the presence of a larger number of IMFs, such as the 27 
contained in the Lancun station dataset, adds significant complexity and higher computational cost to the runoff 
forecasting model. Moreover, the low-frequency components often demonstrate a weaker correlation, and even 
negative correlation, with the original runoff sequences (as shown in Fig. 9a). Consequently, we introduced PE to 
ascertain the complexity of each IMF, with the results shown in Fig. 9b. The distinction between high-frequency 
and low-frequency components is made by defining the boundary according to the parts with bigger changes in 
each IMF. Specifically, the sub-sequence that immediately follows a pair of IMFs is identified as the concluding 
segment of the high-frequency component, while the commencement of the low-frequency component is 
derived from the subsequent sub-sequence. Our methodological approach enables a more precise bifurcation 
of signal into high-frequency and low-frequency components, which is a pivotal step in a multitude of signal 
processing applications54. Resultant clustering of low-frequency IMFs, post the demarcation of high-frequency 
components as those exceeding 0.6 and low-frequency elements as those beneath 0.617, are delineated in Fig. 10. 
The prediction accuracy is improved by clustering the low-frequency components, which in turn reduces the 
accumulation of prediction errors by the less correlated components.

Model development and prediction results
The objective of this study is to validate the efficacy of our proposed TVFEMD-PE-TCN model from four 
perspectives. Firstly, the predictive prowess of TCN model is gauged against three single models: LSTM, CNN 
and SVM. This measures the individual competence of TCN. The second involves comparing the performance 
of EMD, ICEEMDAN, and TVFEMD, applied to non-stationary runoff data from three hydrological stations. 
This affirms the effectiveness of using the TVFEMD technique for decomposing the original runoff series into 
IMFs. The third step amalgamates the four base models with the TVFEMD and PE to create hybrid forecasting 
models. This procedure underscores the competitive edge of our proposed TVFEMD-PE-TCN model. Lastly, to 

Fig. 8. TVFEMD results of monthly runoff at each hydrological station.
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Fig. 10. Clustering results of monthly runoff for each hydrological station.

 

Fig. 9. Pearson correlation coefficient and PE results of monthly runoff at each hydrological station.
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highlight the superiority of our model, we contrasted the forecast accuracy and time consumption of the hybrid 
model before and after the introduction of PE to cluster the low-frequency sub models. This final analysis affirms 
the feasibility of applying PE for clustering in low-frequency sub-models. A comprehensive assessment of the 
forecasting outcomes, including four evaluation metrics, is consolidated and presented in Table 4.

Discussion
The box normal chart for each single model on each hydrological station testing set is shown in Fig. 11 for a 
direct assessment of model accuracy. Compared with other single models, the TCN model performs stably and 
superiorly in runoff prediction for test set at the three hydrological stations, especially at the Lancun hydrological 
station. LSTM encounters issues like gradient vanishing or exploding when dealing with long sequence data. 
SVMs over-adapt to the training data, prone to overfitting due to the influence of runoff peaks. CNNs also 
exhibit strong dependence on the training data, leading to poor generalization capabilities. This renders them 
less effective in modeling long-term dependencies, thereby limiting their predictive accuracy. In contrast, the 
TCN model architecture, constructed with causal dilated convolutions, combines skip connections and dilated 
convolutions to mitigate the problems of gradient vanishing and exploding, while aiding in the capture of long-
term dependencies, thus achieving good long-term memory on sequential data. Furthermore, by reducing 
the number of parameters and the complexity of the model, it effectively alleviates overfitting and enhances 
generalization. This justifies that employing the TCN model for predicting runoff sequences is a pragmatic and 
feasible approach. Moreover, it is evident that prediction of these single models is markedly poor, in particular 
peak runoff. Hence, data preprocessing techniques are critical to enhance the predictive models.

According to the evaluative metrics delineated in Table  4, the TCN ensemble model coupled with 
decomposition methods has demonstrated improved precision over the single TCN model in runoff forecasting. 
Out of the three signal decomposition preprocessing techniques, the TVFEMD-TCN has emerged with superior 

Sites Models

Training set Testing set

RMSE MAE NSE R2 RMSE MAE NSE R2

Shangjingyou

LSTM 546.87 229.18 0.30 0.56 114.85 93.76 0.11 0.52

CNN 407.09 195.62 0.61 0.79 280.84 196.94 -4.34 0.34

SVM 565.55 194.56 0.26 0.53 97.27 72.98 0.36 0.65

TCN 566.91 252.97 0.25 0.50 116.69 98.52 0.08 0.59

EMD-TCN 493.82 283.04 0.43 0.70 81.42 65.17 0.55 0.75

ICEEMDAN-TCN 372.76 191.38 0.68 0.83 50.90 37.97 0.82 0.92

TVFEMD-TCN 47.30 32.19 0.995 0.997 10.20 8.18 0.993 0.997

TVEEMD-PE-LSTM 165.25 99.03 0.94 0.97 25.57 20.10 0.96 0.98

TVFEMD-PE-CNN 54.28 40.07 0.993 0.997 51.29 42.11 0.82 0.96

TVFEMD-PE-SVM 58.13 39.96 0.992 0.996 13.67 11.00 0.987 0.995

TVEEMD-PE-TCN 47.25 32.13 0.995 0.997 9.20 7.42 0.994 0.997

Jinle

LSTM 1995.80 782.38 0.41 0.65 716.46 472.85 0.44 0.73

CNN 977.30 536.02 0.86 0.93 902.91 609.34 0.11 0.55

SVM 1975.71 625.65 0.43 0.75 713.10 443.55 0.44 0.75

TCN 2150.55 885.02 0.32 0.57 696.50 453.51 0.47 0.70

EMD-TCN 1983.56 1098.12 0.42 0.72 484.05 346.38 0.74 0.88

ICEEMDAN-TCN 1602.21 840.07 0.62 0.82 348.23 234.16 0.87 0.93

TVFEMD-TCN 125.83 93.04 0.998 0.999 52.68 41.74 0.997 0.998

TVEEMD-PE-LSTM 586.53 360.73 0.95 0.98 220.57 173.73 0.95 0.98

TVFEMD-PE-CNN 204.22 152.24 0.994 0.997 253.10 200.46 0.93 0.98

TVFEMD-PE-SVM 167.38 120.00 0.996 0.998 83.31 66.96 0.992 0.997

TVEEMD-PE-TCN 125.54 92.24 0.998 0.999 44.33 33.74 0.998 0.999

Lancun

LSTM 3456.37 1504.57 0.36 0.61 1659.05 1109.75 -0.03 0.28

CNN 2553.23 1301.26 0.65 0.81 2671.06 1843.21 -1.68 0.29

SVM 3422.30 1279.24 0.38 0.65 1602.96 991.72 0.04 0.37

TCN 3578.32 1664.83 0.32 0.56 1572.67 1108.58 0.07 0.37

EMD-TCN 1640.82 1159.39 0.86 0.93 1583.12 1198.15 0.06 0.64

ICEEMDAN-TCN 1367.04 931.77 0.90 0.95 1128.44 853.01 0.52 0.77

TVFEMD-TCN 167.71 119.05 1.00 1.00 127.61 105.75 0.994 0.997

TVEEMD-PE-LSTM 834.02 535.54 0.96 0.98 368.99 284.39 0.95 0.98

TVFEMD-PE-CNN 313.02 236.23 0.99 0.998 478.89 379.60 0.91 0.98

TVFEMD-PE-SVM 260.27 187.49 0.996 0.998 138.42 108.10 0.993 0.996

TVEEMD-PE-TCN 169.20 120.58 0.998 0.999 106.68 80.12 0.996 0.998

Table 4. Comparative evaluation of runoff prediction outcome metrics among different models.
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predictive performance, suggesting that the TVFEMD is more effective at mitigating spectral mode leakage and 
edge effects than EMD and ICEEMDAN. This is evidenced by some instances in the Shangjingyou hydrological 
station, where the TVFEMD-TCN model has achieved a reduction of 87.47% and 79.96% in RMSE respectively, 
compared with the corresponding EMD-TCN and ICEEMDAN-TCN models. The MAE has been reduced by 
87.45% and 78.46%, the NSE has increased by 80.13% and 20.41%, and the R2 has climbed by 32.60% and 8.87%. 
At the Jingle hydrological station, in comparison to the above signal decomposition techniques, the TVFEMD-
TCN model has decreased RMSE by 89.12% and 84.87%. Furthermore, the MAE has been lowered by 87.95% 
and 82.18%. The NSE has seen an improvement of 34.03% and 14.93%, and the R2 has climbed by 13.16% 
and 6.89%. At the Lancun hydrological station, compared to the combination models of the aforementioned 
decomposition methods, the TVFEMD-TCN model has reduced RMSE and MAE by 63.94-91.94% and 59.71-
91.17% respectively. The NSE and R2 have increased by 0.08–0.94 and 3.09-58.43%. The TVFEMD-TCN model 
has achieved NSE of up to 0.99 during both training and validation periods across the three hydrological stations. 
This is mainly due to the ability of TVFEMD to lessen the prediction difficulty of high-frequency components 
and effectively present the characteristics of the original runoff sequence. As shown in Fig. 11, which features 
violin plots of the runoff prediction results from different decomposition methods coupled with TCN at each 
hydrological station, the model based on TVFEMD decomposition achieves the best prediction performance 
out of all stations. This suggests that TVFEMD has an excellent decomposition capability for nonstationary 
runoff sequence data (Fig. 12).

Worth mentioning is that the models based on the ‘Decomposition-Prediction-Integration’ framework 
have shown significant improvements in terms of simulation fit compared to the single models, as evident in 
Fig. 13. At the Shangjingyou hydrological station, the coupled models of TVFEMD-PE-LSTM, TVFEMD-PE-
CNN, TVFEMD-PE-SVM, and TVFEMD-PE-TCN have seen a reduction in RMSE of 77.73%, 81.74%, 85.94% 
and 92.11%, respectively during the testing set compared to their corresponding single models. For the Jingle 
hydrological station, the same coupled models have achieved a reduction in RMSE of 69.21%, 71.97%, 88.32% 
and 93.64% respectively during the testing set when compared to their respective single models. At the Lan 
Cun hydrological station, the coupled models have decreased RMSE by 77.76%, 82.07%, 91.36%, and 93.22% 
respectively during the testing set compared to their matching single models. The substantial enhancements can 

Fig. 11. Single model prediction results on the testing set for each hydrological station.
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be credited to the signal decomposition technology and PE clustering, which splits the original runoff sequence 
into several relatively smooth sub-models that are more manageable and facilitate the extraction of features for 
more accurate runoff forecasting.

Figure 14 presents the regression images of each hybrid model on the testing set of the three hydrological 
stations. Figure 14 shows the TVFEMD-PE-TCN model has the highest R2, which all achieve 0.99, indicating 
that TVFEMD-PE-TCN performs the best in terms of fitting accuracy among all hybrid models. Furthermore, 
at the Shangjingyou hydrological station, the TVFEMD-PE-TCN model has declined RMSE by 64.01%, 82.05% 
and 32.67% respectively during the testing set compared to the TVFEMD-PE-LSTM, TVFEMD-PE-CNN and 
TVFEMD-PE-SVM models. Regarding the Jingle hydrological station, the RMSE of the TVFEMD-PE-TCN 
model has been decreased by 79.90%, 82.48% and 46.79% respectively compared to the previously mentioned 
models. Taking the Lancun hydrological station as an example, the RMSE on the testing set for the TVFEMD-
PE-TCN model is 71.09%, 77.72%, and 222.93% lower than other hybrid models. The exceptionally high 
predictive capability of the TVFEMD-PE-TCN model for runoff forecasting can be attributed to the ability of 
TCN to facilitate cross-layer information transfer through residual connections. This ensures that shallow-layer 
information is seamlessly relayed to deeper layers, enhancing the efficiency of the backpropagation process. 
Therefore, predicting with the TCN not only eliminates residual noise in the data that could not be removed by 
preliminary decomposition techniques but also further exploits the temporal characteristics of the subsequence 
data derived from TVFEMD decomposition and clustering, thereby offering a more accurate and stable fit for 
runoff.

In addition, Fig.  13 shows the QR and KGE values for each model.The closer the NSE and KGE values 
are to 1, this means that the model predictions are closer to the actual observations. As can be seen from the 

Fig. 12. Prediction results of different combination models on the testing set for each hydrological station.
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Fig. 13, the symbols indicating the TVFEMD-PE-TCN model are closer to 1, which means that its prediction 
ability is excellent. This result proves that the model proposed in this study significantly reduces the anomalous 
fluctuations in the prediction results with low uncertainty.

Figure 15 presents Taylor diagrams for the Shangjingyou, Jingle, and Lancun hydrological stations, providing 
a concise representation of multiple models’ statistical information and showcasing the results of three 
evaluation metrics in a single image. The Taylor diagram in this study employs three evaluation metrics: RMSE 
(normalized), NSE, and R2. The horizontal and vertical axes represent NSE, R2 is depicted by radial lines, and 

Fig. 13. The QR and KEG of each model on the testing set of three hydrological stations.
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dashed lines signify RMSE. Different patterns signify different model behaviors, where the symbol representing 
a model is closer to the center of the plot if its predictions are closer to the actual values. From Fig. 14, it is 
evident that the TVFEMD-PE-TCN model is closer to the actual values compared to other predictive models, 
referencing the best forecast performance and the highest predictive accuracy.

Figure 16 provides a comparative analysis of prediction durations for the TVFEMD-TCN and TVFEMD-
PE-TCN composite models. Referring to Table 4, it is observed that the application of the TVFEMD-PE-TCN 
model has resulted in a notable decrease in RMSE by 9.75%, 15.85%, and 16.40% at the three hydrological 
stations compared to the TVFEMD-TCN model. This corroborates the efficacy of utilizing PE to assess the 
complexity of each constituent part of the IMF. Furthermore, when juxtaposed with the TVFEMD-TCN model, 
the prediction time and computational costs of the TVFEMD-PE-TCN model are significantly reduced across 
the three hydrological stations. These findings further substantiate the pragmatic utility of employing PE to 
evaluate the complexity of every component within the IMF. Consequently, it is deemed feasible to utilize PE in 
assessing the complexity of each variable IMF component, thereby clustering relatively smooth low-frequency 
sequences.

Table 5 presents the prediction values and errors of runoff extremes at the three hydrological stations during 
the test set for each model. As Table  5 illustrates, the TVFEMD-PE-TCN model significantly reduced the 
prediction errors for extreme values compared to other models. Specifically, the extreme value errors at the three 
stations for the TVFEMD-PE-TCN model were reduced by 74.96%, 22.65%, and 20.81%, respectively, compared 
to the TVFEMD-TCN model. This indicates that, following clustering with the PE method, the predicted extreme 
values are closer to the actual values, and the performance of model in predicting extremes has been improved 
over the original model. Overall, the proposed model not only enhances the overall prediction accuracy but also 
shows a notable improvement in local extreme value prediction.

Tables 1 and 2 indicates that the P-values from the ERS test and the statistical characteristics of runoff at 
three hydrological stations are distinct. This indicates that the selected stations have significantly different runoff 

Fig. 14. The regression images of each combined model on the testing set of three hydrological stations.
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variability characteristics. The significant changes in the runoff pattern make these stations an effective case for 
evaluating the generalization and adaptability of the model. The statistical characteristics of the runoff unveil 
significant changes, which may be attributed to the combined effects of climate, topography, soil types, and 
anthropogenic interventions. Despite the challenges posed by the diversity and complexity, the developed model 
showed excellent adaptability to the different runoff characteristics at three stations and excellent predictive 
performance. This achievement is primarily attributed to the model’s ability to learn the characteristics of various 
input data, effectively representing the hydrological properties of each station.

Conclusion
Accurate runoff prediction is essential for various practical applications, including water resource planning and 
flood forecasting. This paper introduces a novel TVFEMD-PE-TCN hybrid model to forecast monthly runoff 
at three hydrological stations. A comparison of predictive accuracy among different models led to the following 
conclusions:

 1.  The TVFEMD technique significantly enhances runoff prediction. Single neural network models often 
struggle with non-stationary data due to their inherent limitations in runoff prediction. The integration of 
TVFEMD improves model reliability and suitability. Compared to other decomposition techniques such as 
ICEEMDAN, the TVFEMD method, combined with TCN, yields the best predictive results, especially with 
high-frequency IMF signals. TVFEMD aids in mapping non-stationary runoff sequences into IMFs that 
facilitate the capture and extraction of data features. This approach enhances the comprehensiveness and 
sufficiency of time-series decomposition, reducing the interference of stochastic elements on deterministic 
ones.

Fig. 15. Taylor diagrams for the testing set of 18 forecast models at various hydrological stations.
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 2.  The application of PE on TVFEMD decomposed sub-models enables a complexity evaluation and distinc-
tion between high and low-frequency components. Clustering is performed on low-frequency components, 
thereby generating new sub-components for forecasting. This not only significantly enhances model predic-
tive accuracy but also conserves computational cost by substantially reducing the redundancy of sub-model 
information, obtaining improved practicality and prediction efficiency.

 3.  Compared to other hybrid models, the TVFEMD-PE-TCN model has achieved NSE and KGE values of 0.99 
at all three hydrological stations, with the QR exceeding 96%. Notably, at the Shangjingyou station, the QR 
is 100%. TCN demonstrates more effective extraction from the features of sub-segments decomposed by 
TVFEMD. Therefore, this model lays a dependable method for monthly runoff time-series forecasting.

 4.  This study presents a composite prediction method that combines TVFEMD signal processing techniques, 
PE, and TCN to form a runoff prediction model, demonstrating higher prediction accuracy. It is an efficient 
and practical forecasting method, offering valuable support for decision making in water resources manage-
ment within drainage basins.

Future studies could focus on integrating basin climatic attributes such as rainfall, evaporation, temperature, 
among others, and anthropogenic factors like land-use changes, geological conditions, to further refine the 
model and elevate its interpretability.

Jinle (104m3)
Shangjingyou 
(104m3) Lancun (104m3)

Runoff Error Runoff Error Runoff Error

Peak runoff 6049 625 12,362

TCN 2005 -4044 503 -122 1964 -10,398

LSTM 2089 -3960 536 -89 1720 -10,642

CNN 1292 -4757 1170 545 2174 -10,188

SVM 1973 -4076 387 -238 1530 -10,832

EMD-TCN 4989 -1060 553 -72 15,437 3075

ICEEMDAN-TCN 4917 -1132 624 -1 9019 -3343

TVFEMD-TCN 6010 -39 627 2 12,280 -82

TVEEMD-PE-
LSTM 5910 -139 647 22 11,280 -1082

TVFEMD-PE-CNN 6074 25 682 57 12,136 -226

TVFEMD-PE-SVM 6022 -27 629 4 12,114 -248

TVEEMD-PE-TCN 6039 -10 626 1 12,297 -65

Table 5. The error of the extreme values of the test set for three stations.

 

Fig. 16. Modeling time of runoff sequences for different models at various hydrological stations.
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